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Suppression of antitumor immune responses is one of the main mechanisms by which

tumor cells escape from destruction by the immune system. Myeloid-derived suppressor

cells (MDSCs) represent the main immunosuppressive cells present in the tumor

microenvironment (TME) that sustain cancer progression. MDSCs are a heterogeneous

group of immature myeloid cells with a potent activity against T-cell. Studies in mice have

demonstrated that MDSCs accumulate in several types of cancer where they promote

invasion, angiogenesis, and metastasis formation and inhibit antitumor immunity. In

addition, different clinical studies have shown that MDSCs levels in the peripheral blood of

cancer patients correlates with tumor burden, stage and with poor prognosis in multiple

malignancies. Thus, MDSCs are the major obstacle to many cancer immunotherapies

and their targeting may be a beneficial strategy for improvement the efficiency of

immunotherapeutic interventions. However, the great heterogeneity of these cells makes

their identification in human cancer very challenging. Since both the phenotype and

mechanisms of action of MDSCs appear to be tumor-dependent, it is important to

accurately characterized the precise MDSC subsets that have clinical relevance in each

tumor environment to more efficiently target them. In this review we summarize the

phenotype and the suppressive mechanisms of MDSCs populations expanded within

different tumor contexts. Further, we discuss about their clinical relevance for cancer

diagnosis and therapy.

Keywords: immune evasion, melanoma, breast cancer, hepatocellular cacinoma, non-small cell lung cancer

(NSCLC), myeloid derived suppressor cell (MDSC), prostate cancer, colorectal cancer

INTRODUCTION

Cancer immune surveillance is an important process by which the immune system can
eliminate nascent tumor cells and to control tumor evolution. Eventually, due to the genetic
instability, new tumor cell variants can become resistant to immune effector cells by decreasing
their immunogenicity and/or secreting and recruiting immunosuppressive factors in the tumor
microenvironment (TME). During this phase of equilibrium, if the immune system is unable
to eliminate these clonal variants, then tumors evolve mechanisms to escape from the immune
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attack allowing malignant progression (1, 2). These mechanisms
are diverse but primarily induce attenuation of anti-tumor
CD8+ T lymphocyte. Immunosuppressive myeloid cells,
including myeloid-derived suppressor cells (MDSCs) are key
mediators in assisting tumors to escape immune surveillance,
contributing to tumor development and progression. MDSCs
are a heterogeneous group of immature myeloid cells (IMCs)
with strong immunosuppressive patterns and functions. Under
normal condition, IMCs quickly differentiate into mature
granulocytes, macrophages, or dendritic cells (DCs) which play
essential roles in host defense against pathogens. However,
in a variety of pathologic conditions such as inflammation,
cancer and infection IMCs fail their normal differentiation and
acquire the features of immature and dysfunctional myeloid
population, which include MDSCs (2). Recently, it has been
introduced the hypothesis that MDSCs could also be derived
from mature myeloid cells such as monocytes and neutrophils
in cancer settings (3, 4). In particular, it has been demonstrated
that CD14+ cells exposed to extracellular vesicles (EVs)
(containing proteins, lipids, and genetic material) isolated from
melanoma cells, show a suppressive activity on T cells thus
referred as EV-MDSCs. Similarly, it has been reported that the
treatment of healthy donor-derived monocytes with chronic
lymphocytic leukemia (CLL) cells-derived exosomes induced
MDSCs functional characteristics on monocytes mainly driven
by miRNA-155 (5). Thus, deregulated myelopoiesis is a common
occurrence in cancer and it is accompanied by a reciprocal
decline in the quantity/quality of the lymphoid response (6).
Myelopoiesis is a tightly controlled process. Certain transcription
factors, such as CCAAT/enhancer binding protein-α (C/EBPα),
and interferon regulatory factor-8 (IRF-8), are instrumental for
normal myeloid cell development, differentiation and function
and they can be targets of tumor-derived factors (TDFs). Thus,
such TDFs may impair their expression, which ultimately affect
the fate of the resulting myeloid response. Indeed, interventions
that target atypical myelopoiesis by enhancing IRF-8 expression
demonstrated to abrogate MDSC-mediated immunosuppression
and to promote MDSCs differentiation in effector myeloid
cells including DCs and mature neutrophils with anti-tumor
activity (7–9). About 10 years ago, two major subsets of
MDSCs have been identified based on their phenotypic and
morphological features: monocytic-MDSCs (M-MDSCs) and
granulocytic-MDSCs (G-MDSCs). G-MDSCs are phenotypically
and morphologically similar to neutrophils, whereas M-MDSCs
are similar to monocytes (10). In tumor-bearing mice these cells
are characterized by the expression of CD11b and Gr-1 surface
markers. The granulocyte marker Gr-1 includes the isoforms
Ly6C and Ly6G, and these subsets can be more accurately
identified based on their expression as CD11b+Ly6ChiLy6G−

(M-MDSCs) and as CD11b+Ly6CloLy6G+ (G-MDSC) (11).
However, several other cell surface markers are introduced such
as F4/80, CD124 (IL-4Rα), CD115 (M-CSF-1R), and CD80
(B7.1), which are used for identification of MDSCs subsets and
to distinguish MDSCs from neutrophils and monocytes (2, 12).
In cancer, the frequency of G-MDSCs in the peripheral lymphoid
organs is higher than M-MDSCs. In contrast, MDSCs in tumor
sites are mainly M-MDSCs (13, 14). MDSCs are generated

in the bone marrow from myeloid progenitor cells and then
traffic through the circulatory system into solid tumors. The
accumulation of MDSCs in TME mainly depends on two groups
of signals. The first group include factors that are mainly secreted
by tumor cells, such as stem cell factor (SCF), granulocyte-
macrophage colony stimulating factor (GM-CSF), granulocyte
colony stimulating factor (G-CSF), vascular endothelial growth
factor (VEGF), macrophage colony-stimulating factor (M-CSF).
These factors stimulate myelopoiesis and promote the expansion
of MDSCs in lymphoid organs and TME by activating the Janus
kinase (JAK)-signal transducer and activator of transcription
(STAT) signaling pathways. In particular, the transcriptional
factors/regulators STAT3, STAT5, IRF8, C/EBPβ, NOTCH play
a major role in this process. The second kind of signals includes
inflammatory cytokines and chemokines, produced mostly by
the tumor stroma, such as IFN-γ, IL-4, IL-6, IL-1β, and CXCL1,
which are responsible of inducing the suppressive activity of
MDSCs via NF-κB, STAT1, and STAT6 (10, 15). Studies focusing
on the role of MDSCs in cancer progression showed that the
main activity of these cells is to suppress immunity by perturbing
both innate and adaptive immune responses. In tumors, MDSCs
have been demonstrated to inhibit cytotoxic T cells proliferation
and activation leading to the failure of the anti-tumor immune
response, promotion of cancer progression and chemoresistance
(16). The main mechanisms implicated in MDSCs-mediated
immune suppression include: (i) deprivation of T cells from
essential amino acids; (ii) decreased expression of l-selectin
by T cells; (iii) induction of oxidative stress; (iv) induction
of immunosuppressive cells like regulatory T (T-regs) and T
helper (Th) 17 cells (16, 17). Although the role of MDSCs as
potent inducers of T-regs has been widely described in different
types of cancer, recent findings also demonstrate that T-regs
control MDSCs differentiation and function through different
molecules such as transforming growth factor (TGF)-β and the
programmed death ligand 1 (B7-H1) (18, 19). However, more
research is needed to better dissecting the cross-talk between
MDSCs and T-regs in the TME. In addition to suppression
of immune surveillance, MDSCs can also directly promote
tumor progression and metastasis through non-immunological
functions by affecting the remodeling of the TME and tumor
angiogenesis via production of VEGF, bFGF, Bv8, and matrix
metalloproteinase (MMP)-9 (20). The main factors implicated
in MDSC-mediated immune suppression include arginase
1 (ARG1), inducible nitric oxide synthase (iNOS), TGF-β,
IL-10, cyclooxigenase-2 (COX-2), indoleamine 2,3-dioxygenase
(IDO) and many others. M-MDSCs and G-MDSCs can utilize
different mechanisms to suppress immune response. M-MDSCs
express high levels of ARG1 and of iNOS, thus, they suppress
T-cell responses, both in antigen-specific and non-specific
manners, trough high production of nitric oxide (NO) in the
TME. On the other hand, G-MDSCs are capable of suppressing
immune responses primarily in an antigen-specific manner and
they act mostly through production of high levels of reactive
oxygen species (ROS) (14, 21). Several evidences suggest that
on a per cell basis M-MDSC are more potent than G-MDSC
(13). In contrast to murine models, the phenotype of MDSCs
in humans is not as well-defined. Tipically, human tumor
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infiltrating MDSCs express the markers CD33 common to cells
of myeloid lineage, but lack the expression of the maturation
myeloid marker HLA-DR. Analogously to the murine MDSCs,
human MDSCs are broadly classified into two different subsets,
monocytic and granulocytic, based on the expression of
the monocyte differentiation antigen CD14 and the mature
monocyte marker CD15. Thus, human M-MDSCs are mostly
CD33+CD11b+CD14+HLA-DR−/low whereas human G-
MDSCs are CD33+CD11b+HLA-DR−/lowCD14−CD15+.
However, the gating strategies used to identify MDSCs
populations can vary among researcher. G-MDSCs and
neutrophils share similar phenotype; however, they have
different density. Recently, identified lectin-type oxidized
LDL receptor 1 (LOX-1) allows for better distinction between
human neutrophils and G-MDSC. Immune suppressive LOX-1+

