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Current sequencing methods allow for detailed samples of T cell receptors (TCR)

repertoires. To determine from a repertoire whether its host had been exposed to a

target, computational tools that predict TCR-epitope binding are required. Currents tools

are based on conserved motifs and are applied to peptides with many known binding

TCRs. We employ new Natural Language Processing (NLP) based methods to predict

whether any TCR and peptide bind. We combined large-scale TCR-peptide dictionaries

with deep learning methods to produce ERGO (pEptide tcR matchinG predictiOn), a

highly specific and generic TCR-peptide binding predictor. A set of standard tests are

defined for the performance of peptide-TCR binding, including the detection of TCRs

binding to a given peptide/antigen, choosing among a set of candidate peptides for a

given TCR and determining whether any pair of TCR-peptide bind. ERGO reaches similar

results to state of the art methods in these tests even when not trained specifically for

each test. The software implementation and data sets are available at https://github.com/

louzounlab/ERGO. ERGO is also available through a webserver at: http://tcr.cs.biu.ac.il/.

Keywords: TCR repertoire analysis, epitope specificity, evaluation methods, machine learning, deep learning, long

short-term memory (LSTM), autoencoder (AE)

INTRODUCTION

T lymphocytes (T cells) are pivotal in the cellular immune response (1, 2). The immense diversity
of the T-cell receptor (TCR) enables specific antigen recognition (3, 4). Successful recognition
of antigenic peptides bound to Major Histocompatibility Complexes (pMHCs) requires specific
binding of the TCR to these complexes (5–7), which in turn modulates the cell’s fitness, clonal
expansion, and acquisition of effector properties (7). The affinity of a TCR for a given peptide
epitope and the specificity of the binding are governed by the heterodimeric αβ T-cell receptors
(2). While both chains have been reported to be important to affect binding, we show here that for
many TCR-peptide pairs the TCR’s binding to target MHC-peptide can be determined with high
accuracy using the β-chain only. Including the alpha chain in the analysis is essential for better
accuracy. However, as many experimental settings provide, only beta chains, a binding prediction
tool based on these chains is of importance.
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Within the TCRβ chain, the complementarity-determining
region 1 (CDR1) and CDR2 loops of the TCR contact the
MHC alpha-helices while the hypervariable complementary
determining regions (CDR3) interact mainly with the peptide
(1, 2). In both TCRα and TCRβ chains, CDR3 loops have the
highest sequence diversity and are the principal determinants of
receptor binding specificity.

Following specific binding of T cell receptors to viral and
bacterial-derived peptides bound to MHC (5), or from neo-
antigens (8–10), the appropriate T cells expand, resulting in
the increased frequency of T cells carrying such receptors.
Recently, high-throughput DNA sequencing has enabled large-
scale characterization of TCR sequences, producing detailed
T cell repertoire (Rep-Seq) (11). Expanded clones are more
likely to be repeatedly sampled in Rep-Seq than non-expanded
clones and can serve as biomarkers for previous or current
exposures to their cognate target, so tools that precisely identify
TCRs binding different targets are essential in utilizing T cell
repertoires as systemic biomarkers (often referred to as “reading
the repertoire”).

A direct method for using TCR Rep-Seq as biomarkers has
been proposed by Emerson et al. (12) and similar approaches (13)
who detected patients that have Cytomegalovirus (CMV) based
on their full repertoire and the choice of TCRs that differ between
CMV positive and negative patients (12, 14). This approach is
based on the presence of highly specific and repetitively observed
public TCR in the response of different hosts to the same peptide
[often denoted public clones, although the definition of such
clones varies among authors (15)]. Such an approach requires
extensive repertoire sequencing for every condition tested.

In contrast, many TCR responses are characterized by a high
level of cross-reactivity with single TCRs binding a large number
of MHC-bound peptides, and single peptides binding a large
number of TCRs (16, 17). TCRs binding the same MHC-peptide
may share similarities. Thus, while for public clones the task of
deciphering the relation between a peptide and the TCR binding
is based on tallying the candidate public TCR, for most highly
cross-reactive TCRs, a probabilistic approach is required.

