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SARS-CoV-2 might directly activate NLRP3 inflammasome resulting in an endogenous

adjuvant activity necessary to mount a proper adaptive immune response against the

virus. Heterogeneous response of COVID-19 patients could be attributed to differences

in not being able to properly downregulate NLRP3 inflammasome activation. This relates

to the fitness of the immune system of the individual challenged by the virus. Patients

with a reduced immune fitness can demonstrate a dysregulated NLRP3 inflammasome

activity resulting in severe COVID-19with tissue damage and a cytokine storm.We sketch

the outlines of five possible scenarios for COVID-19 in medical practice and provide

potential treatment options targeting dysregulated endogenous adjuvant activity in severe

COVID-19 patients.
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IMMUNOPATHOPHYSIOLOGY OF COVID-19

In one of the first analyses of patient characteristics of SARS-CoV-2 infection in Wuhan, China
resulting in COVID-19, it was described that the virus affects largely adult age groups. In most
patients there is a relative mild course of the infection. However, in 15.7% of affected patients
the disease progresses into a severe disease with the need for hospitalization and admission into
the ICU (1). Clinically, two phases of immune reaction against the virus can be identified (2).
The first phase is the non-severe phase where a specific adaptive immune response is mounted
that eliminates the virus and prevents disease progression to a more severe second stage. We will
demonstrate from an immunological perspective that it is much more complex and that the body’s
response to a viral challenge depends on the immune fitness of the person challenged by the viral
exposure. The behavior, adaptiveness and responsiveness will determine the intensity, adequacy
and magnitude of the response as well as the speed of recovery. These immune fitness parameters
can be used to define healthy or deviating behavior of the immune system (3). If the systemic
resilience of a person that depends on regulatory subsystems and functional reserves of organs
declines, the risks of morbidity and mortality increase (4).

The main question is why most patients show resilience and induce a proper virus eliminating
immune response with resolution of the inflammation and what goes wrong in patients that
advance to the severe state with tissue damage and an uncontrolled cytokine release, also specified
as a cytokine storm.

After the first exposure to a virus, the detection of viral components by the immune system via
a number of different receptors on and inside immune cells retinoic acid-inducible gene-I (RIG-
I)-like receptors (RLRs), Toll-like receptors (TLRs) and NOD-like receptors (NLRs) and cyclic
GMP-AMP synthase (cGAS) activates intracellular signaling cascades, leads to the secretion of
type I IFNs and pro-inflammatory cytokines and chemokines (5). Next to generating an innate
antiviral response these intracellular signaling cascades also induce expression of co-stimulatory
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molecules such as CD40, CD80, and CD86 on antigen presenting
cells important for initiation of an adaptive immune response.
This necessary additional endogenous adjuvant activity is
provided by pyroptotic cell death regulated by Nod-like receptor
family, pyrin domain-containing 3 (NLRP3) inflammasome
activation. These multiprotein complexes form in the cytosol
and drive caspase-1 cleavage and the secretion of the pro-
inflammatory cytokines IL-1β and IL-18 and other damage-
associated molecular patterns (DAMPs) (6). This stimulation
of antigen presentation to benefit the induction of an adaptive
immune response comes with a cost, because these danger
signals give rise to toxicity and are the cause of a rise in body
temperature and therefore need to be tightly controlled (7). If
not properly monitored, if there is a reduced immune fitness, the
consequences can be disastrous with neutrophils infiltrating in
tissues, activated macrophages and skewed differentiation of T
cells (Th17) all producing pro-inflammatory cytokines resulting
in extensive tissue damage.

In the case of the coronavirus SARS-CoV, the endogenous
adjuvant activity is caused by the direct activation of NLRP3
by a viral protein, named viroporin protein 3a (8). This
viral protein is also present on the genome of SARS-CoV-2
suggesting that SARS-CoV-2 can also directly activate NLRP3
(9). One could ask what the survival/reproduction advantage of
inducing NLRP3-mediated pyroptotic cell death would be for the
virus, considering the deleterious consequences, including the
activation of the immune reaction against the virus and possible
death of the host. In contrast to the pyroptotic cell death in
human, protein 3a has been described to have a pro-apoptotic
function in the original host of the virus: bats (10). Because
apoptosis does not, in distinction to pyroptosis, result in an
immune reaction, in bats there is dampened immune response
when NLRP3 is induced, limiting inflammation and stimulating
asymptomatic carriage of the virus (11). So, the direct activation
of NLRP3 resulting in pyroptosis could be an unintended side-
effect in humans. Given this situation, how can we as humans
cope with this activation of NLRP3 by SARS-CoV-2? It is of great
clinical relevance to get an answer to this question, because then
we might be able to find new markers that predict an outcome
and find possible targets for therapeutic intervention that might
reduce morbidity and mortality in severe COVID-19. What do
we know of the ability to inhibit NLRP3 in patients that seem to
be severely affected by SARS-CoV-2?