cells represent 4–15% of all neutrophils in blood of cancer
patients and up to 40% in tumor tissues, whereas in healthy
individuals, these cells represent <1% (22). Conversely, human
M-MDSC can be easily separated from monocytes based on the
expression of MHC class II molecules which is expressed only
on monocytes (HLA-DR+) (23). In addition to the granulocytic
and monocytic subtypes, a third small population of putative
MDSCs that includes cells with colony-forming activity and
promyelocytic appearance was described in humans. These
cells, termed immature or early-stage MDSCs (e-MDSCs), have
the phenotype CD33+CD11b+HLA-DR−CD14−CD15− cells
(11, 24). HumanM-MDSCs and G-MDSCs, like murine MDSCs,
have been shown to exhibit distinct functional attributes. In
particular, G-MDSCs primarily use ROS as the mechanism of
immune suppression whereas M-MDSCs show up-regulation
of iNOS, ARG1, and an array of immunosuppressive cytokines
(17). In recent years, the clinical role of MDSCs has emerged.
Numerous studies have reported the expansion of MDSCs in
various human cancers including breast, colon, lung, pancreatic,
renal, esophageal, and melanomas (24–26). Moreover, the
frequency of MDSCs have also been negatively correlated with
the response to immunotherapy (27). Therefore, targeting
MDSCs in cancer patients may be a viable therapeutic
approach to reverse immune escape and to maximize immune
based treatments.

However, an important issue in this viewpoint is the great
heterogeneity of these cells, which make the identification
and isolation of human MDSCs subsets very challenging.
Several data found a significant diversity in the MDSCs
subsets in different human cancers. Moreover, the frequency
and the mechanisms of action of each MDSCs subset seems
to be influenced by the cancer type (26). Thus, the precise
identification of cell surface markers and the exact definition
of human MDSCs in different types of malignancies can
be useful to improve the efficacy of immunotherapeutic
interventions and cancer treatment. In this review, we
summarize the phenotype and the biological function of
MDSCs populations expanded within different tumor contexts
which have showed the strongest negative association with
MDSCs, as well as discuss their clinical relevance for cancer
diagnosis and therapy.

MAIN STRATEGIES TO THERAPEUTICALLY
TARGET MDSCs IN CANCER

Inhibition of MDSCs in cancer therapy has proven to be a
potentially promising and well-tolerated treatment. Increasing
numbers of pre-clinical studies and clinical trials have been
performed over the past years in order to evaluate the safety
and the efficacy of MDSCs inhibition, alone or in combination
with other therapy (radiotherapy, chemotherapy, surgery or
immunotherapy) in cancers. Currently, different therapeutic
strategies aimed at eliminating MDSCs and/or abrogating their
pro-tumor activities are being investigated. These approaches
include (1) depletion of MDSCs; (2) inhibition of MDSCs
recruitment to the tumor site; (3) inhibition of MDSC’s
suppressive activity; (4) promoting MDSCs differentiation
(Figure 1).

In mouse models, depletion of MDSCs has been generally
accomplished by the use of antibodies that target the surface
markers Gr-1 or Ly6G (28). More recently, novel approaches
have been developed to more preferentially target and deplete
MDSCs. For example, “peptibodies” consisting of S100A9-
derived peptides conjugated to antibody Fc fragments have
shown potential in eliminating MDSCs in mouse models without
targeting other proinflammatory immune cells (29). In addition,
induction of Fas-FasL mediated apoptosis of MDSCs have been
resulted effective in suppressing tumor growth and restoring
T cells immune response in different murine tumor models
(30–32). Similarly, targeting the TNF-related apoptosis-induced
ligand (TRAIL) receptor could be a potent and selective method
for MDSCs depletion (33). Some chemotherapeutics such as
gemcitabine, 5-fluorouracil, paclitaxel, and doxorubicin were
shown to selectively eliminate MDSCs in the spleen, blood, and
tumor beds in several mouse tumor models resulting in the
enhancement of the function of immune effector cells (34–38).
These findings reinforce the concept that depleting MDSCs has
great therapeutic promise. In cancer patients, “conventional”
therapies including surgical resection (39), radiotherapy (40)
or chemotherapy with gemcitabine or 5-fluorouracil, showed a
decrease of MDSCs leading to the immune recovery and tumor
regression (35, 36). However, MDSC numbers and/or function
have been assessed in few chemotherapy clinical trials and have
shown mixed results.

Intensive investigations have been performed to reduce
MDSCs trafficking to peripheral lymph nodes and tumor sites.
Chemokine receptors are a key driving force for the migration
of MDSCs and blocking the interactions with their ligands is
a rational approach to inhibit MDSCs accumulation in the
TME (41). In particular, therapeutic blockade of CCL2-CCR2
interaction by using CCL2 neutralizing antibodies or CCR2
antagonist has demonstrated promising antitumor efficacies in
several preclinical cancer models (42–44). However, in a phase
II clinical trial, was reported that carlumab (anti-CCL2 mAb)
in patients with metastatic castration-resistant prostate cancer,
induced a rapid rebound of the circulating concentration of
free CCL2 to value higher than the pretreatment serum levels
(45). The CCR5–CCL5 axis has also a critical role in tumor
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FIGURE 1 | Strategies for myeloid-derived suppressor cells (MDSC) targeting. The main approaches to target MDSCs include: (1) depleting MDSC populations; (2)

preventing MDSC recruitment and migration to the TME; (3) attenuating the immunosuppressive mechanisms of MDSCs by downregulating the expression of ARG1,

iNOS, COX-2 and reducing ROS generation; (4) promoting the differentiation of MDSCs into mature non-suppressive myeloid cells like macrophages and dendritic

cells. Examples for each therapeutic approach are shown.

progression since it supports tumor invasion and migration
of MDSCs to the tumor site (46). Indeed, by targeting the
CCR5-CCL5 interaction, tumor growth and invasiveness were
suppressed in colorectal, prostate, breast cancer and melanoma
(47–50). Another well-characterized target to reduce MDSCs
trafficking is the colony-stimulating factor 1 receptor (CSF1R)
whose expression is restricted to monocytes and macrophages.
Various inhibitors against CSF1R (such as IMC-CS4, GW2580,
PLX3397, AMG820, and emactuzumab) have shown promising
antitumor efficacies by inhibiting the survival of M-MDSCs and
tumor associated macrophages (TAMs) and are being tested
in combination with chemotherapy or immunotherapies in
cancer patients (51). The following MDSCs inhibitors have been
evaluated in clinical trials (52): Reparixin and AZD5069 (CXCR2
antagonists), respectively, in phase II for breast cancer and in
phase Ib/II for advanced solid tumors and metastatic squamous
cell carcinoma; Plexidartinib (CSF-1R inhibitor) in phase II for
recurrent glioblastoma; Maraviroc (CCR5 antagonist) in phase I
for metastatic colorectal cancer. The expansion and recruitment
of MDSCs to the tumor sites is also mediated by MMP9. It
has been shown that administration of amino-bisphosphonates
drugs can prevent MMPs from undergoing prenylation, a post-
translational modification that is essential for their function. As
a result of reduced MMP9 prenylation, cleavage of the tyrosine
kinase c-Kit is diminished, causing reduced mobilization of
MDSCs (53). Amino-bisphosphonates have shown a good safety
and tolerance and seem to exert therapeutic effects, making them

promising candidates to target MDSCs (54–56). The inhibition
of VEGF receptor signaling also leads to a reduction of MDSCs
infiltration (57). Indeed, the tyrosine kinase inhibitor (TKI)
sunitinib was reported to decrease the number of circulating
MDSCs in renal cell carcinoma patients via blockade of VEGF
and c-KIT signaling (58). Interestingly, sunitinib treatment
resulted also in a significant reduction of STAT3 activation and
ARG1 expression in M-MDSCs that was accompanied with an
elevated activity and proliferation of CD8+ T cells (59).

