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Macrophages are key cells of the innate immune system with functional roles in both

homeostatic maintenance of self-tissues and inflammatory responses to external stimuli,

including infectious agents. Recent advances in metabolic research have revealed

that macrophage functions rely upon coordinated metabolic programs to regulate

gene expression, inflammation, and other important cellular processes. Polarized

macrophages adjust their use of nutrients such as glucose and amino acids to meet

their changing metabolic needs, and this in turn supports the functions of the activated

macrophage. Metabolic and inflammatory processes have been widely studied, and a

crucial role for their regulation at the post-transcriptional level by microRNAs (miRNAs)

has been identified. miRNAs govern many facets of macrophage biology, including

direct targeting of metabolic regulators and inflammatory pathways. This review will

integrate emerging data that support an interplay between miRNAs and metabolism

during macrophage inflammatory responses, highlighting critical miRNAs and miRNA

families. Additionally, we will address the implications of these networks for human

disease and discuss emerging areas of research in this field.
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INTRODUCTION

The immune system consists of a vast array of innate and adaptive immune cells necessary for
defense against pathogen invasion. Macrophages are key constituents of the innate immune system
and are an integral part of the first response to infection through their recognition of pathogen-
associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs) that include toll-
like receptors (TLRs), and NOD-like receptors (NLRs), among others (1–3). Following detection
of microbes, macrophages take on a number of roles such as directly killing invading pathogens,
phagocytizing dead and dying cells, responding to parasite invasion through cytokine release, and
priming the adaptive immune system to generate antigen-specific responses against infectious
agents (4, 5).
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Macrophages are widely distributed throughout the body,
residing in nearly every tissue (6). These tissue resident
macrophages emerge from distinct sources—either originating
from the prenatal yolk sac and seeding into tissues during
embryonic development (7), or arising from the bone marrow
as monocytes and circulating through the bloodstream prior
to injury or infection, prompting differentiation and tissue
infiltration (8). Tissue macrophages respond to cytokines,
microbial signals, fatty acids, or growth factors in their
environment (8), which leads to changes in transcription, cell
surface protein expression, and cellular function. Considerable
heterogeneity exists among activated macrophage populations
(6, 9), and these phenotypic changes are generally described
as one of two main polarization subtypes: classical (“M1”)
and alternative (“M2”). M1-polarized macrophages are typically
activated by inflammatory cytokines such as interferon gamma
(IFN-γ) and TLR ligands such as lipopolysaccharide (LPS),
and promote pathogen clearance through inflammation and
microbicidal activity (10). M2-polarized macrophages, on the
other hand, usually respond to Interleukin-4 (IL-4) and IL-13
and promote parasite clearance, inflammatory resolution, and
tissue repair (11). The M1/M2 classification system provides
a simple paradigm to describe macrophage phenotypes based
on their more prominent defining features during activation,
yet it simplifies the plastic nature of the macrophage response
spectrum, which is subject to an array of activating signals, and
which has been extensively discussed in other reviews (12, 13).
This review provides a list of relevant activating signals in Table 1
to provide amore in-depth perspective onmacrophage activation
and polarization.

Macrophages are important for normal homeostatic
maintenance and contribute to self-limited inflammation
during infection; however, these beneficial functions can
be superseded by prolonged activation signals leading to

Abbreviations: A20, negative regulator of NF-kB encoded by TNFAIP3; ABCA1,

ATP-Binding Cassette Transporter A1; AKT, also known as PKB, or Protein Kinase

B; AMPK, 5′ AMP-activated protein Kinase; AP-1, Activator Protein 1; ARG1,

Arginase; BIK, BCL-2 Interacting Killer; CCR7, C-C Motif Chemokine Receptor

7; CD206, Cluster of Differentiation 206, also known as Mannose Receptor;

CD301, Cluster of Differentiation 301, also known as CLEC10A; C/EBP-δ,

CCAAT/Enhancer-Binding Protein delta; CPT1a, Carnitine Palmitoyltransferase

1a; DLL4, Delta-Like Ligand 4; FIH1, Factor Inhibiting Hif-1; HIF1α, Hypoxia

inducible factor 1α; IRAK1, Interleukin-1 Receptor-Associated Kinase 1; IRF4,

Interferon Regulatory Factor 4; KLF13, Kruppel-Like Factor 13; LDL, Low-

density Lipopolysaccharide; LIN28a, Lin28 homolog A, suppressor of Let-7

and SDH; mTOR, Mammalian Target of Rapamycin; MTP18, Mitochondrial

Protein 18; NF-κB, Nuclear factor kappa B; NLR, Nod-like receptor; NO,

Nitric Oxide; NOS2, Nitric Oxide Synthase; NOTCH1, Signaling receptor

protein in the NOTCH family; OXPHOS, Oxidative Phosphorylation; PAMP,

Pathogen associated molecular pattern; PAK1, P21-Activated Kinase 1; PFK-M,

Phosphofructokinase, Muscle isoform; PI3K, Phosphatidylinositol 3-Kinase; PMA,

Phorbol Myristate Acetate, a monocyte-to-macrophage inducer; PPP, Pentose

phosphate pathway; PRR, Pattern recognition receptor; ROCK2, Rho-dependent

Kinase 2; SCD2, Stearoyl-CoA Desaturase-2; SHIP1, Src Homology-2 domain-

containing Inositol 5-Phosphatase 1; SOCS1, Suppressor of Cytokine Signaling 1;

