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Metabolic abnormalities such as dyslipidemia, hyperinsulinemia, or insulin resistance

and obesity play key roles in the induction and progression of type 2 diabetes

mellitus (T2DM). The field of immunometabolism implies a bidirectional link between

the immune system and metabolism, in which inflammation plays an essential role

in the promotion of metabolic abnormalities (e.g., obesity and T2DM), and metabolic

factors, in turn, regulate immune cell functions. Obesity as the main inducer of a

systemic low-level inflammation is a main susceptibility factor for T2DM. Obesity-related

immune cell infiltration, inflammation, and increased oxidative stress promote metabolic

impairments in the insulin-sensitive tissues and finally, insulin resistance, organ failure,

and premature aging occur. Hyperglycemia and the subsequent inflammation are

the main causes of micro- and macroangiopathies in the circulatory system. They

also promote the gut microbiota dysbiosis, increased intestinal permeability, and fatty

liver disease. The impaired immune system together with metabolic imbalance also

increases the susceptibility of patients to several pathogenic agents such as the severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Thus, the need for a proper

immunization protocol among such patients is granted. The focus of the current review

is to explore metabolic and immunological abnormalities affecting several organs of

T2DM patients and explain the mechanisms, whereby diabetic patients become more

susceptible to infectious diseases.

Keywords: immunometabolism, infectious diseases, insulin resistance, obesity, systemic low-level inflammation,

SARS-CoV-2, type 2 diabetes mellitus

INTRODUCTION

The metabolic syndrome is defined by the presence of metabolic abnormalities such
as obesity, dyslipidemia, insulin resistance, and subsequent hyperinsulinemia in an
individual (1). Dyslipidemia, the main characteristic of metabolic syndrome, is defined
by decreased serum levels of high-density lipoproteins (HDLs) but increased levels of
cholesterol, free fatty acids (FFAs), triglycerides (TG), VLDL, small dense LDL (sdLDL),
and oxidized LDL (ox-LDL) (Table 1) (2). Individuals with the metabolic syndrome
are much more likely to develop type 2 diabetes mellitus (T2DM), cardiovascular
diseases (CVDs), and fatty liver disease (2–4). T2DM, the most common form
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TABLE 1 | Effects of type 2 diabetes mellitus on biochemical markers, as well as circulatory, digestive, and muscular systems.

Decreased or impaired Increased

Biochemical markers HDL, lipid-binding capability of APO-A1, circulating H2S Blood sugar, HbA1c, MGO, AGEs, ox-LDL, sdLDL,

FFAs, TG, GrB, angiopoietin-1/2, EPO, VEGF-A, resistin,

SCGN, homocysteine, elastase, proteinase-3, MPO,

sFasL

Circulatory system ECs miR-Let7a, miR-26a, miR-126, mitochondrial membrane

potential, catalase, superoxide dismutase, eNOS, NO

NF-κB1, caspase-3, Apoptosis, ROS, ICAM-1, IL-8,

EMPs

CAPCs cells VEGFR-1 expression VEGFR-2 expression, Apoptosis

Platelets miR-126 expression Activity, prothrombotic state, MPV, MPs generation,

sP-selectin and sCD40L induction, p2y12 receptor

expression

Digestive system IECs GSH levels Permeability, DMT1 expression, intestinal iron uptake,

iNOS, NO

Pancreatic

beta-cells

PDX-1 expression, insulin synthesis Conversion into α- and δ-“like” cells, ER stress,

caspase-3 expression, Apoptosis, ROS generation,

mitochondrial dysfunction, proteasomal dysfunction,

insoluble IAPP induction

Liver miR-206 Steatosis, NF-κB1, STAT3

Muscular system Skeletal muscle

cells

GLUT-4 expression NF-κB1, TNF-α, IL-6, IL-8, IL-15, MCP-1, GRO-α, and

follistatin expression

AGE, advanced glycation end product; APO, apolipoprotein; CAPCs, circulating angiogenic progenitor cells; CD, cluster of differentiation; DMT1, divalent metal transporter 1; ECs,

endothelial cells; EMPs, endothelial microparticles; eNOS, endothelial nitric oxide synthase; EPO, erythropoietin; ER, endoplasmic reticulum; FFA, free fatty acid; GLUT-4, glucose

transporter type 4; GrB, granzyme B; GRO, growth-regulated oncogene; GSH, glutathione; H2S, Hydrogen Sulfide; Hb, hemoglobin; HDL, high-density lipoprotein; IAPP, islet amyloid

polypeptide; ICAM, intercellular adhesion molecule; IECs, intestinal epithelial cells; IL, interleukin; iNOS, inducible nitric oxide synthase; LDL, low-density lipoprotein; MCP-1, monocyte

chemoattractant protein-1; MGO, methylglyoxal; miR, micro RNA; MP, Microparticle; MPO, Myeloperoxidase; MPV, mean platelet volume; NF-κB1, nuclear factor kappa-light-chain-

enhancer of activated B cells 1; NO, nitric oxide; ox-LDL, oxidized LDL; PDX-1, pancreatic and duodenal homeobox 1; ROS, reactive oxygen species; SCGN, secretagogin; sdLDL,

small dense LDL; sFasL, soluble Fas ligand; TG, triglyceride; TNF, Tumor necrosis factor; VEGF, vascular endothelial growth factor; VEGFR, VEGF receptor.

of diabetes (∼90%), is characterized by a systemic inflammatory
disease accompanied by insulin resistance (IR) or decreased
metabolic response to insulin in several tissues, including the
adipose tissue, liver, and skeletal muscle, as well as by reduced
insulin synthesis by pancreatic beta cells (4, 5).

Studies on immunometabolism have indicated that the
metabolic states and immunological processes are inherently
interconnected (6). In this scenario, metabolites derived from
the host or microbiota regulate immunological responses during
health and disease (6). Accordingly, in obese individuals,
expanded adipose tissue at different locations, by initiating
and perpetuating the inflammation, induces a chronic low-level
inflammatory state that promotes IR (4). Every organ system
in human body can be affected by diabetes, but the extent of
organ involvement depends largely on the severity and duration
of the disease (Figure 1 and Table 1). During the progression

Abbreviations: AGE, advanced glycation end products; APCs, antigen-presenting

cells; CAPCs, circulating angiogenic progenitor cells; CVD, cardiovascular

diseases; DCs, dendritic cells; ECs, endothelial cells; EMPs, endothelial

microparticles; ER, endoplasmic reticulum; FFAs, free fatty acids; GLUT, glucose

transporter; HDLs: high-density lipoproteins; HN, humanin; HUVECs, human

umbilical vein endothelial cells; IAPP, Islet amyloid polypeptide; IECs, intestinal

epithelial cells; IFN, Interferon; IL, interleukin; MGO, methylglyoxal; MP,

microparticle; NETs, Neutrophil Extracellular Traps; NKs, Natural killer cells;

NLRP3, nucleotide-binding oligomerization domain, leucine-rich–containing

family, pyrin domain-containing 3; Ox-LDL, Oxidized low-density lipoprotein;

PPAR, peroxisome proliferator-activated receptors; ROS, reactive oxygen species;

sdLDL, small dense LDL; TG, triglyceride; T2DM, type 2 diabetes mellitus; TNF-α,

tumor necrosis factor-alpha; UTIs, urinary tract infections.

of diabetes, hyperglycemia promotes mitochondrial dysfunction
and induces the formation of reactive oxygen species (ROS)
that cause oxidative stress in several tissues such as blood
vessels and pancreatic beta cells (7–9). Accumulating damage to
the mitochondria, as well as several macromolecules, including
proteins, lipids, and nucleic acids by ROS promotes the process
of aging (10). As a result, pancreatic β cells that require functional
mitochondria to maintain insulin synthesis fail to generate high
enough levels of insulin (11, 12). In the absence of compensatory
mechanisms, stress-responsive intracellular signaling molecules
are activated and cellular damage occurs. Elevated intracellular
levels of ROS and subsequent oxidative stress play an important
role in the pro-atherosclerotic consequences of diabetes and
the development vascular complications (9, 13). Moreover,
the non-enzymatic covalent attachment of glucose and its
toxic derivatives [e.g., glyoxal, methylglyoxal (MGO), and 3-
deoxyglucosone] to the biological macromolecules such as
nucleic acids, lipids, and proteins leads to the formation of
advanced glycation end products (AGEs) (14, 15). Accumulated
AGEs block the insulin signaling pathway and promote
inflammation (16, 17). In addition, the attachment of AGEs
to their receptors [e.g., CD36, galectin-3, scavenger receptors
types I (SR-A1), and II (SR-A2)] on the surfaces of immune
cells in the circulation and tissues activates the expression
of pro-inflammatory cytokines and increases free radical
generation (18). Furthermore, due to the chronic exposure
of cells to high glucose levels in untreated T2DM patients,
glucose toxicity might occur in several organs. This will

Frontiers in Immunology | www.frontiersin.org 2 July 2020 | Volume 11 | Article 1582

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Daryabor et al. Altered Physiology and Immunity in T2DM

FIGURE 1 | Effects of T2DM on body organs. T2DM is an inflammatory state that affects circulatory system, gastrointestinal tract, pancreatic beta cells, liver, and

skeletal muscles and makes them dysfunctional. NFALD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; ER, endoplasmic reticulum.

eventually lead to nephropathy, cardiomyopathy, neuropathy,
and retinopathy.

