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Background: Neutralizing anti-drug antibodies (ADA) can greatly reduce the efficacy

of biopharmaceuticals used to treat patients with multiple sclerosis (MS). However, the

biological factors pre-disposing an individual to develop ADA are poorly characterized.

Thus, there is an unmet clinical need for biomarkers to predict the development of

immunogenicity, and subsequent treatment failure. Up to 35% of MS patients treated

with beta interferons (IFNβ) develop ADA. Here we use machine learning to predict

immunogenicity against IFNβ utilizing serum metabolomics data.

Methods: Serum samples were collected from 89 MS patients as part of the ABIRISK

consortium—a multi-center prospective study of ADA development. Metabolites and

ADA were quantified prior to and after IFNβ treatment. Thirty patients became ADA

positive during the first year of treatment (ADA+). We tested the efficacy of six binary

classification models using 10-fold cross validation; k-nearest neighbors, decision tree,

random forest, support vector machine and lasso (Least Absolute Shrinkage and

Selection Operator) logistic regression with and without interactions.

Results: We were able to predict future immunogenicity from baseline metabolomics

data. Lasso logistic regression with/without interactions and support vector machines

were the most successful at identifying ADA+ or ADA– cases, respectively. Furthermore,

patients who become ADA+ had a distinct metabolic response to IFNβ in the first 3

months, with 29 differentially regulated metabolites. Machine learning algorithms could

also predict ADA status based on metabolite concentrations at 3 months. Lasso logistic

regressions had the greatest proportion of correct classifications [F1 score (accuracy

measure) = 0.808, specificity = 0.913].
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Finally, we hypothesized that serum lipids could contribute to ADA development

by altering immune-cell lipid rafts. This was supported by experimental evidence

demonstrating that, prior to IFNβ exposure, lipid raft-associated lipids were differentially

expressed between MS patients who became ADA+ or remained ADA–.

Conclusion: Serum metabolites are a promising biomarker for prediction of ADA

development in MS patients treated with IFNβ, and could provide novel insight into

mechanisms of immunogenicity.

Keywords: immunogenicity, anti-drug antibodies, multiple sclerosis, metabolomics, cholesterol, machine learning

INTRODUCTION

Multiple sclerosis (MS) is a progressive neurological disease
driven by a combination of inflammatory and neurodegenerative
processes. There is currently no cure, but a variety of disease-
modifying therapies are now available (1). Many of these are
biopharmaceuticals which can elicit an undesirable immune
response (immunogenicity) leading to the production of anti-
drug antibodies (ADA). The therapeutic consequences of ADA
include accelerated/delayed drug clearance, neutralization of
bioactivity, cross-reactivity with the endogenous protein and
hypersensitivity reactions. Consequently, ADA can compromise
treatment efficacy (2–6) and safety (7), and are a clinically
significant problem for the treatment of MS.

Beta interferons (IFNβ) have been used to treat MS for
more than 20 years (8), reducing relapse rate by ∼33% (9).
Although drugs that are more effective are now available, IFNβ

is still used first line due to its favorable safety profile. However,
depending on the formulation, IFNβ can induce ADA at rates
varying from up to 30% with subcutaneous injection of IFNβ-1b
(Betaferon/Extavia) or IFNβ-1a (Rebif),<5%with intramuscular
injection of IFNβ-1a (Avonex) and < 1% for PEGylated IFNβ-
1a (Plegridy). The type (IFNβ-1b or −1a), route of injection,
dose, and frequency of administration all influence the intrinsic
immunogenicity of the drug (10).

Numerous studies have demonstrated that persistent high

titers of neutralizing antibodies (nAbs) can significantly reduce
and even negate the therapeutic benefit of IFNβ treatment (11).

At the cellular level, IFN activity can be inferred from the

induction of IFN-response genes such as MXA, and nADA have
been shown to inhibit MXA induction in a titer-dependent
manner (12). The clinical relevance of low nAbs titers and
binding antibodies (bAbs) is less clear, but could include
immune complex formation and complement activation (13) and
increased IFNβ efficacy by lengthening its half-life (14).

It can be difficult to detect loss of efficacy because disease
activity is infrequent and can be asymptomatic, and time spent
on an ineffective treatment places patients at risk of accruing
irreversible neurological damage. Therefore, it is highly desirable
to identify patients at high risk of developing immunogenicity
prior to therapeutic intervention so that their treatment strategy
can be tailored accordingly (15).

However, our understanding of the biological parameters that
contribute to an individual’s risk of ADA development remains

limited. To date, a small number of genetic and immunological
parameters have been associated with ADA risk, including
human leukocyte antigen (HLA) class II alleles (16), HLA and
non-HLA associated single nucleotide polymorphisms (17), and
NOTCH2 expression on monocytes (18). Thus, there remains an
unmet demand for a predictive biomarker of immunogenicity
against IFNβ, and a better understanding of the mechanisms
underpinning ADA development is required.

In recent years machine learning (ML) approaches have
been applied to clinical problems in MS, including computer-
aided diagnosis, neuroimaging analysis and prediction of disease
trajectories (19–21). The majority of models have been based on
clinical information, but ML-generated serum lipid signatures
have also successfully been used to identify (22) and stratify
(23) MS patients. Circulating lipids are dysregulated in MS, and
have been associated with disease progression (24–28). Indeed,
circulating lipids can profoundly influence immune cell behavior
(29–32). However, serum lipids have not previously been studied
in the context of immunogenicity.

In the present study, serum metabolites and lipids were
quantified using an established nuclear magnetic resonance
spectroscopy platform (Nightingale Health). A variety of
supervised ML methods were applied, including random forest
(RF), support vector machien (SVM) and lasso (least absolute
shrinkage and selection operator) logistic regression which have
all been proved effective for analysis of metabolomics data
(22, 33–36). K-nearest neighbors (kNN) was also included for
contrast, as in side by side comparisons it has proved inferior
to other algorithms (22, 34). Finally decision trees were also
implemented due to the ease of interpretation and visualization,
although it is acknowledged they are prone to overfitting. Overall,
SVM, RF, and logistic regression with/without interactions could
all predict future ADA status at baseline or month 3 with F1 score
(a measure of accuracy) > 0.735 and specificity > 0.83. Thus,
we present a new approach to personalized prediction of ADA
development utilizing a combination of serum metabolites and
clinical information.