SREBF1, Sterol Regulatory Element-Binding Factor 1; SREBF2, Sterol Regulatory

Element-Binding Factor 2; TCA Cycle, Tricarboxylic acid cycle; TET2, TET

Methylcytosine Dioxygenase 2; TGF-β, Transforming Growth Factor-β; TLR,

Toll-like receptor; TNF-α, Tumor Necrosis Factor-alpha; TRAF6, TNF Receptor

Associated Factor 6; UDP-GlcNAc, Uridine Diphosphate N-Acetylglucosamine.

dysregulated macrophage activity, and this can have pathological
consequences (5). For instance, unrestrained or chronic
inflammation from macrophages can drive inflammatory
conditions such as metabolic disease, cytokine storm, and
sepsis (45–47). On the other hand, macrophages sometimes
fail to mount a sufficient inflammatory response, especially
within tumors where they are referred to as tumor-associated
macrophages (TAMs). TAMs often resemble M2 macrophages
and promote angiogenesis, decrease antigen presentation,
dampen inflammatory cytokine production, and impede
T cell recruitment into the tumor (48). Research in this
field has uncovered many mechanisms that have evolved
to regulate macrophage activity and aid in controlling the
inflammatory response.

In recent years, the field of immunometabolism has expanded
rapidly. It is now widely accepted that leukocyte metabolism is
an essential part of a coordinated immune response. Macrophage
metabolism in particular has been widely studied, and it has
become clear that metabolism plays a considerably larger role in
macrophages than simply driving energy production for the cell.
Rather, it is a dynamic process with direct and context-specific
roles in driving inflammatory signaling and other macrophage
effector functions (49, 50). It has also become evident that
metabolic programs are responsive to many cues beyond
nutrient availability, including cytokine-mediated polarization
signals (51, 52). Under polarizing conditions, M1 and M2
macrophages differentially utilizemetabolic pathways to promote
their inflammatory or anti-inflammatory functions. For instance,
M1 macrophages rely on aerobic glycolysis for their energetic
needs, and this polarized metabolic programming drives the
pentose phosphate pathway (PPP), itaconate production, and
nitric oxide (NO) synthesis, all of which support the functions of
classically activated macrophages. Conversely, M2 macrophages
use oxidative phosphorylation (OXPHOS) for their energetic
needs, driving glycosylation of cell surface receptors and
producing ornithine to support wound healing functions of
alternatively activated macrophages (52). The metabolic activity
of macrophages has been an exciting area of research in recent
years and has greatly expanded our understanding of how
macrophage responses are regulated.

Inflammatory and metabolic gene expression must be
tightly controlled during macrophage activation for a proper
macrophage response to occur. Cellular mechanisms exist to
ensure this, with one of these being post-transcriptional gene
regulation by miRNAs. miRNAs are small, ∼22 nucleotide non-
coding RNAs that are fundamental in coordinating expression
of a diverse array of genes in immune populations (53). These
small RNAs are endogenously expressed and are generated first
as long primary transcripts which undergo a series of processing
steps to reach their final mature state (54). Once formed, the
mature miRNA is loaded into the RISC complex and acts as
a guide to complementary mRNA targets. The miRNA-RISC
complex binds to the target mRNA, leading to either degradation
or translational inhibition of the mRNA transcript. miRNAs are
best known for acting intracellularly, but they can also be loaded
into exosomes for transport to distant cells (55). A single miRNA
can target multiple genes; likewise, a single gene can be repressed
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TABLE 1 | Functional roles of microRNAs in metabolism, inflammation, and disease.

miRNA Relevant targets Induced by Role in inflammation or

metabolism

Role in disease outcome References

miR-155 SOCS1, SHIP1 LPS/NF-kB Promotes M1 inflammatory

response

Promotes myeloproliferative

disease

(14)

miR-146a TRAF6, IRAK1 LPS/NF-kb Inhibits M1 inflammation, inhibits

glycolysis through mTOR

signaling

Protects against obesity;

Promotes Sjögren’s

(15, 16)

miR-21 PTEN, PDCD4, PFK-M NF-kB or AP-1 Inhibits M1 inflammation,

promotes IL-10 production,

inhibits glycolysis

Promotes cancer, promotes

Mycobacterium tuberculosis

infection

(17, 18)