Blockade of MDSCs immunosuppressive mechanisms
represents the major therapeutic approach to re-establishing
T-cells activity and immunotherapy success. MDSCs can
be functionally inactivated by targeting their suppressive
machinery. For example, disruption of the COX-2/prostaglandin
E2 (PGE2) signaling has been successful in repressing MDSC-
associated suppressive factors such as ARG1 expression and
ROS production, and improving T-cells frequency and immune
response (60, 61). Phosphodiesterase-5 (PDE-5) inhibitors are
also able to inhibit MDSCs functions by the downregulation
of iNOS and ARG1 expression and activities. In preclinical
mouse models, administration of PDE-5 inhibitors, such as
sildenafil and tadalafil, has been demonstrated to reactivate
antitumor immunity through T-cells and natural killer (NK)
cells and to prolong survival of tumor-bearing mice (62–
64). Recent clinical trials with PDE-5 inhibitors have also
shown enhanced intra-tumor T-cells activity and improved
patients’ outcome in head and neck squamous cell carcinoma
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(HNSCC) and metastatic melanoma (65–67). Blocking the
immunosuppressive function of MDSCs can also be achieved
by targeting phosphatidylinositol 3-kinase (PI3K). Knockout
of PI3K was found to reduce the accumulation of G-MDSCs
in tumor-bearing mice, breaking immune tolerance to cancer
(68). Anti-inflammatory triterpenoids, have been demonstrate to
reduce intracellular ROS production by MDSCs by upregulating
the nuclear factor erythroid 2-related factor 2 (Nrf2) which
plays an important role in the cellular protection against free
radical damage (69). Moreover, synthetic triterpenoids, such as
CCDO-IM and CCDO-Me, have shown promising anticancer
results in phase I clinical trials (69, 70). Administration of ATRA,
a vitamin A derivative binding to the retinoid receptor, also
led to the downregulation of ROS production in MDSCs by
activating the extracellular-signal regulated kinase (ERK)1/2
pathway (71). The selective class I histone deacetylase (HDAC)
inhibitor entinostat has been reported to have an inhibitory effect
on MDSCs immunosuppressive functions in several preclinical
tumor models (72–74). Indeed, analysis of MDSCs response to
entinostat revealed significantly reduced ARG1, iNOS, and COX-
2 levels in both M- and G-MDSCs subsets. Interestingly, the
combination of entinostat with immune checkpoint inhibitors
resulted in prolonged survival and delayed tumor growth along
with an increase of CD8+ T effector cells in tumor-bearing
mice (73, 74). Clinical trials involving entinostat are currently
underway (52). Recently, the inactivation of class II HDAC
(HDAC6) with ricolinostat was found to further increase the
inhibitory effect of entinostat on the MDSCs suppressive activity
and on tumor progression (75). STAT3 is another promising
target to reduce MDSCs immunosuppressive functions. Various
approaches for STAT3 inhibition, such as inhibiting the (1)
SH2 domain or dimerization, (2) upstream TKIs (e.g., JAK and
Src inhibitors), (3) antisense oligonucleotides, and (4) peptide
mimetics of physiological negative modulators of STAT3, have
been tested in pre-clinical model and in clinical trials. However,
their clinical use in advanced solid tumors have revealed limited
efficacy or excessive toxicities (76). Recently, the antisense
oligonucleotide STAT3 inhibitor, AZD9150, has been tested
in phase I/Ib clinical trials for the treatment of diffuse large
B-cell lymphoma. Systemic administration of AZD9150 in
patients showed a positive immunomodulatory effect, with a
marked decrease in G-MDSCs in the peripheral blood, and a
meaningful antitumor activity. Trials to combine this agent with
checkpoint-targeting immunotherapies are in progress (77).

Finally, another therapeutic approach used for targeting
MDSCs is aimed to induce MDSCs differentiation, converting
them into mature non-suppressive cells. One promising
therapeutic appears to be ATRA which was reported to induce
the rapid differentiation of MDSCs into mature myeloid cells,
such as macrophages and DCs, and to improve T-cells response
in cancer patients (78, 79). The mechanism of ATRA-induced
differentiation of MDSCs involves specific up-regulation of
glutathione synthase and neutralization of high ROS production
in these cells (80). Several studies indicate that vitamin D3 is
another agent that can promote myeloid cells maturation and
reduce the number of MDSCs in cancer patient. In particular,
vitamin D3 administration in HNSCC patients increased levels

of IL-12, IFN-γ, and improved T-cells blastogenesis (81).
Transcription factors instrumental for normal myeloid cells
development, differentiation and function can also be a target
to reducing aberrant myelopoiesis. In particular, the interferon
regulatory factor (IRF)-8 is a “master regulator” of normal
myelopoiesis, indispensable for producing monocytes, DCs
and neutrophils from myeloid progenitors (82). Thus, enforced
expression of IRF-8, either directly or indirectly, may facilitate
myeloid differentiation and improves immunotherapy efficacy
(83). Further, it has been hypothesized that tumor-induced
IRF8 downregulation occurred through a STAT3-dependent
interaction. Indeed, STAT3 inhibition can induce MDSCs
differentiation into immunogenic DCs or macrophages (84, 85).

MDSCs IN BREAST CANCER

Breast cancer (BC) is the most commonly occurring cancer and
the leading cause of cancer-related deaths in females worldwide
(86). Clinically, BC is a heterogeneous disease. Analyses of
gene-expression profiling have identified three main groups of
BC based on estrogenic receptor (ER), progesterone receptor
(PR) and human epidermal growth factor receptor (HER2/neu)
expression (87). This classification is critical for guiding
treatments, which mainly include surgery (mastectomy or
lumpectomy), radiotherapy, anthracycline-based chemotherapy
or hormonal therapies with anti-HER-2 monoclonal antibodies
(mAb), i.e., trastuzumab, pertuzumab, and TDM1 (88).
Immunotherapy is not yet considered a routine form of
treatment for BC patients. However, a recent pooled analysis of
1,954 breast tumor demonstrated that some BC, based on their
different immunogenic sensitivity, can be distinguished into
two discernible subtypes termed immune benefit-enabled and
immune benefit-disabled which showed significant differences
in distant metastasis-free survival (89). A better understanding
of the factors that regulate BC immunogenicity will contribute
to create more effective and personalized therapeutic strategies
that target specific immunogenic subtypes. In particular, BC
weak immunogenicity derive from mechanisms that diminish
immune recognition and promote strong immunosuppression.
Infiltration of immunosuppressive cells like T-regs, MDSCs
or TAMs in the TME has been demonstrated to be the major
mechanism of tumor escape from the immune system and the
main cause in the reduction of the efficacy of immunotherapy
(90). Indeed, circulating MDSCs in peripheral blood of BC
patients have been shown to be elevated in all stages of the
disease and to be positively correlated with clinical cancer stage
and extensive metastatic tumor burden (91, 92). Conversely,
tumors showing greater infiltration of about 50–60% of tumor-
associated effector cells, such as cytotoxic T cells, memory T
cells, NK cells, tend to be more immunogenic and more sensitive
to chemotherapy. Thus, their presence has been associated with
the suppression of metastatic recurrence resulting in a relatively
good prognostic outcome (93–96). Most of the research on
MDSCs in the TME has been performed in murine models,
which have provided the first evidence that MDSCs are involved
in the development and progression of BC. Thus, eliminating
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MDSCs can result in increased immune-mediated anti-tumor
responses and decreased tumor-burden (97–101). Nevertheless,
also in human it has been showed a direct correlation between
MDSCs levels in the peripheral blood of BC patients, disease
malignancy and poor prognosis. In one of the earliest study
by Diaz-Montero et al. (91), the percentage and the absolute
number of circulating MDSCs were significantly increased in
cancer patients compared to normal volunteers. A population
of MDSCs, defined as Lin−/Lo HLA-DR−CD33+CD11b+, was
detected in fresh whole blood from 106 BC patients. In these
patients, it was found that both percentage and absolute number
of circulating MDSCs were associated with the clinical cancer
stage. Significant differences were observed in mean MDSCs
between patients with early stages I/II cancer (1.96%) stage
III (2.46%) and advanced stage IV (3.77%). Overall, stage IV
patients with widely metastatic disease had the highest percent
(4.37%). In that report, it has been also observed that MDSCs
levels in the peripheral blood corresponded to circulating tumor
cells levels, which are another emerging prognostic marker.
Similarly, Solito et al. (102) also identified MDSCs (Lin−/Lo

HLA-DR−CD33+CD11b+) in 25 stage IV BC patients. They
showed that subjects with higher circulating MDSCs > 3.17%
(median) at baseline had a poorer overall survival (OS) than
patients with circulating MDSCs ≤ 3.17%, with median OS
times of 5.5 and 19.32 months, respectively. Interestingly, Yu
et al. identified a unique population of MDSCs in BC with the
phenotype CD45+CD33+CD13+CD14−CD15−. They found
that these cells increased both in primary cancer tissues and
in peripheral blood. The proportion of this cell population
correlated with clinical stage and lymph node metastasis
status in BC patients and exerted potent immunosuppressive
activity on T cells. Further, they reported that IDO, a rate-
limiting enzyme of tryptophan catabolism, was significantly
upregulated in tumor-infiltrating MDSCs than in periphery,
thereby suggesting a pivotal role in developing and maintaining
MDSCs-mediated immunosuppressive functions in tissue (103).
Recent studies also confirmed that tumor progression and
invasion paralleled the development of MDSCs. For instance,
Gonda et al. (104) reported that the levels of circulating MDSCs
(CD33+CD11b+CD14−) in the peripheral blood were increased
in BC patients compared with healthy controls. Moreover,
MDSCs levels were considerably higher in preoperative
patients and decreased in postoperative patients or following
chemotherapy, while they reached again high levels in patients
with recurrent disease. They found that, in preoperative patients,
MDSCs levels positively correlated with IL-6 production while
they negatively correlated with IFN-γ and IL-12 production.
IL-12 is known to be a modulator of immune suppression
which induces Th1 cells while IL-6 promotes a Th2-dominant
status. Thus, the immune suppressive function of MDSCs in
BC patients may involve multiple immunological pathways,
which impair the Th cell balance promoting a shift from Th1
to Th2 predominance. Additionally, Bergenfelz et al. (92),
reported an expansion of circulating CD14+HLA-DR−/low

M-MDSCs in patients with locoregional recurrence or metastatic
BC, which was correlated with increased metastasis to lymph
nodes and visceral organs, suggesting that circulating M-MDSCs

could be a potential biomarker for disease progression and a
guide to individualize efficient immunomodulatory treatments.
Also Safarzadeh et al. (105) showed that M-MDSCs (HLA-
DR−CD33+CD14+) represent a high percentage compared with
the G-MDSCs (HLA-DR−CD33+CD15+) subpopulation in BC
patients. A recent study found that cells with the M-MDSCs
phenotype CD14+HLA-DR−/low are present at significantly
higher frequencies in early-stage BC patients (40 patients
with clinical stages I/II), suggesting that M-MDSCs mostly
participate to the development of BC by protecting tumor
cells from immune attack. In particular, one of the suppressive
mechanisms proposed by the authors for M-MDSCs-mediated
immunosuppression is represented by ROS (106). Conversely,
Toor et al. (107) found that BC patients had significant elevated
levels of granulocytic CD33+ CD11b+HLA-DR−/lowCD15+

