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With more than 6.9M confirmed cases and ∼400K deaths as on June 8, 2020 (1), COVID-19,
ushered in by the SARS-CoV-2 has projected itself as a microscopic-holocaust, much more sinister
than those portrayed in the SciFi movies. Asymptomatic transmission of the virus has been
projected as the Achilles’ heel in the context of the current control strategies of the pandemic (2, 3).
Reports on undiagnosed deep vein thrombosis among patients, succumbing to the viral assault
(4) and demonstration of direct infection of human blood vessel and kidney organoids (5) have
triggered huge hue and cry. The extreme high transmissibility of the virus, bracketed together with
current absence of population immunity and occurrence of stark clinical consequences projects
the swift advancement in effective therapeutic stratagems as the need of the hour. Needless to
say, researchers, across the globe, are beavering to devise appropriate diagnostic and therapeutic
strategies. The various nucleic acid based detection-approaches like PCR, isothermal nucleic acid
amplification-based methods, CRISPR/Cas platforms as well as immunoassay based point-of-care
lateral flow tests are marked with respective pros and cons (6, 7). On the other hand, strategies of
inhibiting the viral fusion/entry, disrupting the replication pathway, suppressing the inflammatory
response, using convalescent plasma treatment and vaccine development have been at the forefront
of recent research (8). The success lies in our comprehensive understanding of the “biochemically
and genetically guileful” virus. At this juncture, it is relevant tomention that long-term development
of appropriate antibody and other protein therapeutics to effectively bind and neutralize the viral
infection is imperative. This would be significant in case the researchers need to buy excess time
to ensure befitting vaccine discovery and development. Such therapeutics could possibly provide
an alternative/additional way to assist those people who might show unresponsiveness to vaccines
(as, exemplified by many in the elderly population) or do not obtain vaccine. Amidst the current
hay-wired situation, the recent communiqué from Israeli Defense Minister Natfali Bennet about
the successful isolation of a “monoclonal neutralizing antibody” with potency to “neutralize [disease]
inside carriers” bodies’ by the scientists in the Israel Institute for Biological Research has ushered in
new waves of hope (9).

Prior to getting ahead, it would be prudent to recapitulate the general aspects of the
lifecycle of the highly pathogenic human coronaviruses (CoVs) (10) (Figure 1A). Talking
about the viral pathogenesis, the receptor binding domains (RBD) of the spike (S)
glycoprotein interact with the human angiotensin-converting enzyme 2 (ACE2)- the receptor
that invites SARS-CoV and SARS-CoV-2 into human cells (Figure 1Ba). The presence
of a furin cleavage site at interfacial zone of the S1/S2 subunits of the SARS-CoV-2 S
glycoprotein demarcates the virus from SARS-CoV and SARS-related CoVs (13). Precise
understanding of the SARS-CoV-2 S ectodomain trimer is envisaged to be instrumental
in developing vaccines, therapeutic antibodies and diagnostics. The prospective targets of
neutralizing antibodies (nAbs) against human pathogenic CoVs are depicted in Figure 1Bb.
Monoclonal antibodies (mAbs), functional antigen-binding fragment (Fab), single-chain
variable region fragment (scFv), and single-domain antibodies (nanobodies or Nbs) have
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been assessed against various human CoVs (14–19). Jiang et al.
(10) have recently reviewed the development of SARS-CoV-
and MERS-CoV-specific nAbs, while literature reports on nAbs
against SARS-CoV-2 are comparatively scanty. Previous studies
on neutralization with anti-SARS-CoV-1 RBD and anti-MERS-
CoV RBD antibodies had unveiled a premature switching from
the pre-fusion to post-fusion conformation following a closure
of the receptor binding site and trapping the RBD in “up”
conformation (20–22). The structure of CR3022, an antibody
derived from a convalescent SARS patient, in complex with the
RBD of the S protein at a resolution of 3.1 Å was recently
reported (23). Interestingly, a cross-reactive interaction between
SARS-CoV-2 and SARS-CoV was evinced by the elucidation
that a highly conserved but cryptic, epitope, distal from the
receptor binding site is targeted by CR3022. However, at least
two RBDs on the trimeric S protein in the “up” conformation
and slight rotation are prerequisites to access the binding epitope
by CR3022. The authors proposed that albeit, the CR3022
fails to neutralize SARS-CoV-2 in vitro, the epitope could
plausibly confer in vivo protection. On a similar vein, researchers
have resorted to the use of SARS-CoV-2 S murine polyclonal
antibodies for the inhibition of SARS-CoV-2 Smediated entrance
into cells (13). The study vouched that vaccination could elicit
cross-neutralizing antibodies, targeting the conserved S epitopes.