Let-7adf A20, LIN28a, TET2 LPS Promotes M1 inflammation,

promotes metabolic activation

and IL-6 production

Reduces Mycobacterium

tuberculosis and Salmonella

infections

(19, 20)

Let-7b ?(unknown in

macrophages)

Cancer cell

conditioned media

Regulates inflammatory

cytokines IL-12, Il-23, TNF-a;

promotes TAM phenotype

Promotes carcinoma (21, 22)

Let-7c C/EBP-δ, PAK1 Suppressed by

LPS

Promotes M2 polarization,

depletes CCR7, and MHC-II

levels

Implicated in promoting

pulmonary fibrosis

(23, 24)

Let-7e TLR4, IRAK1 AKT, LPS Suppresses M1 polarization Promotes endotoxin tolerance (25, 26)

miR-99a TNF-a IL-4 Promotes M2 phenotype and

reduces, inflammatory cytokines

Reduces adipose tissue

inflammation and protects from

diabetes

(27)

miR-34 NOTCH1 Suppressed by

LPS

Inhibits M1 inflammation Protects from diet-induced

obesity

(28, 29)

miR-30 DLL4, REDD1 Suppressed by

HIF1α

Inhibits M1 inflammation,

regulates glycolytic capacity

Downregulated during obesity;

protects against gastric cancer

(30, 31)

miR-125a A20, FIH1, IRF4, KLF13 LPS/NF-kB,

NOTCH1

Promotes or inhibits M1

inflammation, promotes HIF1α,

increases phagocytosis

Protects against cancer;

complex roles in inflammation

(32, 33)

miR-125b BIK, MTP18 IFN-γ + LPS Promotes M1 inflammatory

response

Protects against chronic

inflammatory systemic disorder

(34)

miR-33 ABCA1, CPT1a, AMPK IFN-γ + LPS Inhibits fatty acid oxidation and

promotes glycolysis, inhibits M2

phenotype

Promotes atherosclerosis (35)

miR-150 SCD2 LPS, LDL Regulates lipid traffickiing and

promotes angiogenesis

Promotes macular degeneration (36)

miR-17/20a HIF1α and HIF2α Repressed by

PMA

Regulate macrophage

differentiation, repress hypoxic

activity of HIF proteins

Implicated in inhibiting

angiogenesis in tumors

(37, 38)

miR-210 NF-kB, NDUFA4 HIF1α, LPS “hypoxamir”; regulates

metabolism, inflammation, and

cell proliferation

Promotes parasite infection;

promotes diabetes

(39–41)

miR-511 ROCK2 IL-4 Transcribed with CD206,

promotes inflammation

Limits pro-tumoral functions in

TAMs; Promotes colitis

(42, 43)

miR-221/222 Brg1 LPS Involved in macrophage

tolerance

Promotes sepsis (44)

by numerous miRNAs, and it is thought that at least 60% of all
protein-coding genes are under miRNA regulation (56). miRNAs
are numbered sequentially by discovery date and classified into
families based on sequence homology, structure, or functional
similarities (57).

These small but critically important molecules have been
shown to regulate gene expression during each stage of
macrophage development, from myelopoiesis all the way
through polarization and during effector function (58), and

have been identified as a regulatory link between polarization
signals and metabolic function (59). miRNAs thus ensure
the ability to properly gauge key macrophage processes and
inflammatory programs.

miRNAs have distinct roles in regulating macrophage
activities to restrain macrophage-associated diseases; meanwhile,
miRNA dysregulation is associated with poor prognosis in many
of these diseases. Recent work in this field has identified specific
miRNAs and their mechanistic functions in macrophages,
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playing a part in both health and disease. In this review, we will
discuss macrophage metabolic and inflammatory programming
and the important functional consequences of miRNAs in
controlling these processes. As we examine the existing research
in this field of study, it should bementioned that some differences
exist between human andmouse macrophages, including distinct
metabolic and miRNA variations (60); however, these molecules
and processes are also conserved in many cases.

METABOLIC PROGRAMMING IN
POLARIZED MACROPHAGES IS
ESSENTIAL FOR FUNCTION

Macrophage activation relies heavily on the metabolic activities
of the cell to fuel a specific and timely response. Polarized
macrophages rely on specific metabolic pathways to promote
the dynamic activities of pro- or anti-inflammatory responses,
and metabolic gene expression levels are often used as markers
of classically or alternatively activated macrophage populations
(13). In this section we will discuss the metabolic changes
that occur in macrophages during polarization to promote
macrophage functions.