MDSCs in the TME vs. surrounding healthy tissue whereas
no significant differences were observed in their peripheral
blood compared to healthy individuals. However, a weakness
of this study may be the small number of patients included (23
patients). In BC, after differentiation and recruitment, MDSCs
suppress T cells via several pathways including the ARG1, ROS,
RNS, and NO pathways (108). Indeed, nitration/nitrosylation
of T cell receptors (TCRs) and CD8 molecules on the surface
of T cells induces T cell tolerance (109). The JAK/STAT
pathway is also important in regulating the various functions of
MDSCs. Indeed, the transcription factor STAT-3 modulates the
expression of target genes involved in various proinflammatory
functions. Among them, STAT-3 promotes IDO expression.
As mentioned before, IDO act as a major immune regulator
inhibiting immune surveillance and promoting immune
tolerance by suppressing TCR-mediated activation of T cells,
as well as inducing amplification of T-regs (110, 111). Besides
their canonical immunosuppressive functions, MDSCs have
also direct effects on BC cells contributing to invasiveness and
metastasis through the activation of the intracellular phosphatase
and tensin homolog (PTEN)/Akt pathway. Upregulation of Akt
in MDSCs results in increased expression of MMPs, including
MMP2, MMP13, andMMP14, in BC cells which in turn promote
invasion and metastasis (108). Moreover, MDSCs can act as
osteoclast progenitors promoting BC metastasis to the bone.
Through NO signaling and cross talk with BC cells, MDSCs
can differentiate into osteoclasts in the bone microenvironment
to exacerbate osteolysis in metastasizing BC which represent
important issue for BC patients, causing high morbidity and
mortality (98). In summary, these studies further strengthen
the observations that MDSCs numbers increase in patients with
BC as compared to healthy people, suggesting that targeting
MDSCs may significantly improve the effect of immunotherapy
protocols in patients with BC. In preclinical studies it has been
demonstrates that CCR5 antagonists inhibited the metastatic
potential of basal BC and reduced tumor growth (49). CSF-
1R inhibition and CXCR2 antagonism has also been used
in combination to reduce TAMs and G-MDSCs populations
and improve anti PD-1 efficacy (51, 112). Further, the HDAC
inhibitor, entinostat, in combination with the checkpoint
inhibitors anti–PD-1 and anti–CTLA-4, led to a significant
suppression of G-MDSCs in the TME and significantly improved
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tumor-free survival in HER2/neu transgenic BC mouse model
(74). Combination of entinostat with nivolumab and ipilimumab
is, currently, under evaluation in a phase I trial in patients with
invasive and metastatic BC (NCT02453620). Other clinical
studies aimed to investigate the effect of MDSCs inhibitors in
combination with immunotherapy are ongoing.

MDSCs IN COLORECTAL CANCER

Colorectal cancer (CRC) is the third most common cancer and
the second cause of cancer deaths worldwide (86). Only 5–
6% of CRC cases involve inherited genetic alterations while
environmental factors, lifestyle (such as physical inactivity,
smoking, alcohol consumption and obesity) and gut microbiota
are responsible of ∼90% of CRC occurrence (113). The
current approaches to treat metastatic CRC (mCRC) involve
multimodal therapy based on chemotherapy (including the
combination of cytotoxic drugs) or targeted agents (such as
bevacizumab, cetuximab, and panitumumab) (114). In the
last few years, immunotherapy, which typically rely on the
activation of T cells in the TME, has been considered for
mCRC patients (115). Checkpoint inhibitors such as antibodies
directed against cytotoxic T lymphocyte antigen-4 (CTLA-4)
and programmed cell death protein (PD-1)/PD-1 ligand (PD-
L1) resulted ineffective to produce durable clinical responses due
to tumor-mediated immune evasion and resistance, caused by
the presence, into the TME, of immunosuppressive cells like
MDSCs (116). In CRC, MDSCs are widely considered the link
between chronic inflammation and cancer. Indeed, patients with
inflammatory bowel disease, such as ulcerative colitis, show an
increased risk of developing CRC (117). Evidences from studies
in mouse models of colitis-associated cancer (CAC) indicate that
chronic inflammation can drive tumor initiation and progression
by enhancing MDSCs accumulation and immune suppression
(118, 119). Accumulating data also support a role for the
microbiota in CRC carcinogenesis (120). Recent studies have
shown that symbiotic bacteria like Fusobacterium nucleatum
and Helicobacter hepaticus can exacerbate the development of
cancer by inducing MDSCs expansion in the inflamed colon
of mice (121, 122). Although both MDSCs subtypes have been
found increased in several colon cancer mouse models, the
expansion of G-MDSCs resulted much greater compared to M-
MDSCs (118, 119, 122, 123). In CRC patients, at first, MDSCs
were identified generally as CD33+HLA-DR− (124, 125). Both
circulating and tumor-infiltrating MDSCs have been found
significantly expanded in patients with various stage of CRC
compared with healthy donors. Interestingly, their frequencies
were shown to increase with tumor stage and with the presence
of nodal and/or distant metastasis, indicating a correlation with
clinical cancer stage. These MDSCs displayed characteristics
of immature myeloid cells expressing no level of the lineage
markers CD3, CD14, CD19, and CD56. Notably, they showed up-
regulation of CD18/CD11b expression, which is critical for cell
adhesion and migration, suggesting the involvement of MDSCs
in CRC tumor development (124). Further, Zhang et al. (125)
demonstrated that Lin−/lowHLA-DR−CD33+CD11b+ MDSCs

had immunosuppressive effect on T cells and expressed high
level of the ectonucleotidase molecule CD39, which plays a key
role in mediating the suppressive activity of MDSCs on T cells,
by converting immunostimulatory ATP into immunosuppressive
adenosine. A better phenotypical characterization of MDSCs in
CRC patients was originally reported by OuYang et al. (126).
They observed an increased proportion of CD33+CD11b+HLA-
DR− MDSCs in peripheral blood and tumor tissues which
correlated with advanced disease stages and tumor lymph
node metastases. In particular, this population consisted for
the major part of a M-MDSCs subset (CD33+CD11b+HLA-
DR−CD14+CD15−) and an atypical G-MDSCs subset, with a
moderate expression of the granulocyte-monocyte progenitor
cell markers CD117 and a weak expression of the granulocytic
marker CD15. TheseMDSCs populations were found to suppress
both CD8+ and CD4+ T cells proliferation through the
oxidative metabolism, including the generation of NO and
ROS, as demonstrated by the high expression levels of the
immune mediators ARG1, iNOS, and NOX2. Conversely, Toor
et al. (127) identified CD33+CD11b+HLA-DR−/lowCD15+ G-
MDSCs as key players among others in CRC progression.
They found a significant expansion of G-MDSCs in both
circulation and in tumor tissues of 21 CRC patients with
different tumor stages. In particular, circulating G-MDSCs
were significantly elevated in CRC patients with regional
and distant metastases and exerted their immunosuppressive
functions trough the activation of ARG1. Several factors have
been implicated in the regulation of the accumulation and the
suppressive functions of MDSCs in CRC. IL-17 appears one
of the main driving chemoattractant forces, especially for G-
MDSCs, within the TME (128). In murine tumor models, IL-
17 promotes MDSCs tumor infiltration, in a CXCL5/CXCR2-
dependent manner, and enhances the immunosuppressive
activity of MDSCs (129). Chun et al. (119) postulated that
CCL2 acts as a neoplastic regulator of MDSCs, contributing
to their intratumoral accumulation and to G-MDSC-mediated
suppression of CD4+ and CD8+ T cells via STAT3-mediated
pathway. Indeed, increased CCL2 in patients with early-stage
colon cancer (colitis-associated CRC, adenocarcinomas, and
adenomas) influences carcinogenesis inducing MDSCs. Thus,
CCL2 neutralization may afford therapeutic opportunities to
decreased MDSC accumulation and function. Recent data
indicate that Yes-associated protein 1 (YAP1) and PTEN can
mediate CRC tumorigenesis through the induction of MDSCs in
the TME. In fact, Yang et al., describe that up-regulation of YAP1
in the tumor promoted MDSCs expansion through suppressing
PTEN expression and subsequently inducing the secretion of
GM-CSF (130). Further, inhibition of Kit has been demonstrated
to enhance the antitumor activity of immune checkpoint
inhibitors (anti–CTLA-4 and anti–PD-1) by selectively reducing
the immunosuppressive M-MDSCs population in Colon26
mouse tumor model (131). The humanized anti-Kit mAb
KTN0158 has also been evaluated in clinical trials for patients
with Kit positive advanced solid tumors (NCT02642016).
Notably, the inhibition of STAT3 signaling pathway with
nifuroxazide inhibited lung and abdomen metastasis in mice
and reduced the number of MDSCs in the blood, spleens and
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tumors, accompanied by the increased infiltration of CD8+

T cells (132). Targeting TRAIL-R2 with the agonist antibody
DS-8273a was applied in a phase I clinical trial in patients
with advanced cancers, including CRC patients, in combination
with nivolumab and caused selective depletion of MDSCs
without affecting mature myeloid or lymphoid cells (133). Thus,
a better identification of the molecular mechanism driving
MDSCs expansion in CRC may guide the future development
of new therapeutic strategies for CRC patients based on
targeting MDSCs.