MATERIALS AND METHODS

Patient Cohort
A prospective cohort of MS patients was recruited across six
European countries as part of the Anti-Biopharmaceutical
Immunization: prediction and analysis of clinical relevance
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to minimize the RISK consortium (ABIRISK consortium;
www.abirisk.eu/). Patients were diagnosed with relapsing
remitting multiple sclerosis (RRMS) or clinically isolated
syndrome (CIS) according to the revised McDonald criteria
2010 (37). Ethical approval for this study was obtained from the
ethics committee of the University College London Hospitals
National Health Service Trust, London, United Kingdom
(18/SC/0323 and 15/SW/0109), Medical Ethics Committee of
the General University Hospital in Prague (125/12, Evropský
grant 1.LF UK-CAGEKID), Ethikkommission der Fakultät für
Medizin der Technischen Universität München, München,
Germany (project no. 335/13), Ethikkommission Nordwest-
und Zentralschweiz, Basel, Switzerland (project no. 305/13),
and Ethikkommission der Medizinischen Universität Innsbruck,
Innsbruck, Austria (UN2013-0040_LEK). All participants
provided written informed consent in accordance with the
Declaration of Helsinki.

Demographic and clinical information were also recorded,
including sex, age, ethnicity, body mass index (BMI), smoking
status, type and dose of IFNβ, and expanded disability status
score (EDSS) at baseline and 18 months post treatment (Table 1).
Smoking status was categorized as never smoked, quit, or
current smoker. Patients were on one of four IFNβ formulations:
Avonex, Rebif, Betaferon, or Extavia. These were categorized as
follows: intramuscular IFNβ-1a (Avonex), subcutaneous IFNβ-
1a (Rebif) and subcutaneous IFNβ-1b (Betaferon/Extavia). The
dose and frequency of treatment varied between individuals,
therefore dose of IFNβ per week was also calculated (dose per
administration x frequency of administration).

Separation of Serum and Peripheral Blood
Mononuclear Cells
As part of the ABIRISK consortium standard operating
procedures were implemented at all sites. Samples were collected
prior to IFNβ treatment (M0), and after 3 (M3) and 12 (M12)
months of treatment. Peripheral blood samples were non-fasting.

To separate serum from clotted blood, BD SST vacutainers
were allowed to coagulate for at least 30min before centrifugation
at 1,500 g for 10min at 4◦C with full acceleration and brake.
Serum was aliquoted into screw-capped cryovials and stored at
−20◦C or below.

To separate peripheral blood mononuclear cells (PBMCs),
whole blood was collected into vacutainers containing sodium
heparin, and centrifuged at 400 g for 10min at room temperature
(acceleration 5, brake 3) to separate the plasma fraction. Plasma
was decanted and heat inactivated (56◦C for at least 35min)
before centrifugation at 2,400 g for 15min (acceleration 9, brake
9). The remaining blood was diluted 1:1 in Roswell Park
Memorial Institute (RPMI) 1640 medium supplemented with L-
glutamine (Sigma) and layered onto 15mL Ficoll-Paque PLUS
(GE Healthcare) using SepMate tubes (StemCell Technologies)
as per the manufacturer’s instructions. Cells were washed twice
in cold RPMI and resuspended in heat-inactivated autologous
plasma with 10% dimethylsulfoxide (Sigma-Aldrich) at a density
of ∼1 × 107 cells/mL and cryopreserved in liquid nitrogen
until use.

TABLE 1 | Cohort characteristics.

ADA– (n = 52) ADA+ (n = 30) P-value

Sex n (%) Female 37 (71) 19 (63) 0.4635a

Male 15 (29) 11 (37)

Age years Mean (SD) 34.6 (9.3) 37.9 (9.8) 0.1265b

Ethnicity n (%) Caucasian 52 (100) 30 (100) n/a

BMI Median (IQR) 23.7 (6.8) 24.6 (7.2) 0.2941c

Smoking n (%) Non-smoker 32 (61.2) 16 (53.3) 0.6007a

Quit smoking 8 (15.4) 4 (13.3)

Current smoker 12 (23.1) 10 (33.3)

Type of IFN n (%) Avonex 21 (40) 0 (0) <0.0001a

Rebif 27 (52) 9 (30)

Betaferon/Extavia 4 (8) 21 (70)

ADA status nAbs+ bAbs+ 0 (0) 28 (93.3) n/a

nAbs+ bAbs− 0 (0) 2 (6.67)

Country n (%) Austria 6 (11.5) 3 (10.0) n/a

Czech Republic 27 (51.9) 13 (43.3)

Germany 6 (11.5) 7 (23.3)

Spain 10 (19.2) 1 (3.3)

Sweden 1 (1.9) 2 (6.7)

Switzerland 2 (3.8) 4 (13.3)

EDSS at M0 Median (IQR) 2.0 (1.5) 1.5 (2.0) 0.2198c

Change in EDSS Median (IQR) 0 (0.5) 0 (0.63) 0.4902c

Baseline demographic and clinical characteristics were compared between patients who

did or did not develop anti-drug antibodies (ADA) to interferon treatment within 1 year.

Statistical comparisons were made using achi-squared, bun-paired two-tailed t-test or
cMann-Whitney U. bAbs, binding antibodies; BMI, body mass index; EDSS, expanded

disability status score; IQR, interquartile range; M0,month 0; nAbs, neutralizing antibodies.

ADA Detection
Serum was tested for both binding (bAbs) and neutralizing
(nAbs) ADA. BAbs were measured with an enzyme-linked
immunosorbent assay (ELISA) (38) and nAbs were detected by
a cell-based luciferase reporter gene assay (39).

As the test for bAbs is less sensitive than the one for nAbs,
patients were classified as ADA positive if they were positive for
bAbs and nAbs, or were bAbs- but had a nAbs titer ≥ 320 U/mL
within 12 months of starting treatment (40) (Table 1). Patients
were considered ADA negative if they were negative for both
assays. Patients with missing data or negative for bAbs and with a
nAbs titer < 320 U/mL were excluded from this analysis (n= 7).

Serum Metabolomics Analysis
Measures of 228 serum biomarkers were acquired with a well-
established nuclear magnetic resonance (NMR)-spectroscopy
platform (Nightingale Health) (41, 42). These included
both absolute concentrations, ratios, and percentages of
lipoprotein composition. For this study, we have excluded the
percentages from analysis leaving 158 metabolite measures
(Supplementary Table 1). Serum lipids measured included
apolipoproteins (Apo) and (very) low density ((V)LDL),
intermediate density (IDL) and high density (HDL) lipoprotein
particles of different sizes ranging from chylomicrons and
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extremely large (XXL), very large (XL), large (L), medium (M),
small (S), and very small (XS).