Prior to polarization, macrophages exhibit a resting metabolic
state that relies on OXPHOS fueled by the tricarboxylic acid
(TCA) cycle for energy needs. When classical activation is
initiated by extracellular molecules such as IFN-γ and LPS,
murine macrophages undergo a drastic increase in energy
demand and induce heightened glucose flux to meet these
energetic needs. Macrophage polarizing signals initiate master
transcription factors such as nuclear factor-κB (NF-κB) and
hypoxia-inducible factor 1α (HIF1α), among others, to carry
out changes in inflammatory gene expression and metabolic
programming (61, 62). During polarization, inflammatory
macrophages switch their metabolic programming to favor
aerobic glycolysis over OXPHOS (51, 63, 64). Although aerobic
glycolysis, also termed the Warburg Effect, is less efficient at
generating ATP than is OXPHOS, the heightened glucose flux
into the cell allows for rapid energy production and is used
to generate other biosynthetic intermediates as well (65). This
includes the pentose phosphate pathway, which supplies NADPH
for reactive oxygen species (ROS) and NO production, and
which helps maintain the cellular redox state of the cell (66).
The pentose phosphate pathway also generates intermediates
necessary for nucleotide synthesis, although the need for
nucleotide production is unclear since activated macrophages do
not proliferate (67). Finally, aerobic glycolysis results in pyruvate
being reduced to lactate, which maintains the glycolytic flux in
activated macrophages (68).

A hallmark of inflammatory macrophage metabolism is a
defective tricarboxylic acid (TCA) cycle. The TCA cycle, which
is primarily fed by the products of glycolysis and glutamine
metabolism, is broken in two spots in inflammatory murine
macrophages, resulting in a buildup of TCA intermediates (64,
69, 70). These breakpoints occur at isocitrate dehydrogenase
(IDH), leading to citrate accumulation, and at succinate
dehydrogenase (SDH), leading to succinate accumulation

(64, 71, 72). These accumulated metabolites are then used
for other metabolic and immune signaling functions. First,
accumulated citrate is used to drive fatty acid synthesis and
NO production to support a classically activated macrophage
phenotype (68). Citrate can also be converted into the
antimicrobial metabolite itaconate (73, 74), which has multiple
roles, including antimicrobial protection against intracellular
pathogens and inhibition of SDH to promote succinate buildup
(75). Second, accumulated succinate stabilizes HIF1α and leads
to sustained IL-1β and ROS production (64). IL-1β is among
the inflammatory cytokines characteristically produced by IFN-
γ-induced macrophages, along with TNF-α, IL-6, and IL-12
(12). HIF1α is a key transcription factor in regulating both
the glycolytic and inflammatory capacities in macrophages, and
its absence results in impaired motility, defective bactericidal
activity, and poor macrophage accumulation (76). The function
of itaconate and succinate in driving antimicrobial programs and
pro-inflammatory cytokine expression, respectively, are prime
examples of the direct role of metabolic products on macrophage
inflammatory function.

This central role for metabolism is further illustrated by
seminal findings in the early 1990s demonstrating that murine
macrophage subtypes differentially metabolize the amino acid
arginine (77–79). These studies showed that inflammatory
polarization induces expression of the enzyme NOS2, which
converts arginine to the microbicidal molecule NO. NO is
cytotoxic to pathogens and thus aids in the antimicrobial
macrophage response. In contrast, wound healing macrophages
hydrolyze arginine to the tissue-remodeling amino acid ornithine
through expression of the enzyme ARG1. Ornithine promotes
wound healing by aiding in collagen formation and inhibiting
inflammatory cytokine expression (80–83). These distinct
metabolic activities in pro- or anti-inflammatory macrophages
are driven by macrophage polarization signals, and in return the
products of arginine metabolism promote the specific functions
of polarized macrophages.

While the metabolic profile undergoes dramatic changes
upon pro-inflammatory polarization, the anti-inflammatory
macrophage triggered by IL-4 and IL-13 more closely resembles
metabolism seen in non-polarized macrophages. Alternatively
activated murine macrophages use glucose and glutamine to
feed the TCA cycle, and also rely on fatty acid oxidation
(FAO) to fuel OXPHOS (84). Important transcription factors
and enzymes are involved in alternative macrophage activation
and are distinct from inflammatory macrophages. Among these
transcription factors, IRF4 is responsive to IL-4 stimulation and
supports the roles of inflammatory abatement, wound repair, and
angiogenesis, and it contributes to metabolic reprogramming in
alternatively activated macrophages (85). Additional molecules
are important in M2 macrophages, such as the kinase AMP-
activated protein kinase (AMPK), which is induced in response
to anti-inflammatory cytokines in murine macrophages and
plays a role in stimulating fatty acid oxidation (FAO) (84,
86). Further, the coenzyme UDP-GlcNAc, a product of glucose
and glutamine metabolism, is a metabolite produced during
alternative macrophage activation which glycosylates receptors,
such as the mannose receptors CD206 and CD301. The loss of
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this necessary enzyme diminishes alternative polarization and
cell surface receptor expression (11, 13, 74, 87). Finally, anti-
inflammatory macrophages characteristically produce cytokines
such as IL-10 and TGF-β, and these cytokines promote
alternative activation through multiple mechanisms, including
repressing metabolic remodeling in inflammatory macrophages
(88). Overall, metabolic programs in polarized macrophages are
distinct from one another but promote the inflammatory or
reparative functions of the specific macrophage responses. These
functions are summarized in Figure 1.