Important steps have been made in this direction by Glanville
et al. (4) and Dash et al. (18), who detected the clear signature
of short amino acid motifs in the CDR3 region of TCRβ and
TCRα in response to specific peptides presented by specific
MHC molecules. This work was then extended by recent efforts
that combined these motifs with machine learning to predict
peptide-specific TCRs vs. naïve TCRs, using Gaussian Processes
(19) or Random Forest (20), or predicting TCR-epitope binding
with Convolutional Neural Networks (21, 22). These methods
significantly outperform random classification in the distinction
of TCR binding a specific peptide and random TCRs.

All the approaches above are sequence-based and do not
model the structure of the interaction. Moreover, it is assumed
that the TCR-peptide binding is a binary prediction, instead of
explicitly computing the off-rate or on-rate. This is indeed a
simplification, based on an arbitrary cutoff of the affinity. Also,
all such predictions ignore cross-reactivity; no attempt is made to
predict whether a given peptide is the only target of a TCR (or
vice versa).

Still, this question is of importance in two experimental setups.
The first case is the attempt to predict from deep sequencing
whether a given host has been infected by a pathogen [e.g., CMV
(12, 14)]. A similar question that is often raised is which receptors
to test for a given target. The binary solution to this question
helps to sort TCRs to test. For both scenarios, predicting whether
a TCR binds a peptide is of importance. We here follow a similar
approach and propose a clear framework for the validation of
current approaches, and a novel method to predict the binding
of any peptide to any TCR (instead of predicting binding to
predefined peptide).

The next required step for using the repertoire to develop
specific biomarkers would be to distinguish between TCR
binding different peptides. An essential step in the development
of high precision predictors is the standardization of
the comparison methods.

In contrast with most machine learning tasks, where one
attempts to predict the output for a given input (e.g., predicting
the content of an image), TCR binding is a pairing problem,
where one is given a pair of inputs X and Y (a peptide and a TCR),
and the goal is to predict whether they would bind. As such, there
are many ways to divide the train and the test, and as a result
many possible tests. One could for example assume that either
X or Y are fixed and already seen in the training phase, and the
other is varied. An alternative division could be that all X and Y
are already known during the training and the test is on whether
a given pair of known X and Y would bind. Finally, one could
imagine a more complex scenario where one would ask on X and
Y both absent from the training set whether they bind.

This formally translates into five different tests, each with
different outcomes, as the standard method to estimate such
predictions (Figure 1A):

• Single Peptide Binding—SPB. Testing whether an unknown
TCR binds a predefined target, using (as training information)
TCRs known to bind to this target (18–20). In other words,
the target is fixed, and TCRs are divided into disjoint training
and test sets. The outcome of such a prediction would be the
Area Under Curve (AUC) for the binding of an unseen TCR
to this target.

• Multi-Peptide Selection—MPS. Given a set of predefined
peptides, predict which of those will be bound by a new TCR.
In such a case, one trains on a set of different target peptides,
and TCRs are again divided into disjoint training and test sets.
The outcome of that would be the accuracy of the choice as a
function of the number of candidate peptides.

• TCR-Peptide Pairing I—TPP-I. Given a large set of peptides
and TCRs, test whether a randomly chosen TCR binds a
randomly chosen peptide. In this task, all TCR and peptides
both belong to training and test sets. However, TCR-peptide
pairs are divided into disjoint training and test sets.

• TCR-Peptide Pairing II—TPP-II is similar to TPP-I, except
that now, TCRs contained in the pairs belonging to the
training set cannot belong to the test set.

• TCR-Peptide Pairing III—TPP-III is again a similar test on
pairs, but here neither TCR nor peptide can be in both training
and test set.
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FIGURE 1 | (A) Illustration of the tests we suggest for evaluating the model performance as explained—SPB, single peptide binding; MPS, multi-peptide selection;

and TPP, TCR-peptide pairing. (B) LSTM based model architecture. (C) Autoencoder based model architecture. (D) ROC curve of autoencoder based model SPB

performance on 3 human peptides from Dash et al. (18) dataset. (E–G) Comparison of amino acids of CDR3 beta sequences of TCRs binding Dash et al. (18)

peptides vs. TCRs that do not bind these peptides, in McPAS (23) database (logos were created with Two-Sample-Logos); the height of symbols within the stack in

each logo indicates the relative frequency of each amino acid at that position. Only amino acids whose distribution differs significantly between the two sets are

shown, and only 13 length TCRs were compared.