Predictive Models
Please consult Figure 1 for a schematic outlining the data
analysis pipeline. RStudio (The R Foundation, Vienna, Austria)
(43), Orange 3.24.1 (Bioinformatics Lab, University of Ljubljana,
Slovenia) (44) andMATLAB (TheMathWorks Inc., Natick, USA)
were used for machine learning analysis.

Six different supervised learning algorithms were
implemented: k-nearest neighbors (kNN), support vector
machine (SVM), logistic regression with and without
interactions, decision trees, and random forest classification.
The outcome of the learning algorithms was to predict whether
an MS patient is likely to develop ADA in response to IFNβ

treatment. Predictive models were generated from metabolite
concentrations prior to IFNβ exposure (M0) and after 3
months (M3).

Missing Data
Features with >10% missing data were excluded (glutamine and
glycerol). Remaining missing values (n = 6 M0, n = 7 M3) were
imputed using k-nearest neighbors with k= 5.

Homology Reduction
Many of the metabolites measured are biologically
interdependent, and therefore highly correlated. To reduce
homology, if two features had a correlation co-efficient > 0.95
then the feature with the greatest mean absolute correlation with
the remaining features was removed (Supplementary File 1).
This left 60 metabolites at M0, and 59 metabolites at M3.

Data Scaling
Metabolite concentrations were centered on the mean and scaled
to the standard deviation.

Predictors
The independent variables included in the models were either
the full data set (Lasso logistic regression ± interactions
and networks) or the homology reduced dataset (60 and
59 metabolites at M0 and M3, respectively), as well as the
cohort information (sex, age, BMI, smoking status, country of
sample, baseline EDSS, IFNβ type, and dose). Ethnicity was
not considered, as all participants were Caucasian. The type of
IFNβ was significantly associated with 12 month ADA status,
in agreement with other studies (10, 45) (Table 1). Full lists
of the predictors contributing to each model are included in
Supplementary File 2.

kNN
K-nearest neighbors is a non-parametric classification algorithm
which assigns the class of an unknown observation based on the
class of a number (k) of similar observations in the feature space
(46). The default value of k= 5 was used in this analysis.

SVM
Support vector machine is a supervised classification method
which creates a hyperplane to optimally separate data into two

classes (47). As this data set was not linearly separable, the radial
basis function kernel was used. Values for C, epsilon, and gamma
were tuned using the R Package e1071 (48). The parameters were
set to C = 4.5, epsilon = 0.1, gamma = 0.015 for the M0 model
and C= 2, epsilon= 0.2, gamma= 0.01 for the M3 model.

Decision Tree
Decision trees are a form of supervised machine learning which
outputs a flowchart-like structure, which classifies incidents
according to their features. These are built using forms of
impurity measures, such as information gain and entropy (49).
In an effort to prevent overfitting, decision trees were limited to a
depth of 4 and subsets of 5 or less were not split further.

Random Forest
Random forest (RF) is a statistical classifier (machine-learning
algorithm) that assigns observations into classes (ADA–/+) by
creating a set of decision trees, or “forest.” Only a small random
sample of predictors are candidates for selection at each node, so
the created trees are decorrelated. Ensembling these uncorrelated
trees offers a natural way of reducing the variance of the model.
Importance was quantified by the Gini index, which represents
the total variance across the two classes, the purity of each node
and the quality of each split. The optimum number of variables
randomly chosen at each node (mtry = 8 and mtry = 11 for
M0 and M3, respectively), have been tuned with the function
“tuneMTRY” (package “RFmarkerDetector”), with respect to
the Out-of-Bag errors. The package “randomForest” function
(package “randomForest”) produced RF models which ensemble
1,000,000 trees (50–53).

Logistic Regression With/Without Interactions
The least absolute shrinkage and selection operator (lasso)
method uses the absolute value of the co-efficient as a penalty
to shrink less important features to zero. The strength of
shrinkage is determined by tuning the regularization variable
lambda (λ). Logistic lasso regression with interactions was
conducted with the R package glmnet. All 158 metabolites were
included. Categorical predictors were coded as dummy variables
with the following treated as the reference class: sex—male,
smoking status—never smoked, treatment—Avonex, country—
Spain. Age, BMI, baseline EDSS, and dose/week were treated as
continuous variables. Ln(λ) was tuned to −2.7 for the logistic
regression without interactions (M0 and M3), and −2 (M0) or
−2.2 (M3) for the logistic regression+ interactions.

Model Performance
Ten-fold cross-validation was used to evaluate model
performance. The following performancemetrics were calculated
from the confusion matrices: (1) F1 score–a weighted average of
precision (positive predictive value) and recall (sensitivity), (2)
specificity–the true negative rate, and (3) classification accuracy
(CA)—the proportion of correctly classified cases.

Logistic Regression
To assess the association of ADA development with NMR
metabolomic biomarker data, logistic regressions were
performed for each individual serum metabolite, adjusted
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FIGURE 1 | Data analysis workflow. Flow chart depicting data processing steps taken before application of machine learning algorithms. kNN, k nearest neighbors;

SVM, support vector machine.
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for sex, age, BMI, smoking status, treatment type and dose,
EDSS, and country of sample origin (Supplementary File 3).
Standard deviation-scaled odds ratios±95% confidence intervals
were visualized in a forest plot using the R package foresplotNMR
(Nightingale Health Ltd) as exemplified in Ahola-Olli et al. (54)
(Supplementary Figure 1).

Network Analysis
Metabolite network diagrams were created with the R package
high dimensional undirected graph estimation package [huge
(55)]. Graphical lasso (glasso) was used to estimate the
sparse inverse covariance matrix, with the stability approach
to regularization selection (StARs) (56). The metabolites
contributing to each predictive model have been super-
imposed onto the network diagrams.Where appropriate, variable
importance was determined by ranking mean decrease in Gini
(RF) or information gain (SVM). kNN is excluded as this model
performed poorly relative to the others.