MIRNA-MEDIATED REGULATION OF
MACROPHAGE FUNCTION

miRNAs that regulate distinct aspects of macrophage responses
have been identified, including those that either promote or
mute inflammation in response to polarizing signals. More
recently, a growing body of literature has emerged demonstrating
the role for miRNAs in regulating metabolic functions to
impact macrophage responses (89). While regulation of innate
immune metabolism by miRNAs is still up-and-coming, the
literature available in this area suggests a strong link between
miRNA function and metabolic proficiency in macrophages,
with aberrant miRNA expression being linked to deficient
antimicrobial responses, metabolic syndromes, and cancer.
Here we will review miRNAs that regulate inflammation or
metabolism, miRNAs that have been identified to regulate both,
and we will discuss how these miRNAs impact macrophage
function (Figure 2 and Table 1).

miR-155
miR-155 was one of the first miRNAs found to regulate the
immune system and is one of the most widely studied miRNAs
in immunology. It is expressed in both lymphoid and myeloid
lineages and is highly induced in macrophages in response to
the key inflammatory transcription factor NF-κB (90–93). miR-
155 promotes the inflammatory response in humans and mice
by targeting SOCS1 and SHIP1, which are negative regulators
of inflammation. miR-155 promotes inflammatory cytokine
production, PI3K/AKT activity, type I IFN signaling, and further
NF-κB function through silencing its anti-inflammatory targets
(25, 94–97), and loss of miR-155 attenuates the macrophage
antiviral response, highlighting its role in driving inflammatory
macrophage function (98, 99).

miR-146a
In contrast to miR-155, miR-146a represses the inflammatory
response by targeting transcripts of TRAF6 and IRAK1, two
proteins that promote NF-κB activity in the TLR signaling
pathway (100). Overexpression of miR-146a diminishes
inflammatory cytokine production, while deletion or inhibition
of miR-146a leads to elevated inflammatory markers in
both human and mouse macrophages, illustrating its role
in negatively regulating inflammation (101–103). Recently,
our group identified an additional function for miR-146a,
showing that it has the ability to regulate metabolic pathways
in murine macrophages (15). We found that miR-146a does

this by impeding mTOR signaling through its target, Traf6.
This restrains glycolysis; further, genetic knockout of miR-146a
leads to highly glycolytic and hyperinflammatory macrophages
and gives rise to diet-induced inflammation and obesity in
mice. These findings demonstrate a dual role for miR-146a in
promoting both metabolic and inflammatory abatement.

miR-21
miR-21 is another miRNA exhibiting synchronous roles in
both inflammation and metabolism. miR-21 is an endotoxin-
responsive miRNA, shown to be induced by either NF-κB or
AP-1 (104, 105). This miRNA promotes an anti-inflammatory
macrophage phenotype and inflammatory resolution in
mouse and human cells by targeting transcripts of the
inflammatory proteins PTEN and PDCD4. This leads to
decreased NF-κB signaling and increased anti-inflammatory
IL-10 production (106, 107). Consistent with this, miR-21
expression in macrophages promotes TAMs which support
tumor growth, and its suppression leads to an improved anti-
tumor response (17). In addition to targeting inflammatory
genes, miR-21 also targets the glycolytic pathway enzyme
PFK-M for downregulation (18). This enzyme catalyzes an
early step in glycolysis, and its inhibition negatively regulates
glycolytic flux (108). Hackett et al. found that miR-21 induction
by Mycobacterium tuberculosis during infection limits the
switch to a glycolytic state, thus inhibiting inflammatory
macrophage polarization. M. tuberculosis is known to promote
its own survival by inducing host anti-inflammatory or anti-
glycolytic factors (109), and thus sustained miR-21 expression in
macrophages is tolerogenic to bacterial growth. miR-21 exhibits
roles in restraining pro-inflammatory macrophage activation by
targeting both inflammatory and metabolic factors.

Let-7
The Let-7 family of miRNAs contains 10 mature miRNAs in
humans, many of which are relevant in macrophage metabolism
and have functions in the immune response to pathogens
(21, 23, 110). Let-7 was one of the first discovered miRNAs,
originally found in C. elegans but with high conservation across
species (53). These miRNAs have been extensively studied
and a number of them will be highlighted here. First, Let-7f
promotes inflammatory polarization and cytokine production
in murine macrophages by targeting the negative regulator of
NF-κB, A20. During M. tuberculosis infection, Let-7f expression
is downregulated and A20 levels rise, leading to diminished
NF-κB activity and a poor inflammatory macrophage response
(19). This study further showed that Let-7f is sufficient to
increase inflammatory NF-κB expression in macrophages and
concordantly regulate bacterial growth, as M. tuberculosis
survival was diminished after transfection of Let-7f mimics.