We propose these different tests as standard measures for the
quality of TCR-peptide binding predictions. The TCR-peptide
pairing (TPP) task is often addressed in Natural Language
Processing (NLP) using recurrent neural networks (RNN) (24).
Long short-term memory (LSTM) networks are common types
of RNN (25). We employed LSTMs that produce an encoding
of the varying TCR and peptide into constant length real-
valued encodings and created ERGO (pEptide tcR matchinG
predictiOn). In all the following results, ERGO is only trained for
the TPP-I task and tested on all other tasks.

RESULTS

ERGO Outline
Target peptides and TCRs have different generation mechanisms
[TCRs through VDJ recombination and junctional diversity (11),
and peptides through antigen generation, trafficking, processing

and MHC binding (26)]. As such they have different sequence
probability distributions. To capture these differences, ERGO
uses different parallel encoders. At the broad level, we encode
the CDR3 of each TCR and each peptide into numerical vectors.
The encoded CDR3 and peptide are concatenated and used
as an input to a feed-forward neural network (FFN), which is
trained to output 1 if the TCR and peptide bind and 0 otherwise
(Figures 1B,C). At this stage, the MHC and V genes were not
included since they did not contribute significantly to prediction
accuracy in the current formalism.We plan to further enlarge the
formalism to include both.

For the peptides, we first use an initial random embedding
and translated each amino acid (AA) into a 10-dimensional
embedding vector. Changing the encoding dimension did
not significantly change the obtained accuracy. To merge
the encoding vectors of each position into a single vector
representing the peptide, each vector was used as input to an

Frontiers in Immunology | www.frontiersin.org 3 August 2020 | Volume 11 | Article 1803

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Springer et al. ERGO—TCR-Peptide Binding Prediction

LSTM. We used the last output of the LSTM as the encoding
of the whole sequence. The embedding matrix values, the
weights of the LSTM, and the weights of the FFN were trained
simultaneously. For the TCR encoding, we either used a similar
approach or an autoencoder (AE) (see Methods and Figure 1C).

These models were trained on two large datasets of published
TCR binding specific peptides (23, 27). McPAS-TCR (23) is a
manually curated database of TCR sequences associated with
various pathologies and antigens based on published literature,
with more than 20,000 TCRβ sequences matching over 300
unique epitope peptides. These TCRs are associated with various
pathologic conditions (including pathogen infections, cancer,
and autoimmunity) and their respective antigens in humans
and mice. VDJdb (27) is an open, comprehensive database of
over 40,000 TCR sequences and over 200 cognate epitopes and
the restricting MHC allotype acquired by manual processing
of published studies. For each TCR-peptide pair, a record
confidence score was computed. ERGO was trained on both
CD4 and CD8T cell receptors. However, the large majority of
peptides and TCR in both McPAS and VDJdb are CD8 T/MHC-I
TCR/peptide combinations (Supplementary Figure S1C).When
testing ERGO on TPP-I-III, we used an equal distribution of CD4
and CD8T cell receptors in the training and test sets.

ERGO Can Predict TCR Binding to Specific
Epitopes or Antigens (SPB Task)
ERGO was trained to solve the TPP-I problem (pairing TCR
and peptide) on the two datasets above, and then tested on all
five mentioned tests. To test the performance of ERGO on the
SPB task (detecting whether a previously unseen TCR binds a
known peptide), we analyzed the five most frequent peptides
in each dataset and tested the possibility of detecting whether
a randomly selected TCR binds the peptide. The AUC for the
binary classifications ranged between 0.695 and 0.980 (Table 1).
The results are not sensitive to the number of TCRs reported for
the peptides, and all peptides with more than 50 reported TCRs
had similar values (Supplementary Table S4).