SCENARIOS OF COVID-19 IMMUNE
RESPONSE

Based on the necessity to tightly regulate NLRP3 and its link to
immune fitness there are five possible scenarios to outline the
course of the SARS-CoV-2 infection in an individual (Figure 1).
In the first scenario, after exposure to low viral load or enough
non-specific defense mechanisms the innate immune response
will do the job, without the necessity to raise an adaptive
immune response. In this scenario there is lysis and phagocytosis
by NK cells and macrophages, enough to clear all infected
cells. The inflammatory activation of these cells is low and

does not pass the threshold needed to activate NLRP3. In
some cases it can nonetheless be activated coinciding with
weak to average symptoms but not followed up by an adaptive
response. In the second scenario there is NLRP3 activation
that is strongly downregulated after the initial co-stimulation
necessary for APC activation followed by a sufficient adaptive
response and production of antibodies against the virus. In the
third scenario there is some systemic effect resulting in clinical
symptoms like fever and sickness behavior (12) because of the
cytokines released during NLRP3 activation that is subsequently
downregulated followed by a sufficient adaptive response and
antibody production. In the fourth scenario a sustained NLRP3-
dependent inflammatory response results in severe clinical
symptoms, necrosis, DAMP release and severe inflammation
of the lungs. During a period of severe illness the patient is
eventually able to mount an adaptive response with antibody
production and recovers. In the fifth scenario the innate response
is not able to clear the infection, resulting in an NLRP3 activation
that is useless because the patient is unable to mount an adaptive
response leading to viral clearance (13). In people that have a
reduced capacity to mount a protective immune response it is
possible that the virus will propagate and massive destruction of
affected tissues will occur. This will lead to more DAMPs and a
vicious circle of NLRP3 activation will finally result in death.

In all of our scenarios there is a central role for NLRP3
inflammasome regulation.Most literature is focused on the hyper
activation of the NLRP3 inflammasome and the detrimental
effect of the release of endogenous danger signals on the host. As
already stated, the inflammation needs a tight control to be able to
restore homeostasis after a challenge of the immune system. The
downregulation of the NLRP3 inflammasome can be regulated in
different ways, by post-translational modification of the NLRP3
inflammasome or by different NLRP3-interacting regulators. The
post-translational modification of NLRP3 inflammasome can be
mediated by ubiquitination or phosphorylation (14, 15). NLRP3-
interacting regulators Pyrin-only proteins (POPs) and CARD-
only proteins (COPs) function in the downregulation of the
inflammation. Expression of some of the POPs is upregulated
by NF-κB and IL-1β resulting in a feedback loop to prevent
excessive NLRP3 activation (16). The COPs bind caspase-1
preventing autoactivation and limiting NLRP3 inflammasome
activation (17).

The DAMPs released after NLRP3 inflammasome activation
have a dual function. In a normal immune reaction they induce
the necessary co-stimulatory activation of the APC, but they
also play a role in resolution and tissue regeneration. Only in
case of a hyperactivation of the NLRP3 inflammasome DAMPs
are released in high concentrations and result in pyroptosis,
High mobility group box 1 (HMGB1) release, activation of
macrophages, neutrophil infiltration and reduced apoptosis,
excessive cytokine production (IL-1β, IL-2, IL-6, IL-17, TNF-α,
G-CSF, GM-CSF, IFN-γ, CXCL10, CCL2, and CCL3, cytokine
storm) and fibrosis (Figure 2) (18–22). Not only does it explain
the diversity of the symptoms of the patients, but it might also
explain heterogeneity in the affected patients. Male PBMC were
found to express significantly higher mRNA levels of NLRP3
pathway-related genes NLRP3, ASC (PYCARD), CASP1, CASP5,
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FIGURE 1 | An overview of all the consequences of the clinical course of COVID-19 infection in humans depending on their immune fitness state.

FIGURE 2 | Central role of NLRP3 inflammasome activation in the severe

symptomatic phase of COVID-19 and potential options for treatment.

and IL1B (all P < 0.0001) than female PBMC (23). Moreover,
patients where the most lethality is observed are elderly
and patients with non-communicable diseases and obesitas
(1). Elderly patients having an “inflammaging,” a low grade
inflammation associated with NLRP3 inflammasome priming
and activation and weaker inhibition (24) and, obese patients
with a metainflammation (25) resulting in a higher base activity
of NLRP3 (26, 27). An enhanced exposure to DAMPs and NLRP3
inflammasome activation can affect immune fitness and is the
result of a complex interplay where genetics [SNPs in NLRP3
(28)] and also lifestyle factors [such as exercise, reduce NLRP3
activation (29), certain diets, block or stimulate NLRP3 activation
(30, 31) and, air pollution, induces NLRP3 activation (32)]
are interconnected.

In search for a pathway to relate sustained NLRP3
inflammasome activation in aging we found amicroRNA that has
Pyrin-only protein 1 (POP1) as its target (33). This miR-34-5p is

found to be increased in skeletal muscle and in serum-derived
extracellular vesicles in an experimental model and considered as
an “inflammiR” (34). From these data it is tempting to speculate
that age-increased miR-34-5p results in the diminished capacity
to deactivate NLRP3 by inhibiting POP1 production.