Gut microbiome dysbiosis is another important factor that
can facilitate the induction and progression of metabolic diseases
such as T2DM (19). The gut microbiome dysbiosis, by altering
the barrier functions of intestine and the host metabolic status,
promotes the insulin resistance in diabetic patients (19). Diabetes
also impairs the immune system and increases the susceptibility
of patients to serious and prolonged infections (20). This is
likely to be the case with the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), as well (21, 22). In the current
paper we will review recent research to explore the impairment of
body organs in T2DM patients and explain how diabetic patients
become more susceptible to certain infectious diseases.

EFFECTS OF T2DM ON THE
CIRCULATORY SYSTEM

Vascular homeostasis is an important function of the
endothelium. Under homeostatic conditions, the ECs maintain
the integrity of blood vessels, modulate blood flow, deliver
nutrients to the underlying tissues, regulate fibrinolysis and
coagulation, control platelet adherence and patrol the trafficking
of leukocytes (Figure 2A) (23). Normal ECs also internalize
high-density lipoproteins (HDLs) and its main protein part
apolipoprotein A-I (apoA-I) in a receptor-mediated manner
to activate endothelial cell nitric oxide (eNOS) synthase and
promote anti-inflammatory and antiapoptotic mechanisms
(Figure 2B) (24). HDL receptors on the surfaces of ECs include:

the ATP-binding cassette (ABC) transporters A1 and G1, the
scavenger receptor (SR)-B1 and the ecto-F1-ATPase (24).

According to the epidemiological studies, diabetes mellitus is
considered as one of the main risk factors for CVD (Figure 1)
(25). From the beginning of T2DM, the functions of ECs are
impaired, which is the main cause of disease-related side-effects
(26). ECs can initiate and perpetuate the inflammatory milieu
during the pathogenesis of diabetes. Due to the negative impacts
of hyperglycemia and subsequent oxidative stress, CVDs are
more common among diabetic patients (27). It has been observed
that incubation of human aortal endothelial cells (HAECs) with
a medium containing high glucose concentrations (HG, 20mM)
increases the intracellular levels of MGO and glycated proteins
that in turn activate the unfolded protein response (UPR) and
trigger inflammatory and prothrombotic pathways (28). Glycated
apoA-I, which is formed during hyperglycemia, modifies its
structure, decreases its lipid-binding ability, prevents cholesterol
efflux from macrophages and impairs its anti-inflammatory
function (29, 30). Vaisar et al. have shown that HDLs from
diabetic patients have a reduced capacity to trigger eNOS
production and suppress tumor necrosis factor-α (TNF-α)-
mediated inflammatory responses within ECs (31).

Diseases such as T2DM that induce high levels of vascular
injury are accompanied by an elevated number of circulating
endothelial cells (CECs) (32). T2DM-related risk factors such
as dyslipidemia, hyperglycemia, and hyperinsulinemia as well as
other conditions (e.g., inadequate physical activity, smoking, and
high blood pressure) facilitate the formation of atherosclerotic
plaques/lesions (33). Dyslipidemia, due to the elevated flux
of FFA from insulin-resistant tissues and spillover from entry
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FIGURE 2 | Blood vessels in healthy individuals and T2DM patients. (A) normal blood flow in healthy individuals. (B) A close view of HDL binding to its receptors on

the surface of ECs that results in the activation of anti-inflammatory cascades. (C) Blood vessels in T2DM patients. During the progression of the disease, red blood

cells become glycated, while activated ECs synthesize elevated levels of adhesion molecules and chemokines that facilitate monocytes recruitment, adhesion, and

transmigration across the endothelium toward the subendothelial region. Monocytes are then differentiated into macrophages and eventually, by excess lipid uptake,

generate foam cells. Subsequently, further immune cell infiltration into the atherosclerotic lesion occurs, where their inflammatory cytokines promote platelet activation,

EC apoptosis, and increased generation of ROS and Ox-LDL. (D) interactions between oxLDL and its receptor aggravate ROS generation, NF-κB activation and

inflammation. EC, endothelial cell; RBC, red blood cell; PLT, platelet; HDL, high-density lipoprotein; Ox-LDL, Oxidized low-density lipoprotein; ROS, reactive oxygen

species; eNOS, endothelial nitric oxide synthase; NO, Nitric oxide; LOX-1, lectin-type oxidized LDL receptor 1.

into adipocytes, is considered as an important risk factor
for developing CVD among diabetic patients. This is because
dyslipidemia promotes inflammation, endothelial dysfunction,
and platelet hyperactivation (34, 35). During the progression
of atherosclerosis, lipids, immune cells, and extracellular matrix
accumulate in the arterial intima or subendothelial regions
(Figure 2C) (33). Advanced plaques can impede blood flow and
cause tissue ischemia or might become disrupted and generate a
thrombus that stops the blood flow of important organs. Vascular
complications of diabetes engage either tiny or large blood vessels
(micro- and macroangiopathy, respectively). Microangiopathies,
which can be seen in the kidneys, vasa nervorum and eye tissues,
cause nephropathy, neuropathy, and retinopathy.

Macroangiopathies, by inducing atherosclerosis in the
coronary, carotid, and peripheral arteries, increase the risk of
myocardial infarction (MI), stroke and peripheral artery disease
(PAD). Macrovascular complications due to EC dysfunction are
considered as an important cause of mortality and morbidity
among diabetic patients (36). Oxidative stress has an essential
role in the induction of vascular complications during the
course of diabetes (8). EC dysfunction (e.g., delayed replication,
dysregulated cell cycling, and apoptosis), as well as enhanced
ox-LDL formation are some consequences of oxidative stress.
It has been well-established that sdLDL and ox-LDL have an
enhanced atherogenic ability and are more useful biomarkers
than total LDL for predicting CVD (37, 38). sdLDL particles have

a smaller size than other LDL particles. Thus, sdLDL particles
are more easily oxidized, and their atherogenic potential is
enhanced. During oxidative stress, levels of ox-LDL increase
by the excess action of reactive oxygen species (ROS) (13).
Subsequently, ox-LDL interaction with scavenger receptors,
including CD36, SR-A1/CD204, SR-B1, and lectin-like ox-LDL
receptor-1 (LOX-1) on the surface of ECs activates the NADPH
oxidase that in turn increases the expression of ROS and
activates the transcription factor NF-αB (39). Afterwards, the
expression of LOX-1, adhesion molecules (e.g., selectins and
integrins) and the secretion of pro-inflammatory cytokines and
chemokines are increased, while NO synthesis is decreased in
ECs (Figure 2D) (39–41). EC-derived chemokines bind to their
cognate receptors on the surfaces of monocytes and recruit them
toward the inflamed endothelium. Following this, selectin-based
rolling and integrin-based attachment of monocytes to the
ECs cause their migration toward the subendothelial region,
where they develop into lipid-laden macrophages or foam cells
later on (42).

The scavenger receptor LOX-1 plays an important role in
the uptake of ox-LDL during atherogenesis. It is strongly
expressed on the surfaces of ECs, but has an inducible
pattern of expression on the surface of macrophages and
smooth muscle cells (43). The accelerated uptake of ox-
LDL by macrophages accounts for their transformation into
foam cells, the initial hallmark of atherosclerosis (41, 43).
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Besides, diabetes leads to both quantitative and qualitative
defects in circulating angiogenic progenitor cells (CAPCs) that
take part in the repair of injured endothelium (44). It has
been shown that humans or mice with decreased numbers
of CD31+CD34+CD133+CD45dimSca-1+Flk-1+ CAPCs have
an increased prevalence of T2DM, elevated HbA1c levels and
aggravated CVD risk scores (44, 45).

In diabetic patients, despite elevated serum levels of pro-
angiogenic molecules, like angiopoietin-1/2, EPO, and VEGF-A,
angiogenesis is impaired. This is mainly due to the decreased
expression levels of VEGFR2 and CXCR4 on the surfaces of
CAPCs, which makes them unresponsive to the angiogenic
factors (44, 46). It has also been shown that circulating
proangiogenic granulocytes composed of eosinophils and
neutrophils are also impaired in diabetic patients (47). Besides,
elevated levels of AGEs in T2DM cause EC dysfunction and
vascular inflammation (48). Ren et al. have shown that incubation
of human coronary artery endothelial cells (HCAECs) with
AGEs causes decreased expression (at both mRNA and protein
levels) and enzymatic activity of eNOS, increased levels of ROS,
diminished mitochondrial membrane potential and declined
activity of catalase and superoxide dismutase in treated cells
(49). Another study by Lan et al. has shown that AGEs in the
pancreas decrease EC viability and induce their apoptosis in an
NFκB signaling-related manner (50). However, apigenin (4′,5,7-
trihydroxyflavone) can protect ECs against oxidative stress and
subsequent inflammatory reactions mediated by AGEs (51).
Apigenin binds to methylglyoxal (MGO) and forms a complex
that inhibits AGE formation.