Let-7f can also regulate immune metabolism. Let-7f is part
of the let-7a-1/let-7d/let-7f-1 (let7-adf) cluster of coordinately
transcribed miRNAs, which has been extensively studied
for its role in regulating metabolism in multiple immune
populations (20, 111). In LPS-activated macrophages, Let-
7adf stimulates proinflammatory IL-6 cytokine expression
and promotes inflammation through metabolic targets. It
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FIGURE 1 | Polarized macrophages have differential metabolic programming. Inflammatory macrophages characteristically increase glucose uptake to fuel aerobic

glycolysis, producing increased lactate and ATP production. The pentose phosphate pathway feeds off of the increased flux of glycolytic intermediates, resulting in

heightened nucleotide and amino acid synthesis. Classically activated macrophages have a disrupted TCA cycle in two locations: at isocitrate dehydrogenase (IDH)

and at succinate dehydrogenase (SDH). As a result, citrate and succinate accumulate and drive such functions as fatty acid and NO synthesis, antimicrobial itaconate

production, and HIF1α activity to promote further glycolysis and inflammatory cytokine production. Arginine is differentially metabolized in polarized murine

macrophages, producing the antimicrobial molecule NO in inflammatory macrophages. Anti-inflammatory macrophages are not as metabolically active compared to

classically activated macrophages, and they utilize glutamine, glucose, and fatty acids to fuel the TCA cycle and OXPHOS. In alternatively activated macrophages,

glutamine uptake drives UDP-GlcNAc production, which is important for N-glycosylation of cell surface receptors, such as CD206 and CD301. In anti-inflammatory

murine macrophages, arginine is metabolized to ornithine, which promotes tissue repair through production of prolines and polyamines. White arrows indicate

metabolic intermediates driving M1 or M2 activities. α-KG, alpha-ketoglutarate; ARG1, arginase; HIF1α, hypoxia-inducible factor 1α; IDH, isocitrate dehydrogenase;

IRG1, immune-responsive gene 1; NOS2, nitric oxide synthase; PPP, pentose phosphate pathway; ROS, reactive oxygen species; SDH, succinate dehydrogenase.

does this by targeting two genes in the succinate pathway
(20). First, let-7adf regulates one of its well-established
targets LIN28a, which directly binds to and enhances SDH
activity. By diminishing LIN28a expression, the let-7adf cluster
dampens SDH activity and promotes succinate accumulation.
Second, let-7adf also inhibits TET2, which normally acts to
repress IL-6 downstream of succinate. Inhibition of these two
genes by let-7adf promotes succinate accumulation and IL-
6 expression.

While Let-7f promotes inflammatory macrophage activity, a
number of Let-7 family members instead promote inflammatory

resolution. Among these are Let-7b, which promotes anti-
inflammatory phenotypes by regulating the inflammatory
cytokines IL-12, IL-23, and TNF-α and stimulating angiogenesis
in human TAMs (21). Let-7c, another Let-7 family member,
promotes wound healing phenotypes by targeting and repressing
C/EBP-δ and PAK1, a transcription factor and protein kinase,
resulting in reduced NF-κB and AP-1 activity (23, 24). Let-7c
overexpression leads to diminished proinflammatory cytokine
expression, depleted CCR7 levels, and attenuated MHC-II
surface expression in murine macrophages, all indicative of M2
polarization. Finally, let-7e, which falls within the coordinately
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FIGURE 2 | Selected miRNAs that regulate macrophage metabolic and inflammatory pathways. miRNAs are involved in regulating a number of important processes

in macrophages. Certain miRNAs, highlighted here, target inflammatory or metabolic pathways to regulate macrophage activities. Red (left): miRNAs that promote

inflammatory polarization. Blue (right): miRNAs that promote anti-inflammatory polarization. MiR-125a has noted roles in promoting both inflammatory and

anti-inflammatory macrophages, as indicated. Let-7e is part of the miR-99b∼Let-7e∼miR-125a cluster and acts coordinately with miRNAs in its cluster to have the

functions shown.

transcribed let-7e∼miR-99b∼miR-125a cluster of miRNAs, acts
with its cluster members miR-99b and miR-125a to target
a number of genes to suppress inflammatory polarization,
including TLR4 and IRAK1 (25, 26, 112).

miR-125
As mentioned above, miR-125a is part of the let-7e∼miR-
99b∼miR-125a cluster of miRNAs, though this miRNA may
have complex and independent roles from the rest of its
cluster in macrophage metabolism and activation. miR-125a
promotes pro-inflammatory macrophage responses by targeting
FIH1, a negative regulator of HIF1α, and by suppressing the
transcription factor IRF4 (32). Additionally, miR-125a has been
shown to target A20 to promote NF-kB function (33). In
contrast, miR-125a has been reported to have anti-inflammatory
roles in macrophages by targeting KLF13, a transcription factor
important for inflammation and T lymphocyte activation (113).