Note that ERGO is never trained on any specific target.
Instead, it learns amodel for the entire set of peptides through the
LSTM. As such, its performance on different peptides varies and

TABLE 1 | Comparison between the different versions of the ERGO classifier [AE

(Autoencoder) vs. LSTM and McPAS (23) vs. VDJdb (27)] for the SPB task.

Peptide McPAS Peptide VDJdb

AE LSTM AE LSTM

LPRRSGAAGA 0.772 0.760 KLGGALQAK 0.695 0.731

GILGFVFTL 0.843 0.832 GILGFVFTL 0.820 0.817

NLVPMVATV 0.835 0.821 NLVPMVATV 0.665 0.686

GLCTLVAML 0.803 0.816 AVFDRKSDAK 0.676 0.695

SSYRRPVGI 0.969 0.980 RAKFKQLL 0.828 0.825

The five most frequent peptides in each database are shown. Other less frequent peptides

SPB results are in the Supplementary Table S4. The values are the AUC over the test

set of a previously unseen TCR for this peptide.

is a function of the fit of the trainedmodel to this specific peptide.
This is both a strength and a weakness of ERGO. It is a strength in
that it applies to a wide range of peptides, but a weakness since for
a specific peptide with a large number of known binding TCRs, it
can perform worse than existing classifiers.

To compare ERGO to current approaches, we tested its
performance on current tools that predict TCR-peptide binding.
We first compared it to the work of Jokinen et al. (19) who
compared TCRs found by Dash et al. (18) to bind three human
epitopes and seven mice epitopes with TCRs from VDJdb
database (27), which bind additional 22 epitopes. These peptide-
TCR pairs were compared with naïve TCRs not expected to
recognize the epitopes. Jokinen et al. evaluated the TCRGP
model using leave-one-subject-out cross-validation (LOSO). The
TCRGP model was trained with all subjects but one at a time and
tested on the last. In the VDJdb data, the authors use 5-fold cross-
validation instead of LOSO. Other evaluations were reported
by using leave-one-out cross-validation of all unique TCRs (as
defined by CDR3 sequence and V-gene). We compared ERGO
when only the CDR3β sequence is utilized with the published
TCRGP results for three specific human peptides fromDash et al.
(18) dataset. ERGO outperforms TCRGPmodels on 2/3 peptides,
although ERGO was not trained to solve the SPB task for these
specific peptides, but rather the more generic TPP task. ERGO
was also compared to another epitope-specific based model by
Gielis et al. (20), that used random forest algorithm to train their
TCRex model. Gielis et al. distinguished between epitope-specific
TCRs from McPAS (23) and VDJdb (27) databases (after some
filtering methods) and background TCRs that were taken from
an external dataset. Unlike ERGO, the TCRex data usage also
includes the V and J genes. Nevertheless, ERGO performance
on the SPB task is competitive with TCRex results on various
peptides, even though ERGO is trained without V and J genes on
the TPP task (Table 2 and Figure 1D, Supplementary Table S5

and methods for details of the training and test procedure for
these and all other tests).

We used two-sample-logos (28) to compare the CDR3
sequences of cognate TCRs for the three human peptides from
Dash et al. (18) dataset with TCRs that do not bind these peptides
in the McPAS database (23) (Figures 1E–G). Only 13 AA long
TCRs were compared to avoid any alignment bias. While one
can see that different peptides have different signatures, it is
interesting to see that the signature is not equally positioned
among peptides. For the GLCTLVAML peptide, a signature
is divided equally along the TCR, with a strong bias for the
initial “CSA” at the beginning of the CDR3 sequence and not
“CAS.” The NLVPMVATV signature is distributed following the
standard “CAS” to the end of the CDR3, while the GILGFVFTL
binding peptides are characterized by a dominant RS at position
6-7. Note that a part of this difference can be the result of different
V and J gene usage, which is not explicit in ERGO, but may be
captured by the algorithm.

The single peptide binding task can be extended to the single
antigen protein task, where we predict whether a TCR would
bind any peptide from a protein. Instead of testing whether an
unseen TCR can bind a specific peptide, we tested whether it can
bind any peptide from a target protein. The performance on this
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TABLE 2 | Comparison between the different versions of the ERGO classifier [AE vs. LSTM and McPAS (23) vs. VDJdb (27)] and existing classifiers [TCRGP by Jokinen

et al. (19), TCRex by Gielis et al. (20)] for the SPB task.