At this juncture, the germaneness of antibody engineering
may be comprehended in the context of continual search for
high-affinity antibodies, effective against conserved targets as well
as novel therapeutics with attributes like better tumor and tissue
penetration and efficient launching of immune effector functions
(24). Particularly, in the context of antitumor therapeutics,
Bannas et al. (11) had raised concerns about the large-size (150
kDa) dictated practical snag of in vivo delivery of conventional
antibodies to tumor cells. On the other hand, aggregation
and/or mispairing of V-domains due to lower stability and
solubility of engineered antibodies- a consequence of intrinsic
hydrophobic interactions of VH and VL domains (that constitute
the antigen binding fragment (Fab) of IgG antibodies) have
been another pertinent issue. As plausible solutions, nanobodies
(15 kDa) and nanobody based human heavy chain antibodies
(75 kDa) (11) have instigated considerable research impetus.
Besides conventional antibodies, camelids produce heavy-chain-
only antibodies (HCAbs) with a single variable domain as
the target recognition module (25, 26). This single variable
domain without an effector domain functions as a single-domain
antibody, VHH, or nanobody (Nb) (Figure 1C). Although the
prospects of using nanobodies as research and diagnostic tools
have been critically and comprehensively assessed (27, 28) and
a plethora of nanobodies are currently being placed under pre-
clinical or clinical assessments for various diseases like brain
tumors, inflammation, lung diseases, as well as autoimmune
diseases, paralleling the performance of classical antibodies with
nanobodies for therapeutic applications could be bit fiddly (29).
Nevertheless, studies have attested the advantages of nanobodies
in contrast to conventional antibodies with respect to the
former’s smaller size, amenability for processing into multiple
formats, desirable thermal and chemical stability, high solubility,
commendable in vivo tissue penetration and targeting, lower

susceptibility to steric hindrances (that may otherwise obstruct
optimal binding) as well as ability to display antigenic affinity
and specificity at par with conventional antibodies (11, 30–34).
Prospects of genetically linking to Fc-domains, peptide tags,
or other nanobodies as well as site-specific chemical fusion
with nanoscale materials, radionuclides, photosensitizers, etc.
widen the spectrum of their applications. Furthermore, the
expedient attributes of nanobodies and human Fc domains may
be combined in chimeric nanobody-heavy chain antibodies, half
the size of the conventional antibodies, as mentioned before (11).