MDSCs IN MELANOMA

Melanoma is the most aggressive and fatal form of skin cancer
with a high mortality rate. Primary melanoma is usually
curable with surgery when diagnosticated in early stages
(134). Nonetheless, melanoma is characterized by a lively
progression that is correlated to rapid metastasis development
to regional lymph nodes and distant organs as well as therapy
resistance by reducing the patients median survival to <1 year
(135). In fact, despite the recent introduction of encouraging
immunotherapies such as ipilimumab and pembrolizumab, that
target CTLA-4 and PD-1 respectively, the majority of patients
experience resistance and tumor progression (136). This critical
condition is partially due to the immunosuppressive mechanisms
established within the TME mediated by immunoregulatory
cells including T-regs and MDSCs that contributes to immune
evasion (137). In particular, multiple reports have highlighted
the role of MDSCs as one of the most important restrictions
preventing efficient melanoma treatment (116). Several reports
indicated an increased frequency of both M-MDSCs and G-
MDSCs in melanoma patients (138–141). For instance, Jordan
et al. demonstrated that the frequency of both M-MDSCs
(Lin−CD11b+HLA-DR−/lowCD33+CD14+) and G-MDSCs
(Lin−CD11b+HLA-DR−/lowCD33+CD14−) subsets was
significantly increased in the peripheral blood of stage IV
melanoma patients and was associated with disease progression
and decreased OS (142). Similarly, Filipazzi et al. reported
an expansion of CD14+CD11b+HLA-DR−/low M-MDSCs
in fresh whole blood from 70 advanced melanoma patients
suggesting an inverse correlation with immune responses to
cancer vaccine (138). Additionally, Weide et al. also reported
that circulating CD14+CD11b+HLA-DRlow M-MDSCs were
inversely correlated to both OS and the presence of functional
antigen-specific T cells in patients with advanced melanoma
(140). Conversely, more recently Stanojevic et al., demonstrated
that HLA-DR−/lowCD11b+CD33lowLin−CD14−CD15+ G-
MDSCs population was significantly higher in different
clinical melanoma stages according to both TNM and AJCC
classification (143). Thus, MDSCs abrogation and inhibition,
could be the next biggest aims for melanoma treatment
(144). In fact, in the last few years, various preclinical studies
have been focused in measuring and targeting MDSCs in
melanoma patients, resulting in tumor growth inhibition and
survival prolongation (145). Nevertheless, there are different
ongoing clinical trials focused on evaluating the effect of new

molecules that target MDSCs in melanoma patients such as
ATRA), SX-682 or omaveloxolone in combination with classical
immune checkpoint inhibitors (116, 144). ATRA, that has
previously demonstrated to induce differentiation of MDSCs
into macrophages and DCs in mice, (80) has been applied
in a phase II clinical trial in combination with ipilimumab
in melanoma patients. The study demonstrated that this
combination improved the clinical outcome by increasing tumor
antigen-specific T cell responses and reducing MDSCs frequency
as compared to ipilimumab alone (146). SX-682 is a selective
and potent antagonist of CXCR1/2 chemokine receptors that are
expressed on bothmelanoma cells andMDSCs supporting tumor
growth, immunosuppression and angiogenesis in response to
CXCL1, CXCL2, or CXCL8 (147–149). Omaveloxolone (also
referred as RTA408), is a semisynthetic oleanane triterpenoid
that represses ROS production and NO signaling in MDSCs
showing promising preclinical antitumor activity (150). Both
SX-682 and RTA408 have been applied in two different
clinical trials in combination, respectively with pembrolizumab
(NCT03161431) and ipilimumab or nivolumab (NCT02259231)
(116, 144, 151). Interestingly, MDSCs enrichment in melanoma
patients has been frequently associated to heightened amounts
of inflammatory mediators such as IFN-γ, IL-1β, IL-4, IL-13,
TNF-α, toll-like receptor (TLR) ligands, and PGE2 that support
MDSCs accumulation and activation (152, 153). PGE2 is
one of the best-characterized prostaglandins synthesized by
COX-2. Recently, we and others reported that COX-2 has a
crucial role in melanoma development and progression by
affecting patients progression free survival (PFS) (154–156). In
particular, PGE2 production by MDSCs has been associated
to ARG1 overexpression, STAT3 and STAT1 phosphorylation
and IL-10, ROS, and NO production that are correlated to
MDSCs suppressive activity (157–160). Thus, PGE2–dependent
activation of MDSCs result to be a potent additional mechanism
of tumor immune escape which is driven by COX-2 (161).
Indeed, COX-2 pharmacologic inhibition reverts MDSCs
suppressive phenotype by reducing the production of ROS and
NO, the expression of ARG1 and restoring the differentiation
of bone marrow cells (162, 163). Nevertheless, a better
understanding is necessary to figure out which mechanisms
PGE2 exploits for triggering MDSCs immunosuppressive
effects in malignant melanoma. Recently, a new class of
compound defined as hydrogen sulfide donors, has been shown
to inhibit both the expansion and the suppressive functions
of MDSCs in melanoma-bearing mice (164). Interesting
results have also been achieved in the field of microRNAs
(miRNAs) (165). miRNAs are relevant multifunctional post-
transcriptional modulators of gene expression which have
been reported to play a key-role in various human cancers
including melanoma (166–171). Different evidences established
an emerging role for miRNAs in the expansion and functional
activation of MDSCs during tumor development (165). For
instance, miR-155 has been shown to promote tumor growth
by triggering MDSCs ripening, endurance and function
through SOCS1 inhibition (172). More recently, Huber et al.,
discovered a set of miRNAs that are associated with the
phenotypic and functional features of MDSCs in melanoma
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patients (173). Most importantly, they reported that higher
expression of these miRNAs is correlated to shorter PFS in
patients receiving ipilimumab and nivolumab (173). Finally,
miRNAs identification as MDSC regulators, could be an
additional and promising strategy to fight and monitor systemic
immunosuppression that occur in melanoma patients, mainly
driven by MDSCs.

MDSCs IN PROSTATE CANCER

Prostate cancer is the most commonly diagnosed cancer in
males in the world and is responsible for about 20% of cancer-
related deaths (174). Prostate cancer diagnosis is divided in
low, intermediate and high risk according to Gleason patterns,
prostate specific antigen (PSA) levels and clinical stage (175).
Surgical or chemical androgen deprivation therapy (ADT) is the
first-line treatment once the disease spreads outside the prostate
in order to reduce circulating testosterone levels (176, 177).
Nevertheless, an important percentage of patients experience
resistance and tumor progresses to a more aggressive form
referred as castration-resistant prostate cancer (CRPC) after 18–
36 months (178, 179). This advanced form of prostate cancer is
usually treated with classical chemotherapy regimens including
docetaxel and cabazitaxel (179). Moreover, there are also novel
hormone therapies available for CRPC such as abiraterone and
enzalutamide (180, 181). In 2010, the U.S. Food and Drug
Administration (FDA) approved PROVENGE (sipuleucel-T),
the first immunotherapy agent for the treatment of patients
with asymptomatic or minimally symptomatic metastatic CRPC.
Sipuleucel-T stimulates T-cell immune response against prostate
cancer cells by targeting prostatic acid phosphatase (PAP), an
antigen that is highly expressed in most prostate cancer cells
(182). Despite these recent advances, treatments only provide
scanty survival benefits and most patients develop disease relapse
(183). Investigating on the mechanisms that may drive prostate
cancer progression, different data reported that it is surrounded
by a complex TME (184, 185). In particular, MDSCs are the
most renowned immune cells subset that has been reported to
infiltrate the prostate TME (186–188). In fact, by evaluating
the frequency of MDSCs in the blood of prostate cancer
patients the CD14+HLA-DRlow monocytic subset result to be
augmented compared with sex- and age-matched healthy donors,
whereas it is decreased after ADT (39, 189). Conversely, Chi
et al., reported that circulating CD33+CD11b+HLA-DR−CD14−

granulocytic MDSCs represented the major subtype of MDSCs
in patients with prostate cancer and their level were significantly
elevated compared with both healthy donors and patients
with benign prostatic hyperplasia (BPH) (190). Interestingly,
Idorn et al., showed that the levels of CD14+HLA-DRlow/−