Quantification of Cholesterol and
Glycosphingolipids by Flow Cytometry
Flow cytometry staining was performed as previously described
(57–59). In brief, 1 × 106 PBMCs were stained with Zombie
(BioLegend) fixable viability dye for 30min at 4◦C, then labeled
with antibodies to surface markers in Brilliant Stain buffer
(BD Biosciences) for 30min at 4◦C. Subsequently samples
were stained with 25µg/mL cholera toxin B subunit FITC
conjugate (CTB-FITC) (Sigma-Aldrich), fixed for 1 h in 2%
paraformaldehyde, and stained for 2 h with 50µg/mL filipin
complex from Streptomyces filipinensis (Sigma-Aldrich) before
reading the samples on a BD LSRFortessa X-20 cytometer
using BD FACSDiva software. Compensation was performed
using anti-mouse IgGκ/negative control compensation particles
set (BD Biosciences) or OneComp eBeads (ThermoFisher
Scientific), with the exception of viability dyes and filipin which
were performed with single stained and unstained cells. Data was
analyzed using FlowJo (Tree Star).

Antibodies for surface markers: CD45RA-BUV737 (clone
HI100, BD Biosciences, 584442) CD27–APC (clone M-T271,
BioLegend, 356409), CD4-AF700 (clone OKT4, eBioscience, 56-
0048-82), CCR7-BV421 (clone G043H7, BioLegend, 353207),
CD69-BV510 (clone FN50, BioLegend, 310936), CD8-BV711
(clone RPA-T8, BioLegend, 301044), CD3-BV785 (clone OKT3,
BioLegend, 317330), CD25-PE (clone M-A251, BioLegend,
356104), CD127-PE-Cy7 (clone A019D5, BioLegend, 351320).

Statistical Testing
Statistical tests were performed inMicrosoft Excel and GraphPad
Prism version 8.3.0 for Windows (GraphPad Software, San
Diego, USA). Data was assessed for normality and analyzed with
parametric or non-parametric tests as appropriate. Details of
statistical tests are given in the figure legends. P < 0.05 were
considered statistically significant.

RESULTS

Serum Metabolites Can Be Used to Predict
Future ADA Development
Metabolites were quantified in serum from MS patients both
before IFNβ treatment (month 0–M0) and after 3 months (M3).
Patients were classed as ADA positive (ADA+; nAbs+, bAbs+/–)
or negative (ADA–; nABs–, bAbs–) based on their ADA status at
M12. Several ML models were applied to this data in order to
develop a model to predict ADA status (Figure 1). All models
were adjusted for sex, age, body mass index (BMI), smoking
status, type of IFNβ and weekly dose, country, and baseline
expanded disability status score (EDSS).

At M0 all models were better at predicting ADA– individuals
(specificity) than ADA+ (F1 value) (Table 2A). Overall
the logistic regression (LR), LR+i (Table 3) and decision
tree performed comparably when predicting ADA+ cases,
correctly identifying 21 out of 30 (70%) (Figure 2A). On the
other hand, the SVM performed better for ADA– cases, with
excellent specificity (0.981, Table 2A), only misclassifying
one ADA– patient (Figure 2A). Overall the tree had the
best performance, with an F1 score of 0.788 (Table 2A,
Figure 2B). Seven lipid measures featured in more than
one model (Figure 2C), which were all significantly elevated
in the patients who went on to develop ADA (ADA+)
(Figure 2D). Three of these lipid metabolites (M-VLDL-
CE, TG/PG, and XXL-VLDL-FC) represent clusters of
highly correlated metabolites, particularly measures of VLDL
composition (Supplementary Table 2, Supplementary File 1),
indicative of broader differences in metabolite expression.

TABLE 2 | Comparison of predictive model performance.

Model F1 Precision Recall Specificity CA

A

kNN 0.510 0.619 0.433 0.846 0.695

Tree 0.778 0.875 0.700 0.942 0.854

RF 0.678 0.690 0.667 0.827 0.768

SVM 0.735 0.947 0.600 0.981 0.842

LR 0.764 0.840 0.700 0.923 0.842

LR + i 0.764 0.840 0.700 0.923 0.842

B

kNN 0.571 0.636 0.519 0.826 0.712

Tree 0.741 0.741 0.741 0.848 0.808

RF 0.764 0.750 0.778 0.848 0.822

SVM 0.745 0.792 0.704 0.891 0.822

LR 0.808 0.840 0.778 0.913 0.863

LR + i 0.808 0.840 0.778 0.913 0.863

(A,B) Performance statistics for five predictive models based on serum metabolites at

M0 (A) and M3 (B). The models used were k-nearest neighbors (kNN), decision tree

(Tree), random forest (RF), support vector machine (SVM), and logistic regression (LR) with

and without interactions (i). The classification accuracy (CA) represents the proportion of

correctly identified cases, in contrast to specificity, which is the true negative rate. F1 is

the weighted average of the precision and recall (see Methods). Statistics are rounded to

3 decimal places.
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TABLE 3 | Predictors for lasso logistic regression with interactions.

M0 features M3 features

(Intercept) (Intercept)

Treatment (IFNβ-1b) Treatment (IFNβ-1b)

bOHBut: TG/PG AcAce: EDSS

M-HDL-TG: XS-VLDL-CE bOHBut: His

TG/PG: XS-VLDL-PL Lac: Val

BMI: Treatment (IFNβ-1b) Val: Smoking (Quit)

VLDL-D: Country (Germany)

XXL-VLDL-TG: Treatment (IFNβ-1a sc)

BMI: Treatment (IFNβ-1b)

List of features selected by the lasso regressions with interactions at month 0 (M0) andM3

(M3). Interacting features are separated by a colon (:). Where predictors are categorical

(treatment, smoking status, country) the specific category is shown in brackets. BMI, body

mass index; EDSS, expanded disability status score; sc, subcutaneous administration.

The association between individual metabolites and
future ADA status were examined by performing logistic
regressions on a per metabolite basis (Supplementary Figure 1,
Supplementary File 3). No significant associations were detected
demonstrating the importance of accounting for the dependence
between metabolites.