Post perusal of the afore-stated, harnessing VHHs as
therapeutics against various viral infectious agents seems to be
an interesting proposition (35). In this respect, use of VHH
against dengue virus (36); hepatitis C virus (37); multiple VHH
monovalent candidates against poliovirus (38) and norovirus
(39); anti-CXCR4 monovalent and bivalent (40) as well as
anti-p24 monovalent and bivalent (41) nanobodies against
HIV; VHH bivalent/albumin-linked nanobody against rabies
virus (42) and anti-VP6 VHH as an effective prophylactic
treatment against rotavirus A-associated diarrhea (43) have been
documented. Investigations on the application of nanobodies
against respiratory pathogens has also gained pace in recent years.
Use of H5N1-HA bivalent nanobody against influenza virus (44),
as well as the application of multi-domain antibody MD3606
(generated using diverse camelid single-domain antibodies to
influenza virus hemagglutinin) to protect mice against influenza
A and B infection post intravenous administration or expression
using recombinant adeno-associated vector (32), merit special
mention. Similarly, two llama-derived single-domain antibodies
with human respiratory syncytial virus (RSV)–neutralizing
action have been reported to selectively bind to RSV fusion
protein (F) in its pre-fusion state with picomolar affinity (45).
Delivering a trimeric nanobody, ALX-0171 (that interacted with
antigenic site II of RSV F protein at subnanomolar affinity),
prophylactically or therapeutically directly to lungs of cotton rats
was effective in down-scaling both nasal and lung RSV titers
(46). Stalin Raj et al. (47) had resorted to direct cloning and
expression of VHHs of HCAbs from the bone marrow of MERS-
CoV–infected Arabian camels and identified several MERS-
CoV–specific VHHs or nanobodies. With a prolonged half-life
in serum, camel/human chimeric HCAbs were efficacious in
endowing protection to mice against MERS-CoV challenge. In
a similar vein, the efficacy to target MERS-CoV S RBD using
novel neutralizing Nb (NbMS10) and its human-Fc-fused version
(NbMS10-Fc) has been documented (48). Remarkably, the Nbs
were able to cross-neutralize infections caused by diverse MERS-
CoV strains isolated from humans and camels. The Fc-tagged Nb
was able to confer complete protection of humanized mice from
lethal MERS-CoV assault.

A concerted effort of biologist Michael Rout and chemist
Brian Chait has been directed toward selecting high affinity and
effective neutralizing nanobodies, interacting with the various
non-overlapping target-epitopes of SARS-CoV-2 S (49). The
researchers envisage to set-up the appropriate nanobodies as
increased level multimers to augment affinity and eventually tune
them at the molecular level to better their neutralizing potency.
Similarly, researchers from Protein Production UK, a project
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FIGURE 1 | Life cycle of highly pathogenic human coronaviruses (CoVs) and specific neutralizing antibodies (nAbs) against these coronaviruses. (A) Life cycle of highly

pathogenic human CoVs. These CoVs enter host cells by first binding to their respective cellular receptors [angiotensin-converting enzyme 2 (ACE2) for severe acute

(Continued)
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FIGURE 1 | respiratory syndrome (SARS)-CoV-2 or SARS-CoV and dipeptidyl peptidase 4 (DPP4) for Middle East respiratory syndrome (MERS)-CoV] on the

membranes of host cells expressing ACE2 (e.g., pneumocytes, enterocytes) or DPP4 (e.g., liver or lung cells including Huh-7, MRC-5, and Calu-3) via the surface

spike (S) protein, which mediates virus–cell membrane fusion and viral entry. Viral genomic RNA is released and translated into viral polymerase proteins. The negative

(–)-sense genomic RNA is synthesized and used as a template to form sub-genomic or genomic positive (+)-sense RNA. Viral RNA and nucleocapsid (N) structural

protein are replicated, transcribed, or synthesized in the cytoplasm, whereas other viral structural proteins, including S, membrane (M), and envelope (E), are

transcribed then translated in the endoplasmic reticulum (ER) and transported to the Golgi. The viral RNA-N complex and S, M, and E proteins are further assembled

in the ER–Golgi intermediate compartment (ERGIC) to form a mature virion, then released from host cells. (B) Potential targets of nAbs against SARS-CoV-2 and other

pathogenic human CoVs. (a) Human CoV receptor binding and membrane fusion process. The CoV first binds a viral receptor (ACE2 or DPP4) through the

receptor-binding domain (RBD) in the S protein, followed by fusion of the virus with cell membranes via the formation of a six-helix bundle (6-HB) fusion core. NTD,