M-MDSCs were increased in both untreated and docetaxel-
treated CRPC patients and that they were correlated with a
shorter median OS, suggesting that MDSCs support prostate
cancer progression (191). Additionally, they also reported a
significant positive correlation between MDSCs and T-regs
frequency in peripheral blood of CRPC patients denoting a cross-
talk between these two immunomodulatory cells (191). This

intricate scenario is orchestrated by different mediators such
as cytokines, chemokines and growth factors that contribute
to the accumulation of MDSCs in prostate tumors (192). In
particular, elevated levels of IL-6 pro-inflammatory cytokine,
have been reported to promote cancer cell growth and
significantly correlate with MDSCs expansion (193–195). In
fact, it has been showed, in mice, that high serum levels of
IL-6 were positively associated to MDSCs recruitment (195).
This data has been further reinforced by using IL-6 KO mice
in which the inhibition of tumor-produced IL-6 significantly
reduced MDSCs recruitment (195). Similarly, Chi et al. reported
that MDSCs frequency was correlate with serum levels of
IL-6 and IL-8 in prostate cancer patients (190). This IL-6-
mediated immunosuppressive effect involves different signaling
pathways including PI3K/PTEN/AKT pathway which in turn
triggers MDSCs recruitment (196, 197). Interestingly, more
recently, Calcinotto et al., reported that IL-23 cytokine is
another important MDSC-secreted factor that drives CRPC
progression in both human and mice by sustaining the growth
and the endurance of prostate cancer cells as well as the
transcription of androgen dependent genes such as Nkx3-1,
Pbsn, and Fkbp5 (186, 198). Moreover, co-administration of
anti IL-23 antibody with enzalutamide, reverted resistance to
castration in tumor-bearing mice by reducing tumor volume
and proliferation (186). These findings demonstrated that
MDSCs are the major players involved in prostate cancer
progression and resistance. Thus, immunotherapies focused on
the inhibition of either MDSCs recruitment or the inhibition of
other mediators that sustain MDSCs immunosuppressive effect
(e.g., IL-6 and IL-23) can be a promising therapeutic strategy
for prostate cancer patients. Several clinical trials targeting
MDSCs in prostate cancer are ongoing (197). One promising
agent is tasquinimod, an oral second-generation quinoline-3-
carboxamide derivative (199). Tasquinimod inhibits S100A9
protein that interacts with the receptor for advanced glycation
end products (RAGE) and TLR4, triggering the inflammatory
response (200). S100A9 is also involved in MDSCs recruitment
in solid tumors sustaining tumor growth and metastasis
development (201). A phase II clinical trial demonstrated that
tasquinimod improved both PFS and OS in prostate cancer
patients compared to placebo (202, 203). Nonetheless, in a
phase III randomized controlled trial, tasquinimod significantly
improved PFS but did not improve OS (204). However,
larger controlled clinical trials are needed to confirm and
validate tasquinimod as a standard agent for the treatment
of CRPC.

MDSCs IN HEPATOCELLULAR
CARCINOMA

Hepatocellular carcinoma (HCC) is one of the leading
causes of cancer-related death worldwide. Cirrhosis and
liver inflammation are frequently associated with HCC, and
inflammation is considered one of the main factors driving
hepatocarcinogenesis (205). HCC is a highly chemotherapy-
resistant tumor and the applicability of most cytotoxic drugs
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is severely limited by the underlying liver cirrhosis. Currently,
sorafenib and lenvatinib, oral multi-TKIs with antiangiogenic
activity, are the most widely used systemic therapeutic agents
which have showed increase in median survival in patients
with unresectable HCC, respectively of 12.3 and 13.6 months
(206, 207). Recently, other oral multi-TKIs, regorafenib
and cabozantinib, have been added as second line systemic
therapeutic options in patients with disease progression
on sorafenib (208, 209). In the last few years, the interest
in immunotherapies for HCC has been growing giving
great opportunities for treating HCC with newer and more
sophisticated agents (210). In particular, encouraging results
has been obtained with the anti PD-1 mAbs nivolumab and
pembrolizumab, which exhibited an objective tumor response of
about 20% in HCC patients who had been previously treated with
sorafenib (207, 211). Optimizing this response is challenging,
especially because of the immune environment on which HCC
arises. Although ∼25% of HCC show high or moderate levels of
lymphocyte infiltration (TILs), within the TME (212), they often
prove insufficient to control tumor growth because the expansion
of immunosuppressor cells like MDSCs and Tregs (213). Indeed,
there is a general consensus that various dysfunctions of
the immune system contribute to HCC development and
progression (214, 215). In the chronic inflammatory milieu
present in the liver of HCC patients, myeloid cells infiltrating
the tumor can acquire suppressive capability and contribute
to immune escape of HCC cells. In the last decade, the clinical
importance of MDSCs in HCC patients has been investigated.
Several authors have reported elevated level of total MDSCs
with the phenotype HLA-DR−/lowCD11b+CD33+ in HCC
patients compared with healthy controls (216–218). In other
studies, MDSCs were identified as CD14+HLA-DR−/low, which
are considered to be M-MDSCs. These M-MDSCs were found
to be significantly elevated in the peripheral blood or tumor
of HCC patients compared with chronic hepatitis patients
and healthy controls. Moreover, the frequency of circulating
MDSCs, both total and M-MDSCs, was significantly correlated
with reduced OS and tumor progression (213, 219, 220).
Later, Hetta et al. observed that HCV-HCC patients with
advanced stage had higher percentage of total MDSCs and
M-MDSCs in the peripheral blood compared with those with
early-stage HCC and healthy control. The frequency of M-
MDSCs subsets was positively correlated with liver related
laboratory parameters, especially AFP and ALT, which reflects
a hepatic insult whereas, was inversely related to the frequency
of CD4+, CD8+ T, and CD19+ B cells. Moreover, patients
with chronic liver disease had a significantly higher percentage
of MDSCs suggesting that an increased level of MDSCs may
contribute to the progression from chronic hepatitis to HCC
(221). In a recent publication, an extensive study on 183 HCC
patients showed the prognostic value of CD14+HLA-DR−/low

M-MDSCs for predicting early recurrence (within 2 years)
in patients undergoing curative resection. In particular, the
authors observed a significant positive correlation between the
frequency of MDSCs and the systemic immune-inflammation
index (SII), which is a powerful prognostic indicator of poor
outcome in HCC patients after resection. Thus, HCC patients

with high MDSCs level and high SII level had significantly
shorter time to recurrence (TTR) and OS than those with low
MDSC level and low SII level (219). However, due the limitations
of this study, such as relatively small cohort size, short follow-
up time, and data from a single study center, the prognostic
significance of MDSCs requires further validation. Clinical
studies of MDSCs in HCC have mainly focused on analyzing
M-MDSCs. Recently, Nan et al. employed a novel marker,
LOX-1, to analyze G-MDSCs in HCC patients and determined
that LOX-1+CD15+ cells were significantly increased both in the
peripheral blood and in tumor tissue of patients compared with
healthy controls and were positively related to OS. Moreover,
LOX-1+CD15+ MDSCs suppressed T-cell proliferation through
the ROS and ARG1 pathway and reduced interferon IFN-γ
production (222). Mechanistically, also M-MDSCs isolated
from the peripheral blood of HCC patients have been proven
to be immunosuppressive by inducing CD4+CD25+Foxp3+

regulatory T cells and inhibiting autologous NK cells, as
well as they shown to have high ARG1 activity (213, 223).
Nonetheless, Shen and colleagues, described an immature subset
of Lin− HLA-DR−CD33+ MDSCs in the peripheral blood of
patients with primary HCC and their frequency was found to
be positively correlated with tumor stage and splenomegaly.
In the same way, the immature MDSCs were able to inhibit
tumor-specific T-cell responses and IFN-γ secretion through
a suppressive mechanism involving ARG1 and iNOS enzymes
(224). Regarding the mechanism of MDSCs expansion, it was
found that the serum levels of suppressive cytokines like IL-10
and IL-13 as well as of tumor-promoting factors like G-CSF,
VEGF and MMP-13 were significantly increased in patients with
high frequency of MDSCs (220, 224). Indeed, these cytokines,
that trigger JAK-STAT signaling pathways are considered to be
the main regulators of the activation of MDSCs, which leads
to stimulation of myelopoiesis and inhibition of myeloid-cells
differentiation (225).

Most published studies on human MDSCs in HCC patients
have been done using blood samples. Thus, in order to
better understand the complex immunobiology of MDSC in
HCC, different murine HCC models have been employed:
carcinogen-induced, spontaneous and transplantable HCC.
Although all tumor bearing mice demonstrated elevated MDSCs
level (identified as CD11b+Gr-1+ cells), subtle differences
in frequency, location and function of MDSCs were found
among the murine models (226). Pre-clinical models of HCC
have been also used to evaluate the ability of sorafenib to
modulate MDSCs. Several studies have reported that sorafenib
could enhance the antitumor immunity by reducing MDSCs in
tumor-bearing mice (226, 227). On the other hand, targeting
MDSCs with anti-Ly6G or anti-IL-6 antibody significantly
reduced the frequency of Ly6G+ MDSCs in orthotopic liver
tumors improving the therapeutic effect of sorafenib (228).
However, Chen et al. (229) demonstrated that sorafenib increased
the intratumoral infiltration of Gr-1+ MDSCs through the
SDF1α/CXCR4 pathway while reduced the accumulation of
Gr-1+ myeloid cells in the surrounding fibrotic liver tissue.
Differences in these studies might depend on the mouse liver
cancer model, the sorafenib dose or the gating strategy used.
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Further, recent studies have investigated the role of MDSCs in
the efficacy of checkpoint inhibitors in mouse HCC models.
Chiu et al. found that targeting the enzyme, ectonucleoside
triphosphate diphosphohydrolase 2 (ENTPD2), which support
the maintenance of MDSCs, enhanced the efficacy of PD-
1/CTLA-4 blockade (230). Likewise, depletion of the cell cycle-
related kinase (CCRK) reduced tumor-infiltrating MDSCs and
increased intratumor CD8+ T cells, thus enhancing the efficacy
of PD-L1 inhibitor to eradicate HCC (217). In addition, an
in vitro study demonstrated that combination of sorafenib
with an anti-CTLA-4 mAb restored the proliferation of CD8+

lymphocytes co-cultured with MDSCs (231). Radiotherapy is
commonly used as alternative approaches for HCC patients who
may experience serious adverse effects to chemotherapeutics.
Interestingly, a decrease in percentages of CD14+HLA-DRlow/−

MDSCs was observed in patients who received curative
radiofrequency ablation (220). Recently, it has been reported
that hypofractionated irradiation with high dose per fraction
reduced the level of circulating MDSCs in two HCC tumor-
bearing mouse models and decreased the expression of MDSC-
related stimulatory cytokines: IL-6, G-CSF and RANTES (232).
Collectively, these preclinical studies not only confirmed the
roles of MDSCs in tumor formation and progression but also
indicated the importance to reduce MDSCs in order to improve
the efficacy of therapeutic strategies in HCC. However, these
results remain to be confirmed in cancer patients. In this regard,
a recent phase I/Ib study (NCT01839604) tested the effect of
danvatirsen (AZD9150), a STAT3 oligonucleotide inhibitor, in
39 patients with advanced/metastatic HCC. At the end of the
study the results reported that only one patient had a partial
response. A phase I/IIa clinical trial is evaluating the outcome
of HCC patients, progressing under sorafenib, following the
treatment with regorafenib, a multi-TIKs that targets angiogenic
(VEGFR1–3, TIE2), stromal (PDGFR-β, FGFR), and oncogenic
receptor tyrosine kinases (KIT, RET, and RAF) in combination
with nivolumab (NCT04170556).