Chettab et al. have shown that the expression of ICAM-1
as well as the production of IL-8, are significantly increased
in HUVECs cultured in HG medium compared to cells
cultured in normal glucose (NG, 5.5mM) conditions (52).
Bammert et al. found out that incubation of HUVECs with
HGmedia promotes the generation of endothelial microparticles
(EMPs) that, when added to normally cultured HUVECs,
downregulate the expression of anti-apoptotic microRNA miR-
Let7a, but enhance the synthesis of active caspase-3 and
cause cell apoptosis (53). Several microRNAs, including miR-
21, miR-26a, miR-30, miR-92a, miR-126, miR- 139, miR-
199a, miR-222, and miR-let7d, regulate vascular homeostasis.
It has been shown that the expressions of miR-26a and
miR-126 are significantly reduced in circulating MPs isolated
from diabetic patients compared with normal individuals.
This could be involved in making diabetic individuals more
susceptible to coronary heart disease (54). Moreover, HG
media upregulate the expression of NADPH oxidase that
will induce the generation of ROS. This leads to subsequent
apoptosis of the HUVECs through a ROS-dependent caspase-3
pathway (55).

Su et al. have demonstrated that argirein medication, by
inactivating NADPH oxidase, can prevent endothelial cell
apoptosis in a rat model of T2DM and hence attenuate vascular
dysfunction (56). HG further increases the permeability of the
HUVECs in a protein kinase C (PKC)-dependent manner (57,
58). Hassanpour et al. showed that incubation of endothelial
progenitor cells with the serum of T2DM patients inhibits their

migration toward bFGF, increases their expression of VEGFR-
2, but reduces their expression of VEGFR-1 and induces their
apoptosis (59). However, humanin (HN), a mitochondrium-
derived peptide, is cytoprotective against apoptosis during
pathological conditions, such as diabetes mellitus (60). It has
been demonstrated that simultaneous incubation of H9C2
cells, a line of rat cardiac myoblasts, with H2O2 and HN
decreases the intracellular levels of ROS, preserve mitochondrial
function/structure and decline cellular apoptosis (61).Wang et al.
have indicated that the treatment of HUVECs with HN before
their incubation with HG medium increases the expression
of eNOS, while decreasing the expression of endothelin 1
(ET-1), VCAM-1, TNF-α, IL-1β, and E-selectin in a krüppel-
like factor 2 (KLF2)-dependent manner. Such changes in the
expression of integrins prevent the attachment of monocytes
to HUVECs (62). Accordingly, HN might be used to prevent
the development of hyperglycemia-associated EC dysfunction
in T2DM.

EC activation and expression of adhesion molecules
also facilitate activation and adhesion of platelets. This will
increase the risk of thrombosis and promote the development
of thrombotic angiopathy, typical for diabetic patients.
Platelets are tiny anucleated cellular fragments generated
from megakaryocytes in the bone marrow. They circulate in the
blood for∼5–9 days and play essential roles in hemostasis and in
controlling vascular integrity (63). Circulating inactive platelets
move in the proximity of vessel walls (Figure 2A) and rapidly get
activated in response to vascular injury. At the end of their life,
platelets are cleared from circulation with the action of the liver
and spleen-resident macrophages. Platelets have an essential
role in the initiation and progression of inflammation. Platelet
hyperactivation that occurs during inflammatory states (e.g.,
T2DM) facilitates the pathogenesis of CVDs (Figure 2C) (64, 65).
It has been shown that elevated levels of resistin, an adipokine,
in diabetic patients enhances oxidative stress, promotes
endothelial dysfunction and facilitates platelet activation (66).
Activated platelets with an increased mean volume [mean
platelet volume (MPV)] secrete microparticles (MPs) and
soluble adhesion molecules (e.g., sP-selectin and sCD40L)
that in turn activate endothelial and immune cells (67–69).
Higher levels of platelet-derived MPs, which correlate positively
with fasting blood sugar and glycated hemoglobin, have been
shown in newly diagnosed T2DM patients compared to healthy
individuals (70).

In T2DM patients thrombotic microangiopathies can lead
to the development of CVDs (71). Platelets in the patients
adhere to ECs and aggregate more rapidly than in healthy
individuals thereby increasing the risk of thrombosis. In a
mouse model of T2DM, Zhu et al. have shown that AGEs
interact with CD36, a member of the type 2 scavenger receptor
family, on the surfaces of murine platelets to activate them
and induce a prothrombotic state (72). Elevated levels of
the P2Y12 receptor on the surface of platelets in T2DM
expose diabetic patients to a prothrombotic condition. This
receptor has an essential role in platelet activation (73).
Zhou et al. have shown that long non-coding RNA (lncRNA)
metallothionein 1 pseudogene 3 (MT1P3), which is markedly
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upregulated in megakaryocytes of T2DM patients, enhances
the expression of p2y12 receptor in platelets (74). They
indicated that this is due to the inhibitory action of MT1P3
on miR-126.

EFFECTS OF T2DM ON THE DIGESTIVE
SYSTEM

Virtually all parts of the human digestive system, including
the gastrointestinal tract, pancreas, and the liver are affected
by diabetes.

Gastrointestinal Tract (GIT)
The GIT is populated with a myriad of microorganisms,
including principally bacteria but also archaea, viruses, fungi,
and protozoans that dynamically influence the health status
and homeostasis of the host. The physiological functions
of the GIT resident microbes improve gut integrity, protect
against microbial pathogens and regulate immune responses
(75). Mucosal barriers, such as intestinal epithelial cells (IECs)
and the mucus layer, spatially isolate the host immune system
and gut microbiota to prevent unnecessary immune activation
and intestinal inflammation. They also facilitate the uptake
of nutrients through receptors and transporters. However,
hyperglycemia, in a GLUT2-dependentmanner, can influence the
mucus and alter the integrity of adherence and tight junctions
between intestinal epithelial cells of diabetic mice. This will
enhance the permeability of the intestinal barrier leading to so
called “leaky gut.” Subsequently, hyperglycemia may facilitate
the dispersal of an enteric infection into a systemic infection
(Figure 1) (76). Interestingly, the reversal of hyperglycemia,
conditional deletion of GLUT2 from the IECs and inhibition
of glucose metabolism will fix the barrier dysfunction and
prevent the spread of bacteria (76). Xu et al. have shown
that Faecalibacterium prausnitzii, one of the most frequent
commensal bacteria in normal individuals with essential roles
in gut homeostasis, generates anti-inflammatory molecules that
enhance the expression of tight junctions and improve intestinal
integrity during diabetes (77). However, in some cases, gut
microbiota dysbiosis or altered microbial composition of the
intestines could induce T2DM and lead to its progression (78).

Of interest, the widely used antidiabetic drug metformin can
improve barrier integrity and restore the healthy microbiota
composition of the gut in diabetic patients (79). The intestinal
commensal bacterium Akkermansia muciniphila can also act
as a sentinel to reduce microbial translocation across the gut
and prevent the subsequent inflammation in patients with
T2DM (80). Hyperglycemia can further decrease the intracellular
levels of glutathione (GSH) but increase iNOS activity and
NO production in the IECs (81). Zhao et al. have found
out that hyperglycemia in a PKCα-dependent manner inhibits
the ubiquitination, internalization and degradation of the
divalent metal transporter 1 (DMT1) present on the microvillar
membranes of IECs. Subsequently, intestinal iron uptake is
enhanced and accumulated iron ions aggravate diabetes-related
complications and increase mortality (82, 83).

Pancreas
The pancreas consists of the exocrine and endocrine
compartments. The endocrine part is made of different cell
types, including α, β, δ, and ε cells that secrete glucagon, insulin,
somatostatin, and ghrelin hormones, respectively. These cells are
aggregated into specialized structures called islets of Langerhans,
which play an important role in controlling blood glucose
levels through the secretion of insulin and glucagon. In T2DM,
despite normal levels of β-cell replication and islet formation,
β-cell apoptosis is increased so that the number of cells declines
by ∼50% (Figure 1) (84). During the progression of T2DM,
the insulin-resistant state forces β-cells to compensate for the
lack of insulin by elevating its synthesis to restore the normal
blood glucose level. However, in severe diabetic patients, β-cell
exhaustion, and subsequent persistent hyperglycemia occur (7).
Furthermore, chronic elevated serum levels of free fatty acids,
seen in obesity and T2DM, induce lipotoxicity in beta-cells
and suppress their insulin secretion ability (85). To alleviate
chronic inflammation, overcome insulin resistance (IR) and
to prevent β-cell apoptosis, stem cells or stem cell derivatives
such as insulin-producing cells (IPCs) and exosomes have been
suggested (86–89). Their effects are believed to be mainly due to
their anti-inflammatory activities.

Secretagogin (SCGN) is predominantly expressed by
pancreatic β-cells protecting their normal functions. SCGN also
acts as an insulin binding protein to make it more stable, avoid
its aggregation, improve its functions and enhance its secretion
(90, 91). In T2DM patients, due to the islet cell dysfunction
and endoplasmic reticulum (ER) stress, serum levels of SCGN
are elevated reflecting stress and dysfunctional islet cells (92).
Moreover, in patients with T2DM, islet amyloid polypeptide
(IAPP or amylin), a peptide hormone and one of the main
secretory products of pancreatic β-cells, tends to deposit in
the islets of Langerhans, form insoluble fibrils and impair
secretory functions of β-cells (93). IAPP is costored with insulin
in the secretory granules of pancreatic β cells. In steady-state
conditions it regulates food intake, insulin secretion, and glucose
metabolism (94). Ribeiro et al. have noted that pancreatic
extracellular vesicles (EVs) from healthy individuals, but not
from T2DM patients, directly bind to IAPPs and prevent amyloid
formation within the pancreatic islets (95). The authors showed
that the altered protein-lipid composition of the EVs is the main
reason for this discrepancy (95). However, Chatterjee et al. have
shown that β-cells from T2DM patients have a dysfunctional
proteasome complex that fails to degrade pancreatic IAPP,
whereby amyloid formation is induced (96). Furthermore, in
T2DM patients, lipids accelerate the formation of fibrillary IAPP,
which aggravates islet cell damage (97).