IFNβ exerts widespread effects on the immune system.
Since the response to IFNβ treatment can also influence
the development of immunogenicity, similar models were
constructed based on serum metabolite concentrations at M3.
The best performing models at this time point were again
the LR and LR+i (Table 3, Supplementary File 2), which had
the highest F1 and specificity values, and lowest total number
of misclassifications (Table 2B, Figure 3A). As at M0, all of
the models were better at predicting ADA– (specificity) than
ADA+ (F1 value) (Table 2B). Four metabolites featured in
multiple models (Figure 3B), but in contrast to M0 few of
these were differentially expressed when comparing ADA–
to ADA+ (Figure 3C, “all”). However, when patients were
stratified by treatment type more differences were revealed.
Glucose (Glc) levels differed in patients treated with IFNβ-
1b, whereas XXL-VLDL-FC was raised in ADA+ patients
treated with subcutaneous IFNβ-1a (Figure 3C). The LR+i
also selected the interaction between subcutaneous IFNβ-
1a and XXL-VLDL-TG (Table 3), which is highly correlated
with XXL-VLDL-FC (Supplementary Table 2). Indeed, XXL-
VLDL-FC is highly correlated to many other VLDL measures
(Supplementary Table 2), 12 of which were also found to be
significantly associated with ADA status on a per metabolite basis
(Supplementary Figure 1, Supplementary File 3). Only XXL-
VLDL-FC was selected by multiple models at both time points
(Figures 2C, 3B), with a greater concentration in ADA+ patients
(Figures 2D, 3C). This suggests that a cluster of interconnected
VLDL lipids may be persistently associated with an increased risk
of developing ADA.

The majority of metabolites were not predictive at both time
points, suggesting it could be beneficial to implement predictive
models both before and after exposure to IFNβ. We examined

the longitudinal concordance in predictions for each model
(Supplementary Table 3). The logistic regressions generated the
same predictions at both timepoints for all but one patient. The
decision tree had the highest rate of discordance, particularly
in the positive class (38%), coinciding with a reduction in
performance at M3. In contrast The RF had a high discordance
rate in the ADA– class (21%). This demonstrates that different
models have different advantages—some are better at predicting
positive cases or negative cases, or are better at M0 or at M3.

Metabolite Interactions and IFNβ Response
Differ Between ADA+ and ADA– Patients
In addition to examining individual metabolite concentrations
we compared metabolite networks in ADA– and ADA+ before
and after IFNβ treatment (Figure 4). The metabolite networks
weremore tightly clustered in ADA– patients at both time-points.
A number of metabolites had very different positions depending
on ADA status. For instance, Unsat (Figure 4, i) and MUFA/FA
ratios (Figure 4, ii) had more connections in ADA+ patients,
whereas atM3, L-HDL-TG (Figure 4, iii) lost its relationship with
the main metabolite cluster in ADA+ patients.

In both patient groups IFNβ treatment considerably altered
the shape of the network (Figure 4, compareM0 vs.M3 in ADA+
and ADA– patients). Therefore, we examined the response to
IFNβ in more detail. In total 29 metabolites were differentially
regulated between ADA– and ADA+ during the first 3 months
of IFNβ treatment (Figure 5A). Some of the metabolite increases
induced by IFNβ in ADA– patients were inhibited in ADA+
(Figure 5B). Other metabolites were more suppressed in ADA+
compared to ADA– individuals (Figure 5C). This suggested that
IFNβ had an enhanced lipid-lowering effect in ADA+ patients.

Plasma Membrane Lipid Rafts Are
Dysregulated in MS Patients Who Develop
ADA
Serum lipids can modulate immune cell function by altering the
composition of plasma membrane lipid rafts; glycosphingolipid
and cholesterol enriched microdomains that regulate cell
signaling by regulating the lateral mobility of membrane proteins
(Figure 6A). Before exposure to IFN (M0) plasma membrane
cholesterol was higher and glycosphingolipids were lower in
CD4+ T cells isolated from ADA+ patients (Figure 6B). This
could suggest that differences in serum lipid composition, for
example the observed changes in M-HDL-TG or XXL-VLDL-
FC, could generate an immune cell phenotype that predisposes
an individual to immunogenicity.

DISCUSSION

Serum metabolites are attractive candidate biomarkers in MS,
and have already been shown to have diagnostic (22, 23, 60) and
prognostic (27, 61, 62) potential. Furthermore, they are relatively
inexpensive to measure, and a blood-draw is less invasive and
time-consuming than a lumbar puncture or MRI scan. We
measured serum metabolites at an unprecedented level of detail
and, using a combination of ML models, we demonstrated
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FIGURE 2 | Comparison of predictive model performance at M0. (A) The confusion matrix shows the number of correct (blue squares) and incorrect (pink squares)

classifications for each model. The sum (Σ ) of each row and column is given. The algorithms used were support vector machine (SVM), decision tree (Tree), k-nearest

neighbors (kNN), random forest (RF), and lasso logistic regression (LR) with and without interactions (i). (B) A graphical representation of the decision tree, where each

(Continued)
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FIGURE 2 | square shows the proportion of patients who stay ADA negative (top left, blue) or become ADA positive (bottom right, red). The numbers on the branches

representcut-off concentrations (mmol) or ratios (ApoB/A1 and TG/PG). (C,D) A comparison of the metabolites selected by each machine learning model. For RF and

SVM only metabolites within the top 10 predictors are included. Metabolites selected by more than one method are highlighted in bold and shown as dot plots in (D).

Line shows the median, and significance was determined by Mann Whitney U; *p < 0.03, **p = 0.01, ***p = 0.0003. im, intramuscular; sc, subcutaneous.

FIGURE 3 | Comparison of predictive model performance at M3. (A) Confusion matrices for six predictive models at month 3 (M3): support vector machine (SVM),

decision tree (Tree), k-nearest neighbors (kNN), random forest (RF), and lasso logistic regression (LR) with and without interactions (i). (B,C) A comparison of the

metabolites selected by each machine learning model. For RF and SVM only metabolites within the top 10 predictors are included. Metabolites selected by more than

one method are highlighted in bold and shown as dot plots in (C). The dot plots compare ADA– to ADA+ altogether (left), or by stratified by treatment (right). Line

shows the median. Statistical significance was determined by the Mann-Whitney U, or the Kruskal-Wallis test followed by Dunn’s test for multiple comparisons to

compare ADA– and ADA+ within treatment subgroups; *p < 0.05; na, non-applicable.

that a subset of serum lipid metabolites could predict ADA
development against IFNβ in MS patients.