N-terminal domain. (b) Potential targets of nAbs on the S protein of human CoVs. Monoclonal antibody (mAb), antigen-binding fragment (Fab), single-chain variable

region fragment (scFv), or single-domain antibody [nanobody (Nb) or VHH derived from camelid heavy chain antibody (HcAb)] binds to the RBD, S1 subunit (non-RBD,

including NTD), or S2 of the viral S protein, blocking binding between the RBD and the respective receptor (for RBD-targeting nAbs), interfering with the conformational

change of S (for S1-targeting nAbs), or hindering S2-mediated membrane fusion (for S2-targeting nAbs), leading to the inhibition of infection with pathogenic human

CoVs in the host cells. The figure was created using BioRender (https://biorender.com/). [Reproduced from (10), under the provisions of Creative Commons License,

CC BY 4.0, Copyright © 2020 The Author(s). Published by Elsevier Ltd.]. (C) Advantageous features of camelid heavy chain antibodies. Heavy chain antibodies are

composed of two heavy chains. The target-binding module is composed of a single VHH domain. A recombinant VHH domain, designated nanobody (Nb) is highly

soluble and does not show any tendency to associate with other hydrophobic protein surfaces. Conventional antibodies are composed of two heavy and two light

chains. The target-binding module is composed of two non-covalently associated variable domains VH and VL. In intact antibodies, the proper orientation of these

domains is mediated by a hydrophobic interface and is further stabilized by the disulfide-linked CL and CH1 domains. A pair of VH and VL domains can be linked

genetically into a single-chain variable fragment (scFv) in which the proper orientation of domains is mediated alone by the hydrophobic interface between the two

V-domains. [Reproduced from (11), under the provisions of Creative Commons Attribution License (CC BY). Copyright © 2017 Bannas, Hambach and Koch-Nolte].

(D) Targeting of diverse epitopes within the SARS-CoV-2 spike protein receptor binding domain (RBD) by human single-domain antibodies, potential therapeutic

candidates for COVID-19. [Reproduced from (12) Copyright ©2020 Elsevier Inc., based on the reuse-provisions of Elsevier’s COVID-19 Resource Centre].

hosted by the Rosalind Franklin Institute in association with
Diamond Light Source, UK, have made nanobodies (exhibiting
high affinity to the S protein of the SARS-CoV-2), available to
scientist at the University of Oxford for deeper delving into the
structure of the virus (50). On a stimulating note, scientists from
the University of Texas (UT) at Austin, the National Institutes
of Health and Ghent University in Belgium have documented
the isolation of two potently neutralizing VHHs, targeting the
SARS-CoV-1 and MERS-CoV RBDs, respectively (34). Wrapp
et al. (34) had resorted to sequential immunization of a llama
subcutaneously multiple times with SARS-CoV-1 S and MERS-
CoV S protein. Two sequential rounds of panning were executed
by phage display using either SARS-CoV-1 S or MERS-CoV
S proteins to procure VHHs directed against the S proteins.
The researchers successfully isolated seven unique MERS-CoV
S and five SARS-CoV-1 S specific VHHs post-sequencing of the
positive clones, multiple sequence alignment, and phylogenetic
analysis. Following expression in Pichia pastoris and purification
from yeast medium, the interaction of the purified VHHs with
the perfusion-stabilized MERS-CoV S and SARS-CoV-1 S was
attested by ELISA. Pertinently, the SARS-CoV-1 RBD-directed
VHH could cross-react with the SARS-CoV-2 RBD. A fascinating
dimension to the work was the neutralization of the SARS-CoV-
2 S pseudotyped viruses by the cross reactive VHH, engineered
as a bivalent human IgG Fc-fusion. The plausible scaled up
production of the VHH-Fc fusion was attested in a commercial-
standard CHO cell system. The MERS VHH-55, SARS VHH-72
and VHH-72-Fc, exhibiting desirable biophysical attributes and
potent neutralization potency, could be prospective therapeutic
candidates. However, appropriate in vivo experimentations as
part of preclinical studies are prerequisite.