Dhar et al. have demonstrated that chronic use of MGO
in Sprague-Dawley rats increases the expression of NF-αB,
MGO-derived AGEs and their receptors in pancreatic β cells.
MGO can also induce apoptosis of islet β cells, increase fasting
plasma glucose levels and impair glucose tolerance (98). In
T2DM patients the plasma level of MGO directly correlates with
fasting blood sugar and HbA1c levels (99). Bo et al. further
showed that MGO in a dose-based manner impairs insulin
secretion of pancreatic β-cell lines MIN6 and INS-1 through
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increased generation of ROS and by induction of mitochondrial
dysfunction (100). Robertson et al. have found out that elevated
levels of ROS in pancreatic β-cells inhibit the pancreas duodenum
homeobox-1 (PDX-1) transcription factor that is needed for
insulin synthesis (7). It has been shown that chronic use of
MGO in animals could induce T2DM, while simultaneous use
of alagebrium, which breaks AGE compounds, attenuates the
disease (98). It has also been reported that during the course
of diabetes dedifferentiation and conversion of β-cells into α-
and δ-“like” cells occurs (101). In conclusion, the pancreatic β

cell function is progressively reduced during the progression
of T2DM.

Liver
The liver is by far the most important metabolic organ with
essential roles in regulating homeostasis and mediating glucose
and lipid metabolism. Metabolic activities of the tissue are
precisely controlled by the actions of metabolic substrates,
including free fatty acids (FFAs) and hormones (102). T2DM
patients usually suffer from a chronic liver condition called
non-alcoholic fatty liver disease (NAFLD). It is characterized
by steatosis that means ectopic fat storage in hepatocytes
and subsequent insulin resistance (Figure 1) (103). Lipid
accumulation in hepatocytes leads to impaired biogenesis of miR-
206 that facilitates insulin signaling and prevents lipogenesis
(104). Several factors such as obesity, increased serum levels
of fatty acids, and insulin resistance can increase the risk of
fatty liver disease. P2Y2 receptor, through the induction of
the c-Jun N-terminal kinase (JNK) and prevention of insulin
signaling, can promote insulin resistance in hepatocytes in T2DM
(105). In some cases, NAFLD may progress into an aggressive
form of inflammatory fatty liver disease called non-alcoholic
steatohepatitis (NASH), which might cause liver cirrhosis and
organ failure (106). Dang et al. have indicated that exosomes
released from the adipose tissues of obese mice due to the
smaller miR-141-3p content can promote insulin resistance in
the murine hepatocyte cell line AML12 (alpha mouse liver 12)
(107). The adipokine visfatin that is released from the adipose
tissue of obese individuals has also been shown to activate the
pro-inflammatory STAT3 signaling pathway and NF-κB in the
human liver cell line HepG2 and promote their insulin resistant
state (108). Nevertheless, the hepatocyte growth factor (HGF) can
alleviate the insulin resistance of hepatocytes and control their
triglyceride and cholesterol contents (109).

EFFECTS OF T2DM ON SKELETAL
MUSCLES

Skeletal muscle (SM) is the main tissue that releases glucose
after insulin stimulation. Hence, insulin resistance in SM has
a pivotal role in the metabolic dysregulation of T2DM. Insulin
resistance in SM is the primary defect of T2DM that facilitates
the progression of fatty liver disease, deposition of fat in the
liver (Figure 1) (110). Skeletal muscle from diabetic patients
expresses less genes related to insulin signaling and metabolic
pathways, but more apoptosis and immune-related genes (111).
This inflammatory milieu is mainly due to the proinflammatory

actions of obesity-related adipose tissue mediators, which are
released into the circulation and promote inflammation within
the SM (4). Furthermore, obesity causes intermyocellular and
perimuscular adipose tissue expansion that acts like adipose
tissue depots to enhance SM inflammation (112). It has been
shown that human skeletal muscle cells (hSMC), isolated from
diabetic patients, after a 24-h culture generate significantly more
TNF-α, IL-6, IL-8, IL-15, monocyte chemotactic protein (MCP)-
1, Growth-Related Oncogene (GRO)-α, and follistatin compared
to non-diabetic individuals (113). This altered secretion of
myokines (e.g., cytokines secreted by SMs) is an intrinsic feature
of SM during the progression of T2DM. In SM, GLUT-4, which is
quickly translocated to the cell surface, facilitates glucose uptake
in response to insulin hormone as well as muscle contraction.
Pinto-Junior et al. have shown that the use of AGE-albumin in
rats increases the expression of the inflammatory molecule NF-
κB1 within the SM. NF-κB1 binds to the promoter of the GLUT-4
gene and suppresses its expression (at both mRNA and protein
levels) (114). Accordingly, GLUT-4 levels on the surfaces of SM
decrease and subsequently, whole-body IR develops.

EFFECTS OF T2DM ON THE IMMUNE
SYSTEM

The immune system is generally classified into two main arms,
innate and adaptive (or acquired) immunity. Adaptive immunity
is mediated by B cells, which produce antibodies and T cells,
which are classified into CD4+ helper cells and cytotoxic CD8+

cells. A considerable literature has discussed the dysfunctional
immune responses in diabetic patients (Table 2) (115–120).
Abnormal immune cell activation and subsequent inflammatory
environment has an essential role in the progression of T2DM
(121). In this regard, chronic inflammation due mainly to the
activation of the myeloid cell lineage (e.g., macrophages and
neutrophils), is directly related to the induction of IR (4, 122).
Fang et al. have shown that patients with T2DM have elevated
numbers of circulating leukocytes that express high levels of
inflammatory gene products but glycemic control can reverse
the situation (123). De Souza Prestes et al. have indicated that
exposure of leukocytes to MGO changes their morphology by
making them larger and more granular, increases their ability
to produce ROS and decreases their expression of antioxidant
genes (124). They further demonstrated that treatment with
MGO increases the expression of the pro-apoptotic gene BAD,
while decreasing the expression of anti-apoptotic gene BCL-2,
and hence promotes apoptosis of leukocytes (124).

Hu et al. have shown that polyinosinic:polycytidylic acid
(polyI:C), a Toll-like receptor 3 (TLR3) agonist, stimulated
PBMCs in HG medium (24mM glucose), while cells cultured
in LG produced significantly lower levels of type I IFNs
(125). Additionally, they indicated that under these conditions
PBMCs express elevated levels of IFN-γ, IL-1β, IL-6, IL-10,
granulocyte-macrophage colony-stimulating factor (GM-CSF),
TNF-α, RANTES/CCL5 (Regulated on Activation, Normal T cell
Expressed and Secreted), and macrophage inflammatory protein
(MIP)-1α (125). Hu et al. have also shown that HG in T2DM
patients decreases the formation, viability, differentiation and
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TABLE 2 | Effects of T2DM on the immune system.

Total leukocytes Their numbers are elevated, are larger and more granular, express diminished levels of antioxidant genes but

elevated levels of pro-apoptotic and pro-inflammatory genes.

Innate immunity

Complement system Attachment of C-type lectin proteins to mannose residues is decreased, lectin pathway is impaired, CD59 activity

is reduced, MAC deposition in vascular walls is increased.

Dendritic cells (DCs) Their numbers and activity are reduced.

Macrophages Their cholesterol efflux is decreased, generate foam cells, have dysfunctional efferocytosis.

Neutrophils Are activated, constitutively release NETs, produce high levels of MPO, ROS, and calprotectin (S100A8/A9), are

more susceptible to apoptosis, their migration, phagocytosis and microbial killing are impaired.

NK cells Their numbers are increased but are usually dysfunctional, express high levels of GLUT4 but decreased levels of

NKG2D and NKp46, have reduced degranulation capacity, are more susceptible to apoptosis.

NKT cells Their numbers are increased, produce high levels of IFN-γ, IL-4, and IL-17, express high levels of NKp30, NKG2D,

and NKp44 but low levels of NKG2A and 158b.

Innate lymphoid cells (ILCs) ILC1s are increased and produce high levels of IFN-γ.

Adaptive immunity

Humoral immunity (B cells) Germinal centers are reduced, Ab production and isotype switching is defective, Abs become glycated, Abs fail to

activate complement.

Cellular immunity (T-Cells) Pathogen-specific Th17 cells are decresed, Th1 cells are elevated, have decreased expression of perforin, GrB

and CD107a.