Future ADA status could be predicted before commencing
IFNβ treatment, with four out of six models achieving F1 score
> 0.73, specificity > 0.92, and classification accuracy > 0.84. The
decision tree achieved the most correct predictions at baseline.
Although they are the easiest to interpret, decision trees are

prone to overfitting and tend to be unstable. Consequently, we
conclude the logistic regression models are the best choice for
the classification of both classes (84% CA), whereas SVM is
the best choice for identifying negative cases (98% specificity).
We suggest that an ensemble model, combining several ML
approaches, is more likely to prove optimal. In this way, models
which were better at predicting positive cases could be combined
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FIGURE 4 | Connections between metabolites are different in ADA– and ADA+ patients. Relationships between metabolites in ADA– and ADA+ patients at baseline

(M0) and month 3 (M3) are shown as network diagrams. Colored nodes represent the metabolites contributing to predictive models at each time point (see key

“Model predictors”), as described in the methods section. Arrowheads point to key differences that are discussed in the main text.

with the models better at predicting negative cases to achieve
superior performance. Clinically acceptable thresholds for model
performance must be carefully considered, based on the medical,
psychological and financial implications of incorrect predictions.
In many cases existing tests using conventional biomedical
techniques can be used as a benchmark. However, there is
currently nomethod to predict ADA against IFNβ before starting
treatment. It could be beneficial to investigate how MS patients
feel about the risks of an incorrect result in the context of
ADA prediction, and false positives or false negatives could be
penalized accordingly.

We also produced models based on metabolite concentrations
at M3 as IFNβ activates the immune system and effects systemic
lipid levels (63, 64). Both the immune and metabolic responses
to IFNβ treatment could influence the probability of ADA
development. Model performance was comparable between M0
and M3, with the LR, LR+I, SVM and RF all achieving F1
score > 0.74, specificity > 0.84, and classification accuracy >

0.82. Overall the LR models had the most correct predictions
at this timepoint. However, the contributing metabolites were
dissimilar. This is unsurprising, as IFNβ had widespread effects

on metabolite concentrations, which were likely to overwrite
baseline differences. Interestingly, IFNβ inhibited a number
of metabolites in ADA+ patients, suggesting a difference in
IFN response. However, we cannot currently decipher to what
extent the differences in IFN-response are truly related to ADA
development, to patient intrinsic factors, or to the unequal
distribution of treatment types between classes.

A limitation of our analysis was that our cohort received
different types of IFNβ, which had different probabilities of
inducing ADA development. Our sample size was insufficient to
perform a comparison of only ADA– and ADA+ patients who
were exposed to the same treatment. Indeed, when we examined
the predictive metabolites at M3 several were only differentially
expressed in patients on a particular IFNβ type. Therefore, any
future validation of this work should be performed on a per
treatment basis.

Notably, in this study nobody treated with intra-muscular
IFNβ-1a (Avonex) developed ADA. Despite this, one patient
treated with Avonex was predicted to be ADA+ by SVM, RF and
the decision tree at M3. This suggests that the metabolic profile
outweighed the type of treatment in this case. Thus, although the
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FIGURE 5 | ADA– and ADA+ respond differently to IFN-β treatment. (A) Volcano plot to show differences in the metabolic response to IFN-β treatment between ADA+

and ADA–. The 10 metabolites with the most significantly different regulation are labeled, and the remainder with p < 0.05 are listed to the right. (B,C) The percentage

change in the top 10 metabolites in ADA– (blue) and ADA+ (red) are shown as mean + SEM. Some metabolites were increased in ADA–, but not in ADA+ (B). Others

were decreased in ADA– and ADA+, but by a greater magnitude in ADA+ (C). Un-paired t-test with Welch’s correction for unequal variance; *p < 0.05, **p < 0.01.

type of IFNwas an important factor, the serummetabolites added
an additional layer of personalized information. In addition to
making predictions, the differences in metabolite concentrations
and relationships identified here could be involved in the
mechanisms driving ADA production. Excess cholesterol in the
membrane leads to enhanced pro-inflammatory signaling in
both macrophages (65, 66) and T cells (67), and we provided
preliminary evidence that plasma membrane cholesterol is
elevated in T cells isolated from ADA+ patients. Many of
the lipids measured could influence T-cell cholesterol levels,
including M-HDL-TG which featured in all of the models
generated at baseline. Elevated triglyceride content of HDL is

associated with its dysfunction and reduced capacity to support
cholesterol efflux (68, 69). Therefore, the increased concentration
of M-HDL-TG in patients who later became ADA+ could lead
to abnormal cholesterol transport, and a predisposition to a
pro-inflammatory immune response.

From a therapeutic perspective, it is possible that combining
IFNβ treatment with an intervention to modify specific
metabolites could protect against ADA development. In terms
of lipid modification, there have already been several clinical
trials comparing combination therapy of IFNβ with statins to
IFNβ alone (70), although only one reported on the incidence
of neutralizing antibodies and found no difference (71). It
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FIGURE 6 | Lipid raft-associated proteins are differentially expressed between ADA– and ADA+. (A) Lipoproteins can add or remove cholesterol from the plasma

membrane of immune cells. This can alter the composition of “lipid rafts”—membrane microdomains enriched for glycosphingolipids and cholesterol. The tight

packing of these lipids generates a region of relative “order” which can selectively attract membrane signaling proteins (e.g., pink protein), whilst excluding others (e.g.,

blue protein). Examples of raft-dependent signaling include T cell antigen receptor (TCR) signaling, antigen presentation and pro-inflammatory toll-like receptor (TLR)

signaling. (B) Cholesterol and glycosphingolipid levels were measured in CD4+ T cells from ADA– (n = 5) or ADA+ (n = 6) multiple sclerosis patients at M0, in five

independent experiments. Binding of filipin to cholesterol and cholera-toxin B (CTB) to glycosphingolipids was assessed by flow cytometry. Un-paired two-tailed t-test;

*p < 0.05.

is important to note that the sample size was limited (n =

27), and statins may not be the most relevant therapeutic
agents to modify the concentrations of the metabolites
identified to be different in our analysis (e.g., HDL-TG).
The metabolite networks revealed predictive metabolites that
were highly interconnected which could be candidates for a
widespread intervention, as well as unconnected metabolites
which could be specifically targeted. Interactions between
metabolites and patient characteristics were also identified–
including baseline EDSS and acetyl acetate, smoking status and
valine, and XXL-VLDL-TG with treatment type. If verified,
these relationships could improve the personalization of
treatment recommendations.