Retrieval of information from the preprint at BioRxiv evinces
the successful endeavors of Swiss researchers Walter et al. (51) in
identifying 63 unique anti-RBD synthetic nanobodies or sybodies,
interacting in the context of the full-length SARS-CoV-2 spike
ectodomain. Assisted by a prompt in vitro selection platform

(encompassing ribosome and phage display), the task of selecting
the sybodies was accomplished within 12 days. Six of the selected
sybodies displayed double-digit nanomolar binding affinity with
the viral spike while five of them could inhibit RBD interaction
with ACE2. Furthermore, the researchers identified a pair of anti-
RBD sybodies that could concomitantly interact with the RBD.
It would be interesting to peruse the outcomes of the authors’
previously reported NestLink technology (52) based delving of
the selection pools to unearth unique sybodies with little off-
rates and capacity to identify rare epitopes. The authors are
upbeat about plausible therapeutic exploitation of the sybodies
for the development of an inhalable drug as useful prophylaxis
against COVID-19.

To speak about yet another development, Beroni Group
(an international biopharmaceutical enterprise) in concert with
Tianjin University in China has recently identified 24 types
of nanobodies (post-screening a library with one billion-plus
nanobody sequences) for prompt detection and treatment of
SARS-CoV-2 (53). Eight of them are directed against the S
protein while sixteen of them target the nucleocapsid (N)
protein- the latter could find application as amarker in diagnostic
assays. Based on approaches of structural biology, computational
biology, and protein engineering, the researchers are gearing
up to optimize the properties of the nanobodies besides
endeavoring to reduce their immunogenicity and augment the
therapeutic efficiency by humanizing them. By the same token,
researchers from Fudan University and Biomissile Corporation,
China have directed their endeavors toward the development
of a phage-displayed single-domain antibody library based on
embedding naive complementarity-determining regions (CDRs)
into framework sites of a human germline immunoglobulin
heavy chain variable region (IGHV) allele (12). Their study,
encompassing the library-biopanning against SARS-CoV-2 RBD
and S1 subunit led to the revelation of fully human single-
domain antibodies, displaying low-nanomolar/subnanomolar
range affinities toward five distinct epitopes on SARS-CoV-2

Frontiers in Immunology | www.frontiersin.org 4 June 2020 | Volume 11 | Article 1531

https://biorender.com/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Konwarh Nanobodies Against SARS-CoV-2

RBD (Figure 1D). Amongst the groups of A, B, C, D, and
E neutralizing antibodies, the group D members, n3088 and
n3130 could target a “cryptic” epitope, positioned in the
spike trimeric interface, resulting in effective neutralization
of SARS-CoV-2. The researchers are buoyant about the apt
application of these, either alone or in synergy with other SARS-
CoV-2 neutralizing antibodies, especially the ACE2-competing
neutralizing antibodies. They may also be employed as integrant
for creating bispecific ormultispecific antibodies (12). Previously,
He et al. (54) had demonstrated an augmented efficacy of
oligomeric nanobodies, relative to monomeric nanobodies
against MERS coronavirus RBD. Investigating the potential of
such oligomeric nanobodies in the case of SARS-CoV-2 would
be attention-grabbing.

These studies spark obvious anticipations and hopes for the
potential application of nanobodies against COVID-19. The
attributes of small size (almost one-fourth of the size of human
antibodies) and simple structure, ease and comparatively lower
cost, low immunogenicity and ability to display high affinity have
endowed them with a special niche in the realm of therapeutics
and rapid point-of-care diagnostics. Nanobodies seem to be quite
efficient in trapping and stabilizing conformation-switchable
targets in specific conformations, facilitating greater insight

into biomolecular mechanisms and interactions. This could be
of immense relevance to mine information on SARS-CoV-2
pathogenesis. Most importantly, highly stable VHHs could
be nebulized and exploited for the development of inhalable
prophylactic formulations, thereby ensuring straight delivery to
the lungs- the combat zone. Another merit lies in the plausibility
of stockpiling the VHHs without trade-off in their stability even
after extended storages and using them as therapeutic choices in
case of disasters like COVID-19. To conclude, I do hope that the
incessant and concerted research endeavors would surely pave
the way to a safer world, liberated from the grasp of SARS-CoV-2
and akin.
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