In this latter context, miR-125a initiation occurs late relative to
LPS stimulation.While it has not been shown experimentally, the
let-7e∼miR-99b∼miR-125a cluster may rely on transcriptional
timing or relative abundance of distinct miRNAs within
this cluster to dictate whether it will favor inflammation or
inflammatory resolution since miRNAs in this cluster seem to
have opposing roles (114). miR-125a has complex functions in
macrophage polarization, but the cluster as a whole has been
shown to favor an anti-inflammatory phenotype (26), leading
to the idea that cellular context and abundance of individual
miRNAs could promote different macrophage programs.

miR-125b is part of the miR-125 family, and it has functions in
both inflammation and metabolism to promote an inflammatory
response in human and mouse macrophages (34, 115). IFN-
γ and LPS stimulation induce miR-125b, which in turn
regulates the anti-inflammatory transcription factor IRF4 (115).
Further, this miRNA targets genes associated with OXPHOS
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to promote glycolysis in human monocytes. miR-125b targets
BIK, a proapoptotic protein that promotes oxygen consumption,
and MTP18, a mitochondria-localized protein involved in
mitochondrial fission (34, 116). By targeting these genes, miR-
125b abrogates the oxidative capacity of the mitochondria and
supports pro-inflammatory activation.

miR-33
A number of publications have focused on the functions of miR-
33a and miR-33b, which are co-transcribed with their host genes,
SREBF1 and SREBF2 (117–119). These host genes are cholesterol
and fatty acid-regulating transcription factors, and studies
revealed that miR-33a and b promote the functions of their host
genes by targeting genes such as ABCA1 to dampen cholesterol
efflux and CPT1a to regulate FAO. Furthermore, it was shown
in mouse macrophages that miR-33 targets AMPK, which is a
protein kinase important for FAO. miR-33 dampens FAO and
promotes glycolytic programming, and thus drives inflammatory
polarization (35). miR-33 deletion in macrophages results in
M2 polarization that is atheroprotective in hypercholesterolemic
mice, demonstrating a physiological role for the activity of this
miRNA in a disease driven by inflammatory macrophages.

Additional miRNAs
While this list highlights many crucial miRNAs that regulate
macrophage immune responses, a number of other miRNAs
have important roles in macrophage function as well. Additional
miRNAs are known to dampen inflammation, such as miR-
99a, which targets TNF-α (27), and miR-34 and miR-30, which
regulate NOTCH signaling to restrain the inflammatory response
(28, 30). Conversely, additional miRNAs are known to promote
inflammation, such as miR-27a which targets IL-10 to support an
inflammatory immune response (120). Other miRNAs have also
been noted for their relevance in regulating different aspects of
macrophage metabolism. Among these, miR-150 targets SCD2 to
regulate lipid metabolism and angiogenesis, promoting macular
degeneration in mice (36). miR-17 and miR-20a, which are
transcribed as part of the miR-17-92 cluster, regulate HIF1α and
HIF2α expression, playing a role in macrophage gene regulation
in differentiating monocytes and in TAMs (37, 38). It has become
clear from the research in this field that miRNAs are integral for
regulating important metabolic processes in macrophages and
that their activities promote immune responses. As this field
continues to expand, more miRNAs will likely be identified with
crucial metabolic roles, and these findings will help us to better
understand and ultimately treat diseases.

LOOKING AHEAD: COULD METABOLISM
PLAY A ROLE IN REGULATING MIRNAS?

With the recent identification of miRNAs regulating metabolic
pathways, it is possible that cross-talk exists between miRNAs
and metabolism (Figure 3). Identifying whether metabolism can
broadly impact miRNA transcription, biogenesis, or function
is a natural next step for this field, owing to the fact that
metabolic regulation of protein-coding gene expression and

FIGURE 3 | Looking forward: cross-talk between microRNAs and Metabolism.

miRNAs control metabolic processes, but it is still largely unclear whether

metabolic programs regulate miRNA transcription, biogenesis, or function.

Metabolically-induced mechanisms of miRNA regulation could include

modifications to miRNA machinery proteins such as DROSHA, DICER, or

AGO2, with global impacts on miRNA biogenesis; histone modifications that

lead to chromatin remodeling and alterations in miRNA availability; changes in

transcription factor activity that lead to up-regulation or down-regulation of

specific miRNAs; and other possible mechanisms that have yet to be identified.

cellular function has been a thriving area of research for many
years now.