In conclusion, we have demonstrated the potential utility
of serum metabolites and ML to predict the development of
immunogenicity in MS patients. We suggest that the integration
of additional molecular information (e.g., transcriptomics,
genomics, proteomics) would strengthen these models, and
provide novel insight into the interplay between lipids and the
immunogenic response.

DATA AVAILABILITY STATEMENT

The metabolomics data presented in this study is available in
Mendeley Data repository (72).

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by Ethics committee of the University College
London Hospitals National Health Service Trust, London,
United Kingdom (18/SC/0323 and 15/SW/0109) Medical
Ethics Committee of the General University Hospital
in Prague (125/12, Evropský grant 1.LF UK-CAGEKID)
Ethikkommission der Fakultät für Medizin der Technischen
Universität München, München, Germany (project no.
335/13) Ethikkommission Nordwest- und Zentralschweiz,
Basel, Switzerland (project no. 305/13) Ethikkommission
der Medizinischen Universität Innsbruck, Innsbruck,
Austria (UN2013-0040_LEK). The patients/participants
provided their written informed consent to participate in
this study.

AUTHOR CONTRIBUTIONS

EJ, KW, MA, IP-T, and PD designed the research study. LC
and AP performed ML analyses. PD and KW performed other
statistical analyses. The manuscript was written by KW and
EJ. AF-H coordinated anti-drug antibody testing. PN, EK, and
RF provided patient serum samples and clinical assessment.
All authors reviewed the manuscript and approved the
final version.

Frontiers in Immunology | www.frontiersin.org 12 July 2020 | Volume 11 | Article 1527

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Waddington et al. Using Metabolomics to Predict Immunogenicity

FUNDING

This work was supported by the Innovative Medicines Initiative
Joint grant agreement no 115303, as part of the ABIRISK
consortium (Anti-Biopharmaceutical Immunization: Prediction
and analysis of clinical relevance to minimize the risk), a MS
Society project (Grant 76) supporting Dr. KW, and a Medical
Research Council studentship supporting LC.

ACKNOWLEDGMENTS

The authors wish to thank the following people for patient
recruitment, sample collection, testing and/or allocation, and
management of the ABIRISK project: Clemens Warnke,
Kathleen Ingenhoven, Hans-Peter Hartung, and Bernd Kieseier
(Heinrich Heine Universität Düsseldorf, Germany), Karel Medek
(Charles University in Prague, Czech Republic), Poul Erik

H. Jensen (Rigshospitalet, Denmark), Nicolas Fissolo, Xavier
Montalban, and Manuel Comabella (Hospital Universitari Vall
d’Hebron, Spain), Dorothea Buck and Bernhard Hemmer
(Technische Universität München, Germany), Marc Pallardy and
Sophie Tourdot (INSERM UMR 996, France), Claudia Sievers
and Raija L. P. Lindberg Gasser (University Hospital Basel
and University of Basel, Switzerland), Florian Deisenhammer
(Innsbruck Medical University, Austria), Malin Ryner and
Christina Hermanrud (Karolinska Institutet, Sweden), Dan
Sikkema (GlaxoSmithKline, USA), and Sebastian Spindeldreher
(Novartis, Switzerland).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fimmu.
2020.01527/full#supplementary-material

REFERENCES

1. Tintore M, Vidal-Jordana A, Sastre-Garriga J. Treatment of multiple sclerosis

— success from bench to bedside. Nat Rev Neurol. (2019) 15:53–8.

doi: 10.1038/s41582-018-0082-z

2. Sorensen PS, Ross C, Clemmesen KM, Bendtzen K, Frederiksen JL, Jensen

K, et al. Clinical importance of neutralising antibodies against interferon

beta in patients with relapsing-remitting multiple sclerosis. Lancet. (2003)

362:1184–91. doi: 10.1016/S0140-6736(03)14541-2

3. Kappos L, Clanet M, Sandberg-Wollheim M, Radue EW, Hartung HP,

Hohlfeld R, et al. Neutralizing antibodies and efficacy of interferon

beta-1a: a 4-year controlled study. Neurology. (2005) 65:40–7.

doi: 10.1212/01.wnl.0000171747.59767.5c

4. Hesse D, Sellebjerg F, Sorensen PS. Absence of MxA induction by interferon

beta in patients withMS reflects complete loss of bioactivity.Neurology. (2009)

73:372–7. doi: 10.1212/WNL.0b013e3181b04c98

5. Vennegoor A, Rispens T, Strijbis EM, Seewann A, Uitdehaag BM, Balk

LJ, et al. Clinical relevance of serum natalizumab concentration and anti-

natalizumab antibodies in multiple sclerosis. Mult Scler. (2013) 19:593–600.

doi: 10.1177/1352458512460604

6. Dubuisson N, Baker D, Kang AS, Pryce G, Marta M, Visser LH, et al.

Alemtuzumab depletion failure can occur in multiple sclerosis. Immunology.

(2018) 154:253–60. doi: 10.1111/imm.12879

7. Svenningsson A, Dring AM, Fogdell-Hahn A, Jones I, Engdahl E,

Lundkvist M, et al. Fatal neuroinflammation in a case of multiple

sclerosis with anti-natalizumab antibodies. Neurology. (2013) 80:965–7.

doi: 10.1212/WNL.0b013e3182840be3

8. Ebers GC. Randomised double-blind placebo-controlled study of interferon

β-1a in relapsing/remitting multiple sclerosis. Lancet. (1998) 352:1498–504.

doi: 10.1016/S0140-6736(98)03334-0

9. Multiple Sclerosis Society. Beta Interferons | Multiple Sclerosis

Society UK. (2020). Available online at: www.mssociety.org.uk;

https://www.mssociety.org.uk/about-ms/treatments-and-therapies/disease-

modifying-therapies/beta-interferons (accessed July 3, 2020).

10. Bertolotto A, Malucchi S, Sala A, Orefice G, Carrieri PB, Capobianco

M, et al. Differential effects of three interferon betas on neutralising

antibodies in patients with multiple sclerosis: a follow up study in an

independent laboratory. J Neurol Neurosurg Psychiatry. (2002) 73:148–53.

doi: 10.1136/jnnp.73.2.148

11. Polman CH, Bertolotto A, Deisenhammer F, Giovannoni G, Hartung H-P,

Hemmer B, et al. Recommendations for clinical use of data on neutralising

antibodies to interferon-beta therapy in multiple sclerosis. Lancet Neurol.