MDSCs IN LUNG CANCER

Lung cancer is one of the most commonly diagnosed
malignancies that is strongly correlated with cigarette
smoking and is a leading cause of cancer-related death
(233). Lung cancer is generally divided into two types:
small cell lung cancer (SCLC) and non-small cell lung
cancer (NSCLC). Both SCLC and NSCLC are treated with
similar chemotherapeutic agents often in combination such
as cyclophosphamide, doxorubicin, and vincristine (CAV)
or cyclophosphamide, doxorubicin and etoposide (CDE)
(234–236). In addition, different targeted antibodies and
immunomodulators are currently used for the treatment of
lung cancer (237, 238). However, a high percentage of patients
do not respond or develop resistance to treatment promoting
cancer progression (239, 240). MDSCs represent, together
with Tregs as well as TAMs, the major immunosuppressive
cells that make up the TME in lung cancer patients (241). For
lung cancer, the main body of literature reports increases of

monocytic CD33+CD11b+CD14+ MDSCs or granulocytic-like
CD33+CD11b+CD14− MDSCs (242–245). For instance, Feng
et al., defined MDSCs as CD11b+CD14+ expressing high
levels of the proinflammatory molecule S100A8/A9 whose
expression was highly correlated with the ability to suppress
T-cells proliferation (244). Recently, de Goeje et al., showed for
the first time that the immunoglobulin-like transcript 3 (ILT3)
represent a novel immunosuppressive molecule expressed by
defined MDSCs subsets in lung cancer patients. In particular,
ILT3 high expression on a specific subset of G-MDSCs,
defined as CD11b+CD14−HLA-DR−CD33+CD15+ILT3high,
was correlated with reduced survival into NSCLC patients
(246). Interestingly, increased frequency of both M-MDSCs
(HLA-DR−/lowCD11b+CD14+CD15−) and G-MDSCs (HLA-
DR−/low CD11b+CD14− CD15+) has been found not only
in the peripheral blood of patients but also in the tumor
lesions. Indeed, a strong elevation of both tumor-infiltrating
MDSCs subsets compared with the circulating subsets has been
showed, confirming that the tumor site is characterized by the
strongest immunosuppression. In particular, the frequency of
tumor infiltrating and circulating G-MDSCs correlated with
tumor progression (247). Among the different mediators that
have been reported to regulate MDSCs suppressive functions,
gp91phox, which is correlated to NADPH oxidase enzyme
(248), results to be upregulated in MDSCs of lung cancer
patients (242). The activity of NADPH oxidase enzyme translates
into an increase in ROS production which mediates tumor
immunosuppression and might thus represent a potential
target for therapeutic intervention. Other important mediators
involved in cancer immunosuppression are IDO and the
adenosine (ADO)-producing enzymes CD39 and CD73 (249–
253). It has been reported that ADO-producing enzymes are
expressed in MDSCs isolated from the peripheral blood of
NSCLC patients and favor their immunosuppressive function.
Further analysis identified a novel MDSCs subpopulation
enriched in CD39 and CD73 in tumor lesions of NSCLC
patients defined as Lin−CD14−CD11b+CD39+CD73+ and
Lin−CD14+CD11b+CD39+CD73+ that were found to be
positively correlated to disease progression and were reduced
after chemotherapy cycles suggesting them as predictive
tools for chemotherapy response (254). Moreover, the ratio
between Treg cells and G-MDSCs may also have an impact
on the response to nivolumab treatment, since patients with
a high frequency of circulating Tregs and low frequency of
G-MDSCs show improved PFS in NSCLC patients (255).
However, more research is needed to better understand the
correlation between MDSCs and Tregs in this type of cancer.
Given these evidences about the association between MDSCs
and anticancer therapies, strategies focusing on the functional
targeting of MDSCs are fast approaching clinical realization.
For example, depletion of MDSCs increases the frequency and
activity of NK and T cell effectors in the tumor and enhance
therapeutic vaccination responses (256). Furthermore, it has
been also demonstrated that dopamine receptor D2 (DR2)
agonists and histamine type-2 receptor antagonists, such as
carbegoline and cimetidine respectively, inhibit the progression
of lung cancer in both human and mouse models by affecting
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at least in part MDSCs proliferation and function (30, 257).
Interestingly, different natural compounds, such as resveratrol
and curcumin, have been defined as novel synergistic agents
for tumor immunotherapy. It has been demonstrated that
resveratrol reduces in vivo lung cancer development and
progression by inducing MDSCs apoptosis and reducing the
recruitment of G-MDSCs (258). Likewise, curcumin reduced

the frequency of MDSCs in the tumor and the spleen of
tumor-bearing mice that was correlated to the reduction of
IL-6 which is known to influence the function of MDSCs
(259, 260). Giving the promising data regarding the targeting
of MDSCs in mouse lung cancer, several clinical trials are now
ongoing in NSCLC patients (NCT02922764; NCT03846310;
NCT03801304; NCT04262388).

TABLE 1 | Phenotype and immunosuppressive features of MDSCs subsets in cancer patients.

MDSCs type Phenotype Immunosuppressive features Tumor Site References

T-MDSCs Lin−/Lo HLA-DR− CD33+CD11b+ - BC PBMCs (91, 102)

T-MDSCs Lin−/Lo HLA-DR− CD33+CD11b+ CD39 CRC PBMCs (125)

T-MDSCs Lin−/Lo HLA-DR− CD33+ ARG1, iNOS, MMP-13, VEGF HCC PBMCs (224)

T-MDSCs CD45+CD11b+ CD33+ - CRC TT (125)

T-MDSCs HLA-DR− CD33+ - CRC PBMCs/TT (124)

T-MDSCs CD33+CD45+CD13+CD14− CD15− IDO, IL-4R BC PBMCs/TT (103)

T-MDSCs CD33+CD11b+CD14− −
�

IL-6

−
� IL-12, INF-γ

BC PBMCs (104)

T-MDSCs HLA-DR− CD33+CD11b+

−
� INF-γ HCC PBMCs/TT (217, 218)

M-MDSCs HLA-DR−/lowCD14+ HMGB1, ARG1, S100P, MMP-9,

MMP-25

ROS

BC PBMCs (92, 105, 106)

M-MDSCs HLA-DR−/lowCD14+ - PC PBMCs (39, 191)

M-MDSCs HLA-DR−/lowCD14+

−
� INF-γ

−
�

IL-10, IL-13, VEGF

HCC PBMCs/TT (213, 219, 220)

M-MDSCs HLA-DR−/lowCD14+ Nkp30 blocking HCC PBMCs/TT (223)

M-MDSCs HLA-DR−/lowCD14+ gp91phox NSCLC PBMCs (242)

M-MDSCs CD33+CD11b+ HLA-DR− CD14+CD15− ARG1, CD39, iNOS, CXCR4 CRC PBMCs/TT (126)

M-MDSCs CD33+CD11b+ HLA-DR−/low CD14+ TGF-β MEL PBMCs (140–142)

M-MDSCs CD33+CD11b+ HLA-DR−/low CD14+ CD15− - HCC PBMCs/TT (216)

M-MDSCs CD33+CD11b+ HLA-DR−CD14+ - HCC PBMCs/TT (221)

M-MDSCs CD11b+CD14+S100A9+ ARG1, iNOS, IL-4Rα, IL-10 NSCLC PBMCs (224)

M-MDSCs CD16lowCD33+CD11b+ HLA-DR− CD14+CD15+ ARG1, ROS NSCLC PBMCs (245)

M-MDSCs CD11b+ HLA-DR−/low CD14+ CD15− CCR5, PDL-1 NSCLC TT (247)

M-MDSCs Lin−CD11b+ CD14+ CD73+ CD39+ IL-4R, HIF-1α, IL-10, COX-2 NSCLC PBMCs/TT (254)

G-MDSCs HLA-DR−/lowCD15+ - BC PBMCs (105)

G-MDSCs CD15+ ARG1 BC TT (107)

G-MDSCs CD33+CD11b+ HLA-DR− CD17+CD15+ −
�

ROS; PDL-1 CRC PBMCs/TT (126)

G-MDSCs CD33+CD11b+ HLA-DR−/low CD15+ ARG1 CRC PBMCs/TT (127)