The best current examples of metabolically controlled
miRNAs are those regulated under hypoxic conditions by the
transcription factor HIF1α. A handful of these miRNAs, termed
“hypoxamirs,” have been identified, with miR-210 being one of
the best-studied. This miRNA is induced by HIF1α in both
hypoxic and normoxic conditions, and it in turn regulates
metabolism, inflammation, and cell proliferation in macrophages
(39, 121–124). Another miRNA, miR-30c, has also been shown
to act under HIF1α control to regulate macrophage glycolytic
capacity in human macrophages (31). It is important to note that
while these examples are of metabolically-regulated miRNAs in
macrophages, others have been identified in different cell types as
well (125).

Another promising area is in cancer metabolism. Altered
metabolism is a hallmark of cancer and it is well-established
that miRNAs are dysregulated during cancer, both in
immune and non-immune populations (126, 127). Altered
metabolic pathways in macrophages impact their function
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in tumor microenvironments (128, 129), and it is easy
to speculate that these metabolic changes could impact
miRNAs as part of their regulatory networks. As a result,
cancer could be a phenomenal disease model to study how
metabolic pathways affect miRNAs to induce differential
disease outcomes.

DISCUSSION

In summary, macrophages play a distinct role in maintaining
immune system homeostasis and initiating inflammatory
responses. We have described how metabolism is an integral
part of the macrophage response and how miRNAs are
critical mediators of gene expression to either enact or
abate inflammatory signals. It is evident that metabolism
contributes to the macrophage effector function both by
providing needed energy and also through extra-metabolic
functions of metabolites to regulate the inflammatory
process. miRNAs evidently control both inflammation and
metabolism to coordinate a macrophage response. Some of
the key miRNAs that control macrophage inflammation and
metabolism which we highlighted here include Let-7f, which
promotes inflammation, and miR-146a and miR-21, which
promote inflammatory resolution. It is certainly possible that
additional crucial miRNAs have yet to be described. The
fine-tuned effects of miRNAs in macrophages protect the
host against disease, and miRNA dysregulation can lead to
macrophage-related pathologies.

Despite a robust understanding of the role of miRNAs in
macrophage activation and metabolic programming, there are
still many open questions. One of the most intriguing new
frontiers to address in coming years will be the mechanisms
regulating cross-talk between metabolism and miRNAs as we
discussed in this review. This question relates not only to
specific miRNAs, but can also be applied to global miRNA
biogenesis being affected by metabolism (130), which has started
to be explored. It was recently shown that miRNA biogenesis
processing proteins are regulated in a metabolism-dependent
manner, albeit in non-macrophage cells. Drosha, the nuclear
protein that processes miRNAs, can be modulated in response
to glucose availability, and this has a profound effect on
global miRNA biogenesis (131). In addition to this work, other
studies have shown that global miRNA regulation greatly affects
macrophage function (132–135). Whether and to what extent
metabolism regulates miRNA biogenesis in macrophages is a
very compelling concept for future study. This will surely be a
frontier in immunometabolic research as this exciting area of
study moves forward.

Second, miRNAs as extracellular messengers by exosomes-
mediated transport is also an intriguing area of research. The
full extent of this communication network is still unclear, but
some work has revealed that exosomal miRNAs play functional
roles on recipient tissues in an endocrine manner and can
regulate metabolic processes such as insulin signaling (136). It
is still largely unclear what effect macrophage exosomes have on

recipient cells and whether or howmetabolic functions play a role
in exosome biology.

Finally, whether species differences between human and
mouse macrophages, including metabolic, inflammatory,
and miRNA differences, impact their overall function and
phenotype has been a longstanding topic of debate (60). For
example, human macrophages induced by LPS do not express
NOS2 during arginine metabolism, while NOS2 is a hallmark
gene of LPS activation in murine macrophages (60, 137).
Limitations in human sampling and variations in commonly
used cell sources (for instance, mouse bone marrow-derived
macrophages, human peripheral blood macrophages, and mouse
or human immortalized cell lines) could contribute to noted
phenotypic differences between species. Improving sampling
and standardizing methodology for studying macrophage
polarization could help improve our understanding of
pre-clinical mouse models for human disease research and
drug development.

As this field continues to grow, the potential for
therapeutic interventions will continue to expand. Clinical
trials have shown promise for targeting miRNAs for
inhibition (138, 139), and others are exploring miRNA
mimics for use in miRNA replacement therapy (140, 141).
However, there are still many hurdles to overcome regarding
developing and delivering miRNA therapies, and a deeper
understanding of miRNA physiology will certainly lend
itself to better therapeutic strategies and thus improved
clinical outcomes. Furthermore, targeting macrophage
metabolism for therapeutic purposes is emerging with
the potential to significantly improve cancer, obesity, and
autoimmune diseases treatments (142). Taken together, it
is clear that there is crosstalk between miRNA, metabolic,
and inflammatory pathways in macrophages, and through
an improved understanding of these networks, the next
generation of targeted therapies will be developed to help fight
human disease.
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