Ab, antibody; GLUT-4, glucose transporter type 4; GrB, granzyme B; IFN, interferon; IL, interleukin; MAC, membrane attack complex; MPO, Myeloperoxidase; NET, neutrophil extracellular

traps; NKG2D, the natural killer group 2d; ROS, reactive oxygen species; Th, helper T cell.

functions of osteoclasts, which are bone-resident innate immune
cells (126). Thismay affect bone structure and delay bone healing.
Defects in the innate, as well as adaptive immunity, are supposed
to be the main cause of diabetic individuals’ susceptibility to
infections (127). Furthermore, some microorganisms, especially
bacteria, in hyperglycemic conditions are better nourished and
become more virulent, while also having a better milieu to
cause infections.

Innate Immunity
Complement System
The complement system is a first-line defense mechanism against
invading microorganisms. It acts via different but interconnected
classical, alternative, and lectin pathways (128). Ilyas et al. have
shown that under high glucose conditions, the attachment of C-
type lectin proteins to high-mannose containing glycoproteins
is substantially decreased in a dose-dependent manner. These
carbohydrate-binding proteins include mannose-binding lectin
(MBL), surfactant protein D (SP-D), dendritic cell-specific
intercellular adhesion molecule-3-grabbing non-integrin (DC-
SIGN, CD209), and DC-SIGN-related (DC-SIGNR) protein
(129). Reduced binding of MBL in the presence of high levels
of sugar causes a significant reduction in the lectin pathway
activity, but does not influence classical or alternative pathway
activity (129). Nevertheless, Barkai et al. did not find significant
differences in the function of classical or MBL pathways between
T2DM and healthy individuals (130). However, significantly
decreased activity of ficolin-3-mediated lectin and alternative
pathways, as well as decreased levels of C4d and soluble
complement C5b-9 (sC5b-9) were seen in diabetic patients with
Escherichia coli-mediated urinary tract infections (130). This may
be linked to a reduced ability of diabetics to protect themselves
against bacterial infections.

The lipopolysaccharides of certain Gram-negative bacteria,
like Salmonella serotype O6,7 as well as the cell walls of fungi,

are rich in mannose. Possibly, because of this, in addition to
additional provision of nutrients, an increased prevalence of
fungal infections is seen in T2DM patients (131, 132). Patel
et al. found a significantly higher prevalence of oral candida
carriage in diabetic patients compared to healthy controls (131).
They found that Candida albicans was the most commonly
isolated species followed by C. tropicalis, but uncommon species
such as C. lusitaniae and C. lipolytica were also isolated (131).
Another study by Jhugroo et al. showed that C. albicans is the
predominant yeast isolated from oral mucosal lesions of diabetic
patients, followed by. C. tropicalis and C. krusei (132). Chikazawa
et al. have shown that AGEs are recognized by C1q, which
subsequently activates the classical complement pathway (133).
Qin et al. have previously reported that AGEs can inactivate
the complement regulatory protein CD59 (protectin) and hence
increase the deposition of membrane attack complex (MAC) in
tissues and vascular walls of diabetic patients (134). Recently,
Bus et al. demonstrated classical complement pathway activation
within the kidneys of T2DM patients with diabetic nephropathy
(DN), as revealed by deposition of C1q, C4d, and C5b-9 in the
glomeruli and arterioles (135).

Dendritic Cells (DCs)
Dendritic cells (DCs) are a heterogeneous population of
specialized and professional antigen-presenting cells (APCs) that
create a crucial link between the innate and adaptive immune
responses (136, 137). Some studies have shown that the numbers
of DCs are reduced in both type 1 and 2 diabetes (138, 139).
Seifarth et al. have found that T2DM patients with poor
metabolic control have decreased numbers of both myeloid and
plasmacytoid DCs compared with healthy controls. This could
make them more susceptible to opportunistic infections (139).
In the case of good blood glucose control, the reduction in DC
numbers was less prominent but still significant, especially for
myeloid DC1 (mDC1) cells (139). Another study by Blank et al.
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demonstrated that womenwith T2DMand poor glycemic control
(HbA1c ≥ 7%) have fewer numbers of circulating plasmacytoid
DCs (pDCs) compared to diabetic women with good glycemic
control (HbA1c < 7%) or to healthy women (140). Montani
et al. have recently shown that hyperglycemic medium and
hyperglycemic sera derived from T2DM patients prevent the
maturation of monocytes into effective DCs and their activation
in vitro (141). Interestingly, quercetin, a flavonoid with anti-
inflammatory and antioxidant characteristics, prevented such
effects (141).

Macrophages
Macrophages are important immune cells that play critical
roles through all stages of the pathogenesis of T2DM-
related atherosclerosis (41). Swirski et al. have shown a
significantly elevated number of pro-inflammatory monocytes
in the circulation of ApoE−/− mice, an animal model of
atherosclerosis, compared to control mice (142). Modifications of
the lipoproteins in the arterial walls of diabetic individuals make
them pro-inflammatory and activate the overlying endothelium.
In response, monocytes are recruited into the subendothelial
region, differentiate into macrophages and internalize the
accumulated lipoproteins. Finally, cholesterol-laden foam cells
are generated. They promote inflammation and progression of
the disease through the synthesis and secretion of cytokines,
chemokines, ROS, and matrix metalloproteinases (MMPs)
(Figure 2C) (42). Foam cells lose their migratory potential, die by
apoptosis and generate a necrotic core within the atherosclerotic
plaque (143).

It has been demonstrated that the use of mesenchymal
stem cells in ApoE−/− mice reduces the numbers of
monocytes/macrophages at the site of inflammation, decreases
lipid deposition and diminishes plaque size (144). Ma et al.
have studied the effects of long-term hyperglycemia in diabetic
mice and found out that compared to non-diabetic control
mice, the numbers of F4/80+ macrophages isolated from spleen
(SPMs), as well as from peritoneal exudates (PEMs) of diabetic
mice are significantly decreased (145). Subsequently, Sun et al.
showed that stimulation of PEMs from diabetic mice in vitro
with IFN-γ and lipopolysaccharide (LPS) significantly decreased
the expression of intercellular adhesion molecule 1 (ICAM-1
or CD54), CD86, TNF-α, and IL-6, while it increased the
production of nitric oxide (NO) (146). They further showed
that stimulation of PEMs isolated from diabetic mice with
IL-4 caused an enhanced arginase activity (146). Kousathana
et al. have demonstrated that circulating monocytes isolated
from diabetic patients produce higher levels IL-6, while having
an impaired activation of the NLRP3 inflammasome and
subsequently reduced IL-1β production (147). However, they
showed that proper glycemic control would restore such
modifications. Poor inflammatory responses in circulating
monocytes, as well as in macrophages, are responsible for
elevated susceptibility to infections and their severity in patients
with T2DM.

Macrophages play a critical role in tissue repair. Early in
wound healing, they are pro-inflammatory to clear pathogens
and debris but later, they resolve inflammation and promote

tissue repair. In pathological conditions, failure to transform
from pro-inflammatory to the anti-inflammatory proliferative
phase can cause chronic inflammation in the affected tissue (148).
Khanna et al. have indicated that dysfunctional phagocytosis
of dead cells by macrophages (efferocytosis) at the wounds of
diabetic mice expands apoptotic cell burden, causes chronic
inflammation and prolongs wound healing (148). Mirza et al.
have shown that an impaired wound healing process in animals
with T2DM is due to high levels of NLRP3 inflammasome
activity, which promotes the generation of IL-1β and IL-18 in
macrophages (149, 150). Efficient skin wound healing process is
mediated by the up-regulation of the peroxisome proliferator-
activated receptor (PPAR)-γ in macrophages that convert
their pro-inflammatory phenotype into healing-related. PPAR-
γ suppresses cytokine production by macrophages and hence is
upregulated in inflamed tissue-resident macrophages. However,
in T2DM, PPARγ expression is down-regulated in skin-resident
macrophages that enhance the activity of NLRP-3 inflammasome
and cause chronic inflammation. Using myeloid-specific PPAR-
γ−/− mice, it has been shown that the absence of PPAR-γ in
macrophages is sufficient to delay the healing process and extend
tissue inflammation (150).

In T2DM patients, chronic hyperglycemia and hyperlipidemia
trigger the secretion of a damage-associated S100A8 molecule
(calgranulin A) from pancreatic islets that in turn increase
macrophage infiltration (151). Westwell-Roper et al. have shown
that IAPP aggregates in T2DM patients polarize islet-resident
macrophages toward the M1-like F4/80+CD11b+CD11c+

phenotype that produces pro-inflammatory cytokines, including
TNF-α, IL-1β, and IL-6. Furthermore, M1 cells promote islet
inflammation, cause β-cell malfunction and apoptosis (152). In
T2DM, excess phagocytosis of apoptotic β-cells by macrophages
induces their lysosomal permeabilization, generation of ROS,
inflammasome activation, and pro-inflammatory cytokines
secretion (153). Collectively, these observations reveal that the
functions and plasticity of macrophages are compromised during
the progression of T2DM.