Peptide ERGO ERGO best TCRGP (β,3), LOSO TCRGP (β,3), unique LOO TCRex

McPAS VDJdb McPAS+ VDJdb

AE LSTM AE LSTM AE LSTM

GLCTLVAML 0.803 0.816 0.764 0.770 0.708 0.686 0.816 0.782 0.852 0.82±0.02

NLVPMVATV 0.835 0.821 0.665 0.686 0.624 0.632 0.835 0.587 0.651 0.72±0.01

GILGFVFTL 0.843 0.832 0.820 0.817 0.725 0.712 0.843 0.818 0.822 0.81±0.01

Bolded values are the best results. The peptides here are the human peptides in Dash et al. (18) dataset proposed by Jokinen et al. (19). The other VDJdb peptides tested by the same

authors are in Supplementary Table S5. The values are the AUC over the test set of previously unseen TCR for this peptide.

TABLE 3 | Comparison between the different versions of the ERGO classifier [AE

vs. LSTM and McPAS (23) vs. VDJdb (27)] for the binding to a specific antigen.

Protein McPAS Protein VDJdb

AE LSTM AE LSTM

NP177 0.772 0.767 IE1 0.703 0.738

M1 0.843 0.832 M 0.825 0.820

pp65 0.814 0.803 pp65 0.702 0.716

BMLF1 0.808 0.819 EBNA4 0.711 0.717

PB1 0.958 0.970 Gag 0.890 0.897

There are no previous results on this task.

task varies drastically between target peptides, with AUC ranging
from 0.71 to 0.97 (Table 3). This difference is not directly related
to the number of target TCRs in the training set, but may rather
represent the contribution of other factors not incorporated here,
such as the alpha chain or the MHC.

Determining the Target of a TCR
(MPS Task)
To use a TCR as a biomarker, one should be able to predict
which specific peptide it binds. To test for that, we computed
the accuracy (as measured by the sum of the diagonal in the
confusion matrix) of predicting the proper target, with a different
number of possible targets (Figure 2A). Again, ERGO was not
trained for this task, but for the TPP-I task. The targets were
the peptides with the highest number of binding TCR in the
databases (Supplementary Table S6). The AE produces better
accuracies than the LSTM and the prediction for the AE and
VDJdb yields better accuracies than McPAS. An important result
is that the accuracy is still at 0.5 even for 10 peptides, suggesting
that high accuracy can be obtained even when choosing from a
large number of peptides.

Distinguishing TCRs Binding Different
Targets (TPP Task)
A more important task from a diagnostic point of view would be
to distinguish between TCRs binding different peptides for any
set of either known or previously unseen TCRs and peptides. To
test the specificity of the prediction, we evaluated ERGO’s AUC

on the three TPP tasks. The easiest task (TPP-I) is predicting
unknown TCR-peptide parings (AE AUC value 0.86). A more
complex task is the prediction of pairs containing a known
peptide with an unknown TCR (TPP-II—AE AUC value 0.81).
The hardest pairing task is to predict the binding of a previously
unseen peptide and a previously TCR (TPP-III). This task has
never been tested and reaches an AUC of 0.669 (Table 4 and
Figure 2B). We now plan to enlarge ERGO to include the alpha
chain and V and MHC to see if this score can be improved.

To test if this performance can be improved by enlarging the
training set to better learn the generic properties, we trained
ERGO on McPAS (23) and VDJdb (27) simultaneously. On
the TPP-III task, the more complex LSTM encoder reached
a higher AUC of 0.674, yet on the TPP-I and TPP-II tasks,
the results are better when ERGO is trained separately on
McPAS and VDJdb (Table 4). McPAS and VDJdb databases
contain different TCR and peptides with different distributions
(Supplementary Figure S1), therefore ERGO performance on
the combined dataset is often lower, suggesting that further
increasing the training set with a similarly distributed set would
improve the accuracy.