(2010) 9:740–50. doi: 10.1016/S1474-4422(10)70103-4

12. Sominanda A, Hillert J, Fogdell-Hahn A. In vivo bioactivity of interferon-beta

in multiple sclerosis patients with neutralising antibodies is titre-dependent. J

Neurol Neurosurg Psychiatry. (2008) 79:57–62. doi: 10.1136/jnnp.2007.122549

13. Sethu S, Govindappa K, Quinn P, Wadhwa M, Stebbings R, Boggild

M, et al. Immunoglobulin G1 and immunoglobulin G4 antibodies in

multiple sclerosis patients treated with IFNβ interact with the endogenous

cytokine and activate complement. Clin Immunol. (2013) 148:177–85.

doi: 10.1016/j.clim.2013.05.008

14. Sorensen P, Koch-Henriksen N, Bendtzen K. Are ex vivo neutralising

antibodies against IFN-β always detrimental to therapeutic efficacy inmultiple

sclerosis?Mult Scler J. (2007) 13:616–21. doi: 10.1177/1352458506072344

15. Comi G, Radaelli M, Soelberg Sørensen P. Evolving concepts in the

treatment of relapsing multiple sclerosis. Lancet. (2017) 389:1347–56.

doi: 10.1016/S0140-6736(16)32388-1

16. Hoffmann S, Cepok S, Grummel V, Lehmann-Horn K, Hackermueller

J, Stadler PF, et al. HLA-DRB1∗0401 and HLA-DRB1∗0408 are strongly

associated with the development of antibodies against interferon-

β therapy in multiple sclerosis. Am J Hum Genet. (2008) 83:219–27.

doi: 10.1016/j.ajhg.2008.07.006

17. Weber F, Cepok S, Wolf C, Berthele A, Uhr M, Bettecken T, et al. Single-

nucleotide polymorphisms in HLA- and non-HLA genes associated with

the development of antibodies to interferon-β therapy in multiple sclerosis

patients. Pharmacogenomics J. (2012) 12:238–45. doi: 10.1038/tpj.2011.14

18. Adriani M, Nytrova P, Mbogning C, Hässler S, Medek K, Jensen PEH, et al.

Monocyte NOTCH2 expression predicts IFN-β immunogenicity in multiple

sclerosis patients. JCI Insight. (2018) 3:e99274. doi: 10.1172/jci.insight.99274

19. Zhao Y, Healy BC, Rotstein D, Guttmann CRG, Bakshi R, Weiner

HL, et al. Exploration of machine learning techniques in predicting

multiple sclerosis disease course. PLoS ONE. (2017) 12:e0174866.

doi: 10.1371/journal.pone.0174866

20. Mateos-Pérez JM, Dadar M, Lacalle-Aurioles M, Iturria-Medina Y, Zeighami

Y, Evans AC. Structural neuroimaging as clinical predictor: a review

of machine learning applications. NeuroImage Clin. (2018) 20:506–22.

doi: 10.1016/j.nicl.2018.08.019

21. Raghavendra U, Acharya UR, Adeli H. Artificial intelligence techniques for

automated diagnosis of neurological disorders. Eur Neurol. (2019) 82:41–64.

doi: 10.1159/000504292

22. Lötsch J, Schiffmann S, Schmitz K, Brunkhorst R, Lerch F, Ferreiros N, et al.

Machine-learning based lipid mediator serum concentration patterns allow

identification of multiple sclerosis patients with high accuracy. Sci Rep. (2018)

8:14884. doi: 10.1038/s41598-018-33077-8

23. Dickens AM, Larkin JR, Griffin JL, Cavey A, Matthews L, Turner

MR, et al. A type 2 biomarker separates relapsing-remitting from

Frontiers in Immunology | www.frontiersin.org 13 July 2020 | Volume 11 | Article 1527

https://www.frontiersin.org/articles/10.3389/fimmu.2020.01527/full#supplementary-material
https://doi.org/10.1038/s41582-018-0082-z
https://doi.org/10.1016/S0140-6736(03)14541-2
https://doi.org/10.1212/01.wnl.0000171747.59767.5c
https://doi.org/10.1212/WNL.0b013e3181b04c98
https://doi.org/10.1177/1352458512460604
https://doi.org/10.1111/imm.12879
https://doi.org/10.1212/WNL.0b013e3182840be3
https://doi.org/10.1016/S0140-6736(98)03334-0
https://doi.org/10.1136/jnnp.73.2.148
https://doi.org/10.1016/S1474-4422(10)70103-4
https://doi.org/10.1136/jnnp.2007.122549
https://doi.org/10.1016/j.clim.2013.05.008
https://doi.org/10.1177/1352458506072344
https://doi.org/10.1016/S0140-6736(16)32388-1
https://doi.org/10.1016/j.ajhg.2008.07.006
https://doi.org/10.1038/tpj.2011.14
https://doi.org/10.1172/jci.insight.99274
https://doi.org/10.1371/journal.pone.0174866
https://doi.org/10.1016/j.nicl.2018.08.019
https://doi.org/10.1159/000504292
https://doi.org/10.1038/s41598-018-33077-8
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Waddington et al. Using Metabolomics to Predict Immunogenicity

secondary progressive multiple sclerosis. Neurology. (2014) 83:1492–9.

doi: 10.1212/WNL.0000000000000905

24. Weinstock-Guttman B, Zivadinov R, Horakova D, Havrdova E, Qu J, Shyh G,

et al. Lipid profiles are associated with lesion formation over 24 months in

interferon-β treated patients following the first demyelinating event. J Neurol

Neurosurg Psychiatry. (2013) 84:1186–91. doi: 10.1136/jnnp-2012-304740

25. van de Kraats C, Killestein J, Popescu V, Rijkers E, Vrenken H, Lütjohann D,

et al. Oxysterols and cholesterol precursors correlate to magnetic resonance

imaging measures of neurodegeneration in multiple sclerosis. Mult Scler J.

(2014) 20:412–7. doi: 10.1177/1352458513499421

26. Uher T, Fellows K, Horakova D, Zivadinov R, Vaneckova M, Sobisek L,

et al. Serum lipid profile changes predict neurodegeneration in interferon-

β1a-treated multiple sclerosis patients. J Lipid Res. (2017) 58:403–11.

doi: 10.1194/jlr.M072751

27. Durfinová M, Procházková L, Petrleničová D, Bystrická Z, Orešanská K,
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