Neutrophils
Neutrophils are the most prevalent circulating leukocytes and
one of the main components of innate immunity. They are
recruited to the sites of infection through chemotaxis following
complement activation, most importantly by C5a. Activated
neutrophils bind via their surface receptors to induced ligands
on the surfaces of inflamed endothelial cells to migrate to
tissues. There they phagocytose and kill invading microbes
with lysosomal enzymes, antimicrobial peptides and by the
generation of ROS (154). Neutrophils from patients with T2DM,
but not from healthy individuals, are activated and produce
elevated levels of ROS. So, it could increase the risk of
random organ injury (155). In diabetic patients, the plasma
levels of homocysteine are elevated, which is mainly due to
its impaired clearance rate (156). This will induce neutrophils
to constitutively release neutrophil extracellular traps (NETs)
that can cause vascular damage and delays in wound healing
(157, 158). It has been shown that the circulating level of
hydrogen sulfide (H2S) is significantly reduced in fasting blood
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of patients with T2DM compared with healthy individuals as
well as in streptozotocin-induced diabetic rats compared with
controls (159). H2S is produced from cysteine by the action
of several enzymes. It acts as a regulator of cell signaling and
homeostasis (160).

It is essential to maintain balanced levels of antioxidants and
protect tissues from oxidative stress (160). The use of H2S or
the endogenous L-cysteine in vitro blocks the production of IL-8
and monocyte chemoattractant protein-1 (MCP-1) in the human
U937 monocyte cell line incubated in high-glucose medium
(159). Yang et al. have shown that H2S treatment decreases
NETosis and enhances the healing process of diabetic wounds by
preventing ROS-dependent ERK1/2 and p38 activation (161). It
has been shown that the levels of NET components, including
histones, elastase and proteinase-3, are elevated in the sera from
patients with diabetic foot ulcers (162). Wang et al. have recently
indicated that HG dramatically enhances NADPH oxidase-
dependent NET generation in diabetic rats and humans. It was
proposed that this could have a role in the induction of diabetic
retinopathy (163). Indeed, patients with T2DM have elevated
plasma levels of MGO, which can induce the production of pro-
inflammatory cytokines like TNF-α, IL-6, and IL-8 by neutrophils
and make them more susceptible to apoptosis (99).

Myeloperoxidase (MPO), which is abundantly produced
by neutrophils, but only to a small extent by monocytes
and macrophages, might be useful as an early biomarker of
inflammation in diabetic individuals (164). Binding of MPO
to endothelial cells increases its half-life. Thereby, more pro-
inflammatory oxidant hypochloric acid (HClO) is generated
that extends the damage to blood vessels (165). In T2DM
patients, neutrophil activities, including migration, phagocytosis
and microbial killing are impaired. This makes diabetic
individuals more susceptible to infections (166). It has been well-
documented that neutrophils isolated in animal models of T2DM
have an impaired TLR4 signaling pathway. This is reflected as
a diminished cytokine and chemokine production, possibly as
a consequence of reduced phosphorylation of NFκB and IκBα

(167). The half-life of these neutrophils as well as their in vivo
migration and myeloperoxidase activity are decreased.

During hyperglycemia, neutrophils produce calprotectin
(S100A8/A9), which interacts with the receptor for advanced
glycation end products (RAGE) on the surface of hepatic
Kupffer cells and promotes the synthesis of IL-6 (168).
Subsequently, IL-6 stimulates hepatocytes to increase the
generation of thrombopoietin that in turn attaches to its
receptor on the surfaces of bone marrow precursor cells
and megakaryocytes to enhance their proliferation and
expansion. This results in reticulated thrombocytosis, which
means elevated megakaryocyte activity and thrombopoiesis.
Interestingly, diabetes-related thrombocytosis and subsequent
atherothrombosis can be reduced by lowering blood glucose,
depleting Kupffer cells or neutrophils or by preventing the
binding of S100A8/A9 to RAGE using paquinimod (168).

Thom et al. have shown that the incubation of human
and murine neutrophils with HG medium would cause their
cytoskeletal and membrane instability. This will induce the
generation of 0.1 to 1µm diameter microparticles and activate

the NLRP3 inflammasome (169). Microparticles, which are
potently pro-inflammatory, are found in the circulation of
healthy individuals, but their generation is increased during
cell activation in several diseases, including T2DM and
cardiovascular diseases (170, 171). Furthermore, serum levels
of soluble FasL (sFasL) are increased in patients with T2DM
thereby activating neutrophils and aggravating the inflammatory
milieu (172, 173). The proinflammatory roles of sFasL are
mediated through increased amounts or activity of NFκB,
IL-1β, caspase-1, CD11b/CD18, and ROS (173). Caspase-1
activation prevents the sFasL-dependent apoptosis of neutrophils
and inhibits their expression of Fas and caspase-3 (173).
Accordingly, hyperglycemia disturbs the normal functions of
neutrophils and increases the susceptibility to infections by
pathogenic microorganisms.

NK Cells
NK cells are innate lymphocytes that detect and directly kill virus-
infected cells and tumor cells. They do not have similar specific
receptors (TCR) for the recognition of distinct peptides as T cells
do. Piatkiewicz et al. have observed that the numbers of NK
cells in T2DM are increased, but most of them are dysfunctional.
Diabetic NK cells express elevated levels of glucose transporter
type 4 (GLUT4), which may render diabetic individuals more
prone to colon cancer (174, 175). Berrou et al. showed that NK
cells from T2DM patients express significantly decreased levels
of activating receptors NKG2D and NKp46 and have a reduced
degranulation capacity (176). Peraldi et al. indicated that the
main cause of such changes is neutrophil-derived ROS (177).
The expression level of NKG2D is negatively correlated with
HbA1c levels implying that chronic hyperglycemia would cause
NK cell dysfunction (176). Also, hyperglycemia increases the
expression of unfolded protein response (UPR) genes in NK cells
and induces their apoptosis (176).

NKT Cells
NKT cells express simultaneously markers of both T cells
(TCR and CD3) and NK cells [CD16, CD56, CD314 (NKG2D),
and CD337 (NKp30)]. NKT cell subsets produce a broad
range of cytokines, including GM-CSF, IFN-γ, TNF-α, IL-
2, IL-4, IL-5, IL-9, IL-10, IL-13, IL-17, and IL-21 (178).
They recognize lipids and glycolipids presented by CD1d
molecules. Phoksawat et al. have shown that the frequency
of CD3+CD4+CD28nullCD56+NKG2Dhi NKT cells, which
produce high levels of IL-17, are increased in diabetic patients
and their numbers are directly correlated with HbA1c levels
(179, 180). Lv et al. have recently shown that the numbers of
CD3+CD56+ NKT cells are higher in diabetic patients compared
to healthy individuals (181). They further showed that such cells
are mostly CD4+, produce elevated levels of IFN-γ and IL-4
and express high levels of NKp30, NKG2D, and NKp44 but
low levels of inhibitory receptors NKG2A and 158b (181). The
co-culture of these cells with HUVECs significantly decreased
their proliferation and migration abilities that were mainly IL-4-
dependent (181). Taken together these studies show that diabetic
individuals appear to have elevated levels of inflammation-
promoting NKT cells.
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Innate Lymphoid Cells (ILCs)
ILCs are critical effectors of innate immunity that produce both
regulatory and pro-inflammatory cytokines to promote tissue
repair, immunity, and inflammation (182). Mature ILCs lack the
TCRs. Based on their cell surfacemarkers, cytokine production as
well as expression of transcription factors the ILCs are classified
into types 1, 2, and 3 (183). These correspond to the different
types of CD4+ T helper cells: Th1, Th2, and Th17, respectively.
IFN-γ is the cytokine signature of ILC1s, while type 2 cytokines
(e.g., IL-5 and IL-13) are mainly produced by ILC2s and the main
product of ILC3s are IL-17 and IL-22. Regarding transcription
factors, T-bet is mainly expressed by ILC1s, GATA3 and RORα

are mostly expressed by ILC2s and RORγt is predominantly
expressed by ILC3 (183).

In T2DM, the numbers of circulating as well as adipose
tissue-resident ILC1s are increased compared with normal
individuals (184, 185). The frequency of circulating ILC1s is
positively correlated with fasting plasma glucose (FPG), HbA1c,
homeostasis model assessment for insulin resistance (HOMA-
IR), serum-free fatty acids (FFAs) and adipose tissue insulin
resistance index (Adipo-IR) (184, 185). It has also been shown
that patients with increased numbers of ILC1 have an elevated
risk of developing T2DM (184). A study by Wang et al. indicated
that adipose tissue-resident ILC1s, via the production of IFN-γ,
promote tissue fibrosis and induce diabetes in obese individuals
(185). Liu et al. have demonstrated that the numbers of ILC2s
as well as serum cytokine levels of IL-4, IL-5, and IL-13 are
significantly elevated in diabetic kidney disease patients and
have a positive correlation with disease severity (186). They
further demonstrated that ILC2s, through the TGF-β1 signaling
pathway, are involved in renal fibrosis seen in diabetic kidney
disease (184). However, Galle-Treger et al. indicated that the
engagement of the glucocorticoid-induced tumor necrosis factor
receptor (GITR/or TNFRSF18) on the surface of activated
ILC2s promotes their secretion of IL-5 and IL-13, ameliorates
glucose homeostasis, protects against the onset of and improves
established insulin resistance (187). The protective role of ILC2s
during acute metabolic stress has also been well-documented by
Dalmas et al. (188).