G-MDSCs CD33+CD11b+ HLA-DR− CD14− - MEL PBMCs (142)

G-MDSCs CD33lowCD11b+ HLA-DR−/low CD14−CD15+ - MEL PBMCs (143)

G-MDSCs CD33+CD11b+ HLA-DR− CD14− −
�

IL-6, IL-8 PC PBMCs (190)

G-MDSCs CD33+CD11b+CD15+ IL-23 PC TT (186)

G-MDSCs CD33+CD11b+ HLA-DR−/low CD14−CD15+ - HCC PBMCs/TT (216)

G-MDSCs LOX-1+CD15+ ROS, ARG1 HCC PBMCs/TT (222)

G-MDSCs CD33+CD11b+ CD14−CD15+ ARG1, iNOS, IL-4R, INF-γR NSCLC PBMCs (243)

G-MDSCs CD16lowCD33+CD11b+ HLA-DR− CD14−CD15+ ARG1, ROS NSCLC PBMCs (245)

G-MDSCs CD33+CD11b+ HLA-DR− CD14−CD15+ ILT3high - NSCLC PBMCs (246)

G-MDSCs CD11b+ HLA-DR−/low CD14− CD15+ CCR5, PDL-1 NSCLC TT (247)

G-MDSCs Lin−CD11b+ CD14− CD73+ CD39+ IL-4R, HIF-1α, IL-10, COX-2 NSCLC PBMCs/TT (254)

BC, breast cancer; CRC, colorectal cancer; HCC, hepatocellular carcinoma; MEL, melanoma; NSCLC, non-small cell lung cancer; PBMCs, peripheral blood mononuclear cells; PC,

prostate cancer; TT, tumor tissue; M-MDSCs, monocytic-MDSCs; G-MDSCs, granulocytic-MDSCs; T-MDSCs, total-MDSCs.
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CONCLUSION

To overcome tumor immune evasion is the new challenge of
our era. Cancer immunotherapy has experienced remarkable
advances in recent years, and significant improvements have
been achieved in the treatment of several solid cancer types (e.g.,
melanoma, non-small cell lung cancer, bladder cancer). However,
formost patients a favorable initial response to treatment changes
afterwards, thereby leading to cancer relapse and recurrence. A
key factor underlying the limited response to immunotherapies is
the existence of multiple mechanisms mediating tumor immune
suppression (261). In this context, MDSCs have been recognized
to have a crucial role. Recent studies demonstrated the value of
MDSCs in predicting the response to cancer immunotherapies.
In particular, a close association of MDSCs level with patient
response to the checkpoint inhibitors anti-CTLA4 (262, 263) and
anti-PD-1 (264) has been observed. Moreover, a growing number
of studies have demonstrated a significant correlation between
circulating MDSCs frequency in cancer patients with tumor
stage, metastatic spreading, and course of the disease. Indeed,
a recent meta-analyses including 40 studies and 2,721 patients
with solid cancer support the existence of an association between
higher MDSCs levels and worse OS as well as shorter disease-
free survival/progression-free survival/recurrence-free survival.

The negative prognostic value of MDSCs was observed for
all MDSCs subtypes, most tumor types, and all tumor stages
suggesting a potential novel and promising use of MDSCs as
prognostic biomarkers and/or therapeutic target (265). Initial
studies monitored MDSCs in cancer patients, analyzed total
MDSCs population (G-and M-MDSC together). The diversity
of cell surface markers used to identify the main subsets of
tumor-derived MDSCs in human is very high, which is in
part due to the differences in the factors that are involved
in the development and activation of MDSCs. The complexity
of the human MDSCs phenotype is summarized in Table 1,
with the main MDSCs phenotypes expanded in cancer patients
and the common immunosuppressive mechanisms. The M-
MDSCs subset defined as HLA-DR−/lowCD14+, resulted to be
predominant in melanoma, breast cancer and hepatocellular
carcinoma. Conversely, in colorectal cancer G-MDSCs defined
as HLA-DR−/low CD15+ were the most abundant in both
circulation and in tumor tissues. In prostate cancer and in
lung cancer both G-MDSCs and M-MDSCs subsets were
significantly elevated in patients and positively correlated to
disease progression. However, despite most of the suppressive
mechanisms and phenotype differences reported seemed shared
among MDSCs subsets and tumor types, it is necessary to
further dissect their role in order to define whether these

TABLE 2 | Summary of clinical trials targeting MDSCs in cancer patients.

Drug Target Combination partner Tumor ClinicalTrials.gov identifier

ENTINOSTAT class I HDAC Nivolumab BC NCT02453620

IPI-549 PI3K Nivolumab NSCLC, MEL, BC NCT02637531

IPI-549 PI3K Tecentriq and Abraxane BC NCT03961698

REPARIXIN CXCR2 Paclitaxel BC NCT02370238

AB928 A2aR and A2bR IPI-549, PLD, NP BC NCT03719326

DS-8273a TRAIL-R2 Nivolumab CRC NCT02076451

PEXIDARTINIB CSF1R Durvalumab CRC NCT02777710

MARAVIROC CCR5 - CRC NCT01349036

DANVATIRSEN (AZD9150) STAT3 - HCC NCT01839604

REGORAFENIB multi-TKIs Nivolumab HCC NCT04170556

ATRA Retinoic acid receptor Ipilimumab MEL NCT02403778

SX682 CXCR1/2 Pembrolizumab MEL NCT03161431

RTA408 Nrf-2 Ipilimumab/Nivolumab MEL NCT02259231

Tasquinimod S100A9 - PC NCT01234311

AZD5069 CXCR2 Enzalutamide PC NCT03177187

Granocyte G-CSF Cabazitaxel plus Prednisone PC NCT02961257

RGX-104 LXR Nivolumab/Ipilimumab/ Docetaxel/Pembrolizumab NSCLC NCT02922764

AB928 A2aR and A2bR Carboplatin/Pemetrexed Pembrolizumab NSCLC NCT03846310

vinorelbine Cytotoxic Atezolizumab NSCLC NCT03801304

Oleclumab CD73 Durvalumab NSCLC NCT04262388

PD-0360324 CSF1 Avelumab NSCLC, MEL, BC NCT02554812

ARRY-382 CSF1R Pembrolizumab NSCLC, MEL, NCT02880371

AR, adenosine receptor; BC, breast cancer; CCR5, C-C chemokine receptor type 5; CXCR1/2, C-X-C motif chemokine receptor 1/2; CRC, colorectal cancer; CSF1, colony-stimulating

factor 1; CSF1R, colony-stimulating factor 1 receptor; G-CSF, granulocyte colony-stimulating factor; HCC, hepatocellular carcinoma; HDAC, histone deacetylase; LXR, liver X receptor;

MEL, melanoma; NP, nanoparticle albumin-bound paclitaxel; Nrf-2, nuclear factor erythroid 2-related factor 2; NSCLC, non-small cell lung cancer; PC, prostate cancer; PI3K,

phosphatidylinositol 3-kinase; PLD, pegylated liposomal doxorubicin; STAT3, signal transducer and activator of transcription-3; TKIs, tyrosine kinase inhibitors; TRAIL-R2, TNF-related

apoptosis-induced ligand receptor 2.

Frontiers in Immunology | www.frontiersin.org 13 July 2020 | Volume 11 | Article 1680

http://www.ClinicalTrials.gov
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


De Cicco et al. MDSCs and Cancer Immune Evasion

differences are real or related to some bias from analysis
of some markers/mechanisms. Numerous preclinical studies
carried out in mouse tumor models, have showed that targeting
MDSCs improved the effect of anti-cancer therapies (266–
268). Although tumor mouse models could be useful for a
better understanding of the mechanisms of induction, expansion,
trafficking, and function of MDSCs in tumor, and for a rapid
screening of anti-MDSCs agents in vivo, the translation in
human is not so straightforward. First, the identification of
human MDSCs phenotype is still challenging, owing the great
heterogeneity of MDSCs in different cancers. Second, most
human studies focus only on circulating MDSCs while little
is known about tumor infiltrating MDSCs. Thus, a better
and univocal characterization of the predominant subsets of
MDSCs in several types of cancer as well as their further
evaluation at the tumor site represent a compelling requirement
in order to develop new effective strategies for targeting MDSCs.
It is well-known that different subsets of MDSCs could use
different mechanisms to suppress T-cells function. Therefore,
the identification of the specific immunosuppressive mechanism
is also essential to find the proper agent to block it and,
consequently, to inhibit their function. Reduction of MDSCs
expansion and recruitment to peripheral lymph nodes and tumor
sites, inhibition of MDSC’s suppressive activity and promotion

of their differentiation into mature non-suppressive cells are

the current therapeutic approaches that are being investigated
to target MDSCs (Figure 1). So far, only few agents approved
by FDA have been reported to have direct effects on MDSCs
accumulation, maturation, and function (e.g., ATRA, Vitamin D,
Suitinib, Gemcitabine, Bevacizumab, Tadalafil). However, a wide
number of therapies and combination therapies are currently
being tested in human clinical trials (Table 2) demonstrating
an improvement of the patients’ clinical outcome (146, 202,
203). In sight of this, further studies are needed to identify
or confirm key mechanisms and upstream signals involved in
MDSCs generation, expansion and immunosuppressive function
in different malignancies. Advances in this field should facilitate
rational design of new strategies to target MDSCs in cancer in
order to enhance clinical responses to current immunotherapies
and improve OS in patients.
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