To further test the effect of the training set size, we subsampled
the training set and tested the TPP-I AUC score for different
sample sizes. The AUC increased with sample size and did not
seem to saturate at the current sample size (Figure 2C). Some
peptides have many reported TCRs binding them, while some
have a single reported binding TCR (Figure 2E). We tested
whether a larger number of reported binding TCR improves
accuracy (Figure 2F). Again, a higher number of bound TCRs
induces higher prediction AUC, suggesting that larger datasets
would further improve ERGO’s performance.

Prediction of TCR-Neoantigen Binding
In the future, ERGO may contribute to the development of
TCR-based diagnostic tools. However, it can already be used
for the detection of TCRs that bind specific tumor antigens.
Given a neoantigen extracted from full genome sequencing of
tumors (29, 30) and a target TCR, one could estimate the binding
probability of the TCR to such a neoantigen. To test for that,
we applied ERGO to neoantigen binding prediction; we used a
positive dataset of cancer neoantigen peptides and their matching
TCRs, published by Zhang et al. (31), and expanded it with TCR-
matching neoantigens in the McPAS-TCR and VDJdb databases.
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FIGURE 2 | (A) AE and LSTM models MPS accuracy per number of peptide classes in McPAS-TCR (23) and VDJdb (27) datasets. (B) ROC curve of TPP-I, II, and III

AE model performance on McPAS dataset. (C) AUC for TPP-I as a function of the sub-sample size. (D) AUC of TPP-I per missing amino-acids index. (E) Number of

TCRs per peptide distribution in McPAS-TCR and VDJdb datasets, logarithmic scale. (F) AUC of TPP-I per number of TCRs per peptide bins (bins are the union of all

TCRs that match peptides with total number of TCRs in a specific range).

TABLE 4 | AUC of TPP task with either known peptide and TCR (but unknown pairing TPP-I), known peptide unseen TCR (TPP-II), and unseen peptide and TCR (TPP-III).

Evaluation AUC McPAS VDJdb McPAS+ VDJdb Tumor

AE LSTM AE LSTM AE LSTM AE LSTM

TPP-I 0.860 0.859 0.840 0.842 0.776 0.761 0.805 0.813

TPP-II 0.810 0.798 0.792 0.764 0.770 0.745 0.805 0.813

TPP-III 0.601 0.562 0.669 0.522 0.636 0.674 0.570 0.646

The results are the test AUC using either AE or LSTM onMcPAS (23) and VDJdb (27) separately or on the joined dataset. The final column is the prediction of tumor antigens TCR binding.

Again, the AE consistently outperforms the LSTM, except for the TPP-III task, where increasing the training set size and the complexity of the encoders improves the performance.

Bolded values are the best results.

We tested again TPP-I, TPP-II, and TPP-III (Table 4), and got
a high AUC for TPP-I and II (above 0.8), and 0.65 for the most
complex TPP-III task. A caveat of this analysis may be that it was
performed on a comparison of a dataset of TCRs binding neo-
antigens and T cells from repertoires of healthy donors. Thus,
this is not a direct measurement of the possibility of detecting
neo-antigen specific TCRs within a donor.

Comparison of TPP With Literature
While TPP-III was never previously tested, TPP-II was recently
tested by Jurtz et al. (21), who used a convolutional neural
network (CNN) based model, NetTCR, for predicting binding-
probabilities of TCR-HLA-A∗02:01 restricted peptide pairs. An
IEDB dataset was used to train the model. The MIRA assay
provided by Klinger et al. (32) was used for evaluating the
model by testing the model performance on shared IEDB and
MIRA peptides and new TCRs. Jurtz et al. used two models

in their experiments. One was trained with positive IEDB
examples and only negative examples made from the IEDB
dataset itself (no additional sources) while another model had
also additional naïve negatives (33). We used the united IEDB
and MIRA dataset provided by Jurtz et al. and created also
negative examples from that dataset. We trained ERGO models
with 80% of the united data (positive and negative examples)
and evaluated the model performance on the rest of the data
(20%). Again, ERGO outperformed the current results, 0.88 vs.
0.73 (Supplementary Table S3). Note that some differences exist
between the training and test set used here and in the Jurtz paper,
as detailed in the methods section.