Impairment of Adaptive Immunity in T2DM
Humoral Immunity (B Cells)
Elevated levels of blood glucose generate covalent sugar adducts
with several proteins through non-enzymatic glycation. This can
impair humoral immunity in many ways, e.g., by modifying the
structure and functions of immunoglobulins (Igs) (189–194).
Such modifications in the structure of Igs can be determined
using matrix-assisted laser desorption ionization (MALDI) mass
spectrometry (119, 191). The molecular mass of Igs in diabetic
patients is higher than in normal subjects (189). This can lead to
reduced efficiency of vaccines that stimulate humoral immunity
in these patients. It has been shown that immunization with
influenza (flu) vaccines in diabetic patients induces normal
or even elevated levels of flu-specific antibodies compared
with normal individuals (195–198). However, the ability of
the dysfunctional glycated antibodies to neutralize viruses is
impaired, which will increase the susceptibility to infections.

Farnsworth et al. have shown that in T2DM, class switch defects
in the assembly of antibody genes are also present (199).

In a model system, mice with T2DM have decreased amounts
of specific anti-Staphylococcus aureus antibodies (total as well
as IgG), which will increase the risk of infection and morbidity
of diabetic mice. However, the levels of IgM were elevated, but
inefficient in protecting against infection, possibly because of
their inability to directly promote phagocytosis. In another study,
Farnsworth et al. have demonstrated that defects in humoral
immunity, as shown by decreased levels of total IgG and anti-
Staphylococcus aureus antibody, aggravate foot infections in a
murine model of T2DM (200). This was due to a reduced
germinal center induction and decreased numbers of T and B-
lymphocytes within the germinal centers. This causes failures
in antibody generation and class-switch recombination (200).
Mathews et al. have shown that the protective levels of antibodies
against Streptococcus pneumoniae surface protein A are lower
in diabetic patients compared to non-diabetic individuals. These
antibodies also have a reduced potential to trigger complement
activation on the surface of pneumococci, whereby phagocytosis
of the bacteria becomes compromised (201). They showed that
hyperglycemia reduces both the antibody titers as well as the
ability to deposit complement on the bacteria. The above-
mentioned changes in the ability to protect against S. aureus and
S. pneumoniae are important, because these bacteria belong to the
most common infection-causing pathogens in diabetic patients.
Another major group is constituted by Gram-negative bacteria
that commonly cause e.g., urinary tract infections.

Cellular Immunity (T-Cells)
Many studies have shown that T-cell functions are impaired in
individuals with T2DM (202–205). Elevated levels of activated
CD4+CD278+ T helper cells, cytotoxic T-cells, and Th17 cells
have been observed in obese diabetic patients compared to non-
obese ones (205, 206). Nevertheless, PBMCs isolated from obese
diabetic patients produced smaller amounts of IL-2, IL-6, and
TNF-α after stimulation with phytohemagglutinin (PHA) (205).
Martinez et al. indicated that diabetic patients have reduced
pathogen-specific memory Th17 responses as well as decreased
numbers of CD4+ T cells in response to stimulation with
Streptococcus pneumoniae (206). Th17 cells are critical for the
recruitment of neutrophils to the infection site and improve the
phagocytosis of invading bacteria and yeast (207).

Moura et al. have shown that diabetic patients, particularly
those with foot ulcers, have reduced levels of naive T-cells, but an
elevated number of effector T cells and a reduction in the TCR-
Vβ repertoire diversity (204). The observed changes are mainly
due to an abnormal amount of inflammatory cytokines (e.g.,
IFN-γ and TNF-α) produced during infection and to subsequent
robust stimulation of T-cells. Leung et al. have reported that
ischemic tissues of T2DM patients contain elevated numbers of
TNF-α and IFN-γ producing Th1 cells but diminished numbers
of regulatory T cells (Tregs), which suppress angiogenesis and
decrease vascular density (208).

The high rate of infectious diseases in T2DM patients might
also be linked to a reduction in the mitochondrial DNA
function that causes downstream lymphocyte dysfunction and
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subsequently increased susceptibility to infection (209–212). In
support, we have recently shown that the numbers of IFN-γ
producing cells against cytomegalovirus (CMV), Epstein-Barr
virus (EBV), and influenza virus are fewer in T2DM patients
compared to normal controls (202). Kumar et al. have also
investigated the functions of CD8+ T cells and NK cells in the
whole blood of T2DM patients infected with Mycobacterium
tuberculosis (M.tb). Compared to controls, the patients exhibited
a reduction in cytokine production (IFN-γ, IL-2, IL-17A/F,
and TNF-α) and decreased expression of cytotoxic molecules
(perforin, granzyme B, and CD107a) (203, 213). These studies
conclude that the functions of both CD4+ and CD8+ T-cell are
defective in T2DM patients.

EFFECTS OF T2DM ON THE
SUSCEPTIBILITY OF PATIENTS TO
INFECTIONS

T2DM is usually associated with an elevated risk of asymptomatic
bacteriuria, urinary tract infections (UTIs), pyelonephritis and
non-sexually transmitted genital infections, such as balanitis and
vulvovaginal infections (213–215). The incidence of infections
with a complicated course is significantly higher in diabetic
patients compared to healthy controls (Table 3). It seems that it
is principally defects in the innate immune responses of diabetic
individuals that are responsible for the increased susceptibility
and prevalence of infections (4, 225).

Bacteria
Thimmappaiah et al. have shown that the cutaneous microbiome
is altered among patients with T2DM. Especially dominant is
Staphylococcus epidermidis, which increases the susceptibility of
patients to skin and soft tissue infections (226). Javid et al. have
shown that hyperglycemia in diabetic mice makes them more

TABLE 3 | Dysfunctional immune system in T2DM patients promotes the

pathogenesis of infections.

Infectious agent References

Dysfunctional innate immunity

Complement system Candida spp (albicans, tropicalis,

lusitaniae, lipolytica, krusei),

Streptococcus pneumoniae,

Borrelia burgdorferi, and

Escherichia coli

(130–132, 216)

NK cells Mycobacterium tuberculosis (203, 213)

Neutrophil Staphylococcus aureus,

Klebsiella pneumoniae, and

Burkholderia pseudomallei

(217–221)

Macrophage Mycobacterium tuberculosis (222, 223)

ILC3 Mycobacterium tuberculosis (224)

Dysfunctional adaptive immunity

B cell (humoral

immunity)

Staphylococcus aureus,

Streptococcus pneumoniae

(199, 201)

CD8+Tcells Mycobacterium tuberculosis (203, 213)

susceptible to the causative pathogen of Lyme disease, Borrelia
burgdorferi (216). The disease is mainly due to the ability of the
bacteria to escape complement opsonization and attack, which
leads to an impaired uptake and killing of bacteria by neutrophils
(227). Neutrophil dysfunction also increases the susceptibility
of diabetic animals to Staphylococcus aureus (217), Klebsiella
pneumoniae (218), and Burkholderia pseudomallei (219, 220).
Of note, Garnett et al. showed that the treatment of diabetic
patients with metformin would reduce hyperglycemia-induced
growth of S. aureus (228). Hodgson et al. have demonstrated
in a mouse model of T2DM that 24 h after a subcutaneous
injection of B. pseudomallei the expression of IFN-γ, TNF-
α, IL-1β, IL-6, and IL-12 cytokines were decreased compared
to non-diabetic controls (229). They further demonstrated an
excessive polymorphonuclear cell (PMN) infiltration at the site
of bacterial injection, unlimited bacterial growth in the spleen
and dissemination of bacteria to the lungs of diabetic mice
(229). The critical role of neutrophils in resistance against B.
pseudomallei has been well-documented by Easton et al. (221).
However, Buddhisa et al. have demonstrated that in patients with
T2DM the expression of programmed cell death ligand 1 (PD-
L1) on the surface of B. pseudomallei infected neutrophils is
increased thus impairing T cell function (230). Kronsteiner et al.,
have demonstrated that CD3+CD4−CD8− double-negative T
cells and antibodies are important for the survival of diabetic
melioidosis patients, while the survival of non-diabetics relies on
CD8+ T cells and NK cells (231). They also indicated that IFN-γ
release from γδ T-cells have an important role in the induction of
protective immune responses in diabetic patients.

Deletion of the receptor of AGEs, which is upregulated
by elevated levels of AGEs in diabetic hosts, protects diabetic
mice from infection with Gram-negative bacteria such as
Acinetobacter baumannii (232). Asante-Poku et al. have recently
demonstrated that T2DM patients, who have active tuberculosis
(either caused by Mycobacterium tuberculosis or M. africanum),
are significantly more resistant to therapy compared to patients
without diabetes (233). During the progression of T2DM in
human subjects, the basal phenotype of macrophages is altered
so their capacity to control Mycobacterium tuberculosis is
diminished (222). Martinez et al. have indicated that alveolar
macrophages isolated from diabetic mice express decreased levels
of macrophage receptor with collagenous structure (MARCO)
and CD14 that are engaged in the recognition of trehalose
6,6’-dimycolate, a bacterial cell wall component (223). Diabetes
increases the severity of tuberculosis (TB) and enhances the risk
of progression to the active form in latent infections (234, 235).
Diabetic TB patients have elevated frequencies of Th1 and Th17
cells as well as increased serum levels of inflammatory cytokines,
including IFN-γ, TNF-α, IL-1β, IL-2, IL-6, IL-17A, and IL-18 but
decreased levels of IL-22 compared to non-diabetic TB patients.
This can contribute to dysfunctional immune responses and poor
immune control of a TB infection (236). A positive correlation
between the serum levels of IFN-γ, TNF-α, IL-2, and IL-17A with
Hb-A1c levels was also observed. This indicates an association
between impaired control of diabetes and the proinflammatory
milieu. Tripathi et al. have demonstrated that serum levels of IL-
22 were significantly decreased in TB-infected T2DM mice and
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humans compared to non-diabetic TB-infectedmice and humans
(224). They revealed that the treatment of TB-infected diabetic
mice with recombinant IL-22 or ILC3s (cellular source of IL-22)
increased the survival of mice, prevented the accumulation of
neutrophils near alveoli, diminished the generation of neutrophil
elastase 2 (ELA2) and prevented epithelial cell damage (224).