Evidence is accumulating that one of the main downstream
DAMPs of NLRP3 activation is HMGB1. HMGB1 was originally
discovered to be involved in endotoxin lethality in mice (35). It
is a critical late marker of sepsis (36) and infection responsible
for epithelial barrier failure, organ dysfunction, vascular leakage
and even death (37). In high levels HMGB1 is a central mediator
of an excessive inflammatory response and severity of pathology
during the course of viral infections (7, 38), but low levels
mediate sickness behavior, antibacterial activities and might
be beneficial when accelerating alveolar epithelial repair (39).
Most of the evidence comes from experimental influenza virus
models and acute lung injury where infection/injury induces
increased HMGB1 levels in the lungs that contribute to the
severity of pneumonia, correlate to death and can be blocked
with HMGB1-specific antibody (38, 40). This increased HMGB1
is also responsible for neutrophil infiltration, regulated via IL-
17 (41). Taken together, overactive NLRP3 with neutrophil
infiltration, Th17, HMGB1 and macrophage activation is likely
to be the cause for the pathological findings and the cytokine
storm in severe COVID-19 (42, 43), which is hyperstimulated by
positive feedback loops (44).

TREATMENT OPTIONS

The discrimination into two phases of the clinical disease
requires also the need for a dual treatment approach (2). In
the first immune defense-based protective phase there is a need
for therapies that reduce virus entry and help to eradicate
the virus by boosting the immune system. In the second
inflammation-driven damaging phase the endogenous adjuvant
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reaction of the immune system should be suppressed. In Figure 2
there are potential options for treatment depicted. For each
of these options a large number of potential candidates are
available. We will highlight some and refer to other authors
that have summarized this. The first clinical study for a
NLRP3 inflammasome inhibitor (Tranilast) to treat COVID-19
is ongoing and registered in the Chinese clinical trial registry
(45). Other studies are still in a pre-clinical phase and study
the effect on acute lung injury or on cell lines for example
with resveratrol (46), tetracycline (47) or erythropoietin (48) or
nicardipine, a L-type calcium antagonist (49), lidocaine (50) CP-
456,773 (51), Diacerein (52). For colchicine it is hypothesized
that it has an effect on NLRP3-mediated diseases (53). In
several reviews other NLRP3 inflammasome inhibitors are
listed (14, 16, 27, 54).

A second potential target for treatment is HMGB1 (55).
In experimental models of acute lung injury or sepsis
blocking of HMGB1 or one of its receptors has shown
a beneficial effect (38, 40, 56, 57). Even though the anti-
HMGB1 has no effect on the proliferation of the virus, in
combination with peravimir a significant effect on neutrophil
infiltration and macrophage aggregation was observed (57).
Also Chloroquine (58),Methotrexate (59), anti-oxidants (60–62),
traditional Chinesemedicine (63, 64), thrombomodulin (65), and
others (66–68) are listed as potential therapeutic strategies to
diminish HMGB1.

Another option to limit severe damage would be to reduce
the number of neutrophils. Already in a phase II clinical trial
for COVID-19 CM4620-IE is tested1 This is a calcium release-
activated calcium CRAC channel inhibitor aiming to stabilize
pulmonary endothelial capillary barrier, reduce neutrophil
infiltration and prevent lung injury (69). Several candidates

1https://www.globenewswire.com/news-release/2020/04/09/2014265/0/en/FDA-

Grants-CalciMedica-Permission-to-Begin-Dosing-CM4620-IE-in-Patients-

with-Severe-COVID-19-Pneumonia-under-a-Newly-Opened-IND.html

from pre-clinical work can be distinguished, Galactin-9 inhibits
the infiltration of neutrophils and decreases MMP levels and
moreover down-regulates Th1 and Th17T cells (70) and
exogenous carbon monoxide delivered from carbon monoxide-
releasing molecule 2 inhibits neutrophil infiltration (71). This
treatment also inhibited NLRP3 activation in vitro (72) and
HMGB1 in an in vivo model (73) and a suggestion is made that
this could also be of use in the current ICU (74).

Finally, also blocking the downstream mediators of NLRP3
inflammasome activation caspase-1 and cytokines IL-1β and IL-
18 and their receptors are potential options for treatment for
COVID-19-related pneumonia (75–77).

FINAL REMARKS

The data presented in this overview suggest that the NLRP3
inflammasome with its downstream pathways is an attractive
target for therapy of COVID-19 with (severe) pathology in
individuals that have a low immune fitness. Knowledge of early
indications of possible scenarios after infection will be needed to
be able to timely intervene with an appropriate therapy. Several
potential candidates are available that are already or might be
readily tested in clinical practice. For prevention early signaling
of the presence of low grade inflammation might be an indicator
for loss of resilience leading to vulnerability to a viral challenge.
It also might be an incentive to implement lifestyle changes to
enhance immune fitness.
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