CDR3 Sequence Characteristics
To test which position along the CDR3 has the strongest effect
on the binding prediction, we trained ERGO ignoring one TCR
amino-acid position at a time, by nullifying the position in the
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autoencoder based model or by skipping that position input in
the LSTM based model (Figure 2D). Omitting each one of the
central amino-acids of the TCR’s CDR3 beta (positions 7–15)
impairs the model’s performance, especially in the LSTM-based
model. The autoencoder-based model is more stable than the
LSTM based model, perhaps due to exposure to a variety of TCRs
in the TCR autoencoder pre-training.

DISCUSSION

We propose a set of standard tests to evaluate the accuracy of
TCR-peptide binding and show that training a model using a
combination of deep learning methods and curated datasets on
the complex task of pairing random peptides and TCR can lead
to high accuracy on all other tests. The main element affecting
prediction accuracy is the training size. Enlarging the database
improves the prediction accuracy for unseen peptides. Also,
when subsampling the existing datasets, the accuracy increases
with sample size and does not seem to saturate at the current
sample size (Figure 2C).

Several other elements can affect the results, such as the V
and J gene used and the alpha chain. In general, TCR-sequencing
has often been limited to the TCR β chain due to its greater
combinatorial and junctional diversity (10) and to the fact that a
single TCRβ chain can be paired with multiple TCRα chains (34).
Pogorelyy et al. (35) have shown concordance between TCRα

and TCRβ chain frequencies specific for a given epitope and
suggested this justifies the exclusive use of TCRβ sequences in
analyzing the antigen-specific landscape of heterodimeric TCRs.
Only recently, with single-cell techniques that enable pairing
of α and β chains sequences, more data on alpha-beta TCRs
is accumulating (36). Once large-scale curated alpha-beta TCR-
peptide datasets are available, their integration into the current
method is straight forward.

ERGO is based on LSTM networks to encode sequential data.
Previous models by Jurtz et al. (21) used convolutional neural
networks (CNN) for a similar task. While CNNs are good at
extracting position-invariant features, RNN (in particular LSTM)
can catch a global representation of a sequence, in various NLP
tasks (37). Similarly, we did not use attention-based models (38)
since the TCR can bind the peptide MHC at different angles
and specific TCR positions are not well-correlated with specific
peptide positions (39).

ERGO randomly initializes our amino-acid embeddings and
trains the embeddings with the model parameters. Using word-
embedding algorithms such as Word2Vec (40) or GloVe (41)
can give a good starting point to the embeddings. Special
options for amino-acids pre-trained embeddings include the use
of BLOSUM matrix (42) or Kidera-factors-based manipulations
(43). As pre-trained embedding usually provides better model
results, we plan to further test such encodings.

The prediction method presented here can serve as
a first step in identifying neoantigen-reactive T cells for
adoptive cell transfer (ACT) of tumor-infiltrating lymphocytes
(TILs) targeting neoantigens (44). The ERGO algorithm can
accelerate the preliminary selection of valid target epitopes

and corresponding TCRs for adoptive cell transfer. Finally,
an important future implication would be to predict TCR-
MHC binding, such prediction can be crucial for improving
mismatched bone marrow transplants (45).

MATERIALS AND METHODS

Data
Three TCR-peptide datasets were used in the binding prediction
task. McPAS-TCR dataset was downloaded from http://
friedmanlab.weizmann.ac.il/McPAS-TCR/ and VDJdb dataset
was downloaded from https://vdjdb.cdr3.net/, both in November
2019. We used a dataset of cancer neoantigen peptides and
their matching TCRs, published by Zhang et al. (31). A set of
cancerous peptides was made for extracting TCRs matching
to these peptides also in McPAS-TCR and VDJdb databases.
We extended the original cancer dataset to include all TCRs-
cancerous peptide pairs in all datasets. The data were processed
into TCR-peptide pair files, using only TCRβ chains and valid
TCR and peptide sequences.

The TCR autoencoder was trained on a data which was
derived from a prospective clinical study (NCT00809276) by
Kanakry et al. (46) The dataset is freely available at the Adaptive
database (www.adaptivebiotech.com) that provides open access
to a variety of datasets of TCRs next-generation sequencing.