Tan et al. have shown that B. pseudomallei andM. tuberculosis-
infected PBMCs of diabetic patients fail to produce IL-12. This
leads to a decreased IFN-γ production, poor bacterial killing
and elevated intracellular bacterial loads (237). An impaired
IL-12 production is mainly due to decreased intracellular
glutathione (GSH) concentrations within the infected cells
of diabetic individuals (237). Such a combination of an
inflammatory microenvironment and dysfunctional immune
responses enhances the bacterial load and can subsequently
amplify lung injury and fibrosis in diabetic TB patients. Chellan
et al. have further shown that infections caused by Enterococcus
faecalis, Staphylococcus aureus, and Pseudomonas aeruginosa are
more prevalent in the wounds of diabetic patients (238). T2DM
patients are more susceptible to UTIs caused by antibiotic-
resistant Escherichia coli, Proteus spp., Klebsiella spp., coagulase-
negative staphylococci, Enterobacter spp., and enterococci (215,
239). Diabetic patients are also more susceptible to Helicobacter
pylori (H. pylori) infections (240).

Viruses
Cui et al. have recently reported that T2DM patients have
an increased risk of infection with Kaposi’s sarcoma-associated
herpesvirus (KSHV or HHV-8) (241). They further showed that
the viral load and antibody titers are positively correlated with
blood glucose levels (241). Diabetic patients also have been
shown to have an increased risk of infection with the severe
acute respiratory syndrome coronavirus (SARS-CoV) (242),
Middle East respiratory syndrome coronavirus (MERS-CoV)
(243), SARS coronavirus 2 (SARS-CoV-2) (21, 22), hepatitis
C virus (HCV) (244–246), and West Nile virus encephalitis
(WNVE) (247).

Regarding hepatitis infection, Juttada et al. have recently
demonstrated that Indian patients with T2DM have a greater
prevalence of HBV infection (9.3%) compared to HCV (2.8%)
(248). The influenza virus that usually causes self-limiting
infections can induce severe forms of the disease in diabetic
patients (249, 250). Following the 2009 H1N1 influenza
pandemic, diabetic individuals suffered from more severe
infections compared to non-diabetic people (251, 252). Diabetic
patients have also a higher prevalence of chronic cytomegalovirus
(CMV), Herpes simplex virus (especially HSV-1), and varicella-
zoster virus infections (253–255). Accordingly, it seems that the
immune response against viruses is impaired in diabetics, and
these patients need more care during viral infections.

Coronaviruses (CoV)
Coronavirus virions are enveloped positive-strand RNA spherical
viruses with a diameter of ∼125 nm characterized by spike
proteins projecting from their surface and with an unusual large
RNA genome (256). The spike (S) protein of the virus binds to its
receptor on the surface of cells by which intracellular proteases

are induced (257–259). Subsequently, the S protein priming and
cleavage occurs that allow viral fusion to the plasma membrane
and entrance of viral genome into the cells (259). SARS-CoV
and SARS-CoV-2 use angiotensin-converting enzyme 2 (ACE2)
as their receptor while MERS-CoV uses dipeptidyl peptidase-4
(DPP4) to enter the cells (260, 261). ACE2 is strongly expressed
in blood vessels, pancreas, intestine, brain, lungs, heart, and
testis (262).

Interestingly, nasal epithelial cells, especially goblet, and
ciliated cells express the highest levels of ACE2 and the
intracellular protease transmembrane serine protease 2
(TMPRSS2) that facilitates the entrance of the SARS-COV-
2 (263). Furthermore, the expression of ACE2 is significantly
up-regulated in diabetic patients and those treated with ACE
inhibitors (264). Coronaviruses cause respiratory, enteric and
central nervous system (CNS) diseases in various animal species
except rats and mice (264). Most coronavirus infections are mild,
but major outbreaks of deadly pneumonia have been caused by
SARS-CoV, MERS-CoV, and SARS-CoV-2 in 2002, 2014, and
2019-2020, respectively (265).

On March 11, 2020, The World Health Organization
(WHO) announced the pandemic of SARS-CoV-2, the etiologic
agent of coronavirus disease-19 (COVID-19) (265). The novel
coronavirus pandemic, which has emanated from Wuhan,
China, promotes symptoms similar to those caused by the
SARS-CoV outbreak in 2002. The viral pandemic, which has
put the world on alert, has caused over 7.9 × 106 confirmed
human cases and at least 43 × 104 deaths throughout the
world (https://www.worldometers.info/coronavirus/) by June
14, 2020. Most of the infected people experience only mild
to moderate respiratory disease and recover soon without
the need for special treatment. However, aged individuals
and those with health problems, including diabetes, obesity,
cardiovascular disease (CVD), hypertension, immune deficiency,
and chronic respiratory disease are more likely to develop serious
illness (https://www.who.int/health-topics/coronavirus#tab=
tab_1). Patients death is mainly due to the acute respiratory
distress syndrome, disseminated intravascular coagulation,
hemorrhage, coagulopathy, acute organ (e.g., kidney, heart,
liver) injury, multi-organ failure, and secondary bacterial
infections (266). Elevated levels of adipose-tissue derived
adipokines, interferon, and TNF-α in diabetic patients may
impair immune-responses against SARS-COV-2 (267, 268). It
has been shown that diabetic patients have impaired clearance
of SARS-CoV-2 from their circulation (269). Accordingly,
diabetic patients due to the diminished viral clearance, impaired
T cell function, and accompanied cardiovascular disease are
more susceptible to the coronaviruses infection and subsequent
cytokine release syndrome (CRS) (270, 271). In support,
elevated levels of IL-1β, IL-2, IL-6, IL-7, IL-8, IL-10, IFN-γ,
interferon gamma-induced protein 10 (IP-10), granulocyte
colony-stimulating factor (G-CSF), macrophage inflammatory
protein 1α (MIP1α), serum ferritin, fibrinogen, plasminogen,
C-reactive protein (CRP), and D-dimer have been observed
in patients with COVID-19 (266, 269, 272, 273). COVID-19
patients, especially those requiring intensive care unit (ICU)
have decreased total lymphocytes (lymphopenia), T cells (both
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CD4+ and CD8+), B cells, and NK cells (274, 275). It should
be noted that most of the surviving T cells in such patients
have an exhausted phenotype (274). Consequently, disease
severity is mainly because of the host immune response to
viral infection.

Current evidence about the relationship between
pathophysiological mechanisms of diabetes and COVID-19
are limited and further research is still needed.

Parasites
Patients with T2DM have an elevated risk of infection
with Plasmodium falciparum (276), Toxoplasma gondii (277),
Opisthorchis viverrini (278), Strongyloides stercoralis (279),
Cryptosporidium parvum (280), Blastocystis hominis (281),
Ascaris lumbricoides (280, 282, 283), and Giardia lamblia (283).
Interestingly, diabetic patients who were treated with metformin
had less P. falciparum infections compared to untreated patients
(276). Omaña-Molina et al. have shown that in a mouse
model of T2DM the animals have an increased susceptibility
to granulomatous amoebic encephalitis (GAE) caused by
trophozoites of Acanthamoeba culbertsoni (284). The possible
reasons for the increased risk of diabetics for parasitic infections
are metabolic abnormalities and immune dysregulation.

Fungi
Chellan et al. have shown a higher prevalence of fungal
infections in the wounds of diabetic patients (238). The
prevalence correlated with the levels of HbA1c. The most widely
observed fungal isolates were C. albicans, Candida parapsilosis,
C. tropicalis, Trichosporon asahii, and Aspergillus species. Some
of them were resistant to antifungal medications (238). Al
Mubarak et al. have also demonstrated that diabetic patients with
periodontitis are more susceptible to infection with C. albicans,

C. dubliniensis, C. tropicalis, and C. glabrata (285). The incidence

of candidiasis was significantly increased in patients over the age
of 40 with HbA1c > 9 (285). It has also been shown that diabetic
patients are more susceptible to UTIs caused by C. albicans (239).

CONCLUSION

Hyperglycemia impairs the normal functions of the circulatory
system, gastrointestinal tract, pancreatic beta cells, liver as
well as of skeletal muscles to boost systemic insulin resistance.
A hyperglycemic environment also leads to immune cells
dysfunction. It increases intestinal permeability, which
subsequently enhances the risk of infections in T2DM patients.
Accordingly, further research is still needed to find missing links
between impaired physiological/immunological mechanisms
and increased susceptibility to infections in T2DM patients.
The information would be important for better therapy and
the design of much more effective vaccination strategies in
diabetic patients.
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