Datasets Studied
In each model, training data was loaded as batches of positive
and negative examples. For the positive examples, we took the
existing TCR-peptide pairs in the database and split it into a
train set and a test set. For creating the negative examples for the
TPP-I task, we first chose a peptide randomly from the peptides
in the training set. Then, we chose five random TCRs from the
training set that are not reported to bind this peptide, to create
five internal wrong pairs. A similar process was done to create
a test set containing positive and negative examples. Thus, the
number of negative examples is five times larger than the number
of positive examples in both train and test sets.

Models
We used two models for predicting TCR-peptide binding. The
models use deep-learning architectures to encode the TCR and
the peptide. Then the encodings are fed into a multilayer
perceptron (MLP) to predict the binding probability. Two
encoding methods are applied—LSTM acceptor encoding and
Autoencoder-based encoding. The peptide is always encoded
using the LSTM acceptor method, so the two models differ in the
TCR encoding method.

LSTM Acceptor
First, the amino acids were embedded using an embedding
matrix. We set each amino acid an embedding vector, randomly
initialized. Next, the TCR or the peptide was fed into a Long
Short Term Memory (LSTM) network as a sequence of vectors.
The LSTM network outputs a vector for every prefix of the
sequence; we used the last output as the encoding of the
whole sequence. We used two different embedding matrices and
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LSTM parameters for the TCRs and the peptides encodings. The
embedding dimension of the amino acids was 10. We use two-
layered stacked LSTM, with 500 units at each layer. A dropout
rate of 0.1 was set between the layers.

TCR Autoencoder
The TCR autoencoder was trained before training the
Autoencoder-based attachment prediction model. To train
the TCR autoencoder, first we added a “stop-codon” at the end
of every TCR CDR3 sequence. Each amino acid was represented
as a one-hot vector of 21 numbers (20 possible amino acids and
an additional stop codon) where all values were set to zeros
except one index of the corresponding amino acid which was set
to 1. Each of the CDR3 vector representations one-hot vectors
(i.e., 20 positions for each amino acid with zeros, except for
the position appropriate for this amino acid) were joined and,
terminated with a “stop codon” one-hot vector. Zero padding
was then added to the CDR3 vectors, completing the vectors
to the maximum lengths chosen according to the data lengths
distribution. Each zero codon was represented as a fully zeroed
one-hot vector.

The concatenated TCR vectors were fed into the Autoencoder
network, which was based on a combination of linear layers,
creating similar “encoder” and “decoder” networks. In the
encoder, the TCRs were first put into a layer of 300 units, then
into a layer of 100 units, and then into the encoding layer of
100 units. This layer output was used to encode the TCR in the
trained autoencoder model. We used Exponential Linear Unit
(ELU) activation between the linear layers and dropout rate of
0.1. The decoding layers were similar to the encoding layers in
the reverse order—first, the encoded TCR vectors were fed into
a layer with 100 units, then into a layer with 300 units, and then
into a layer with the original TCR concatenated one-hot vector
length units. We used softmax (a function translating the last
layer into a probability function) on the last decoder layer output
on every sub-vector matching to an input amino acid one-hot
vector position.

We used Mean Squared Error (MSE) loss (when the decoder
output should be like the concatenated one-hot input). The
autoencoder was trained using Adam optimizer with a learning
rate of 1e-4, we used batchingwith batch size 50. The autoencoder
was trained for 300 epochs.

In order to read the TCR from the decoding vector, we
first split the long vector into “one-hot” like vectors. We back-
translated the one-hot vectors into amino-acids by taking the
amino acid matching to the maximal value index in the vector
(which should be 1). We dropped all amino acids from the stop
codon and forward to get a sequence of amino acid which should
be the TCR. The autoencoder was trained with 80% of the data
and was evaluated with the rest of it. The autoencoder was only
trained on the TCRs and no information on the peptides was ever
used to train the autoencoder.

MLP Classifier (Also Mentioned as FFN)
In both models, the TCR encoding was concatenated to the
peptide encoding and fed into the MLP. The MLP contains one
hidden layer with as units as half of the concatenated vector

size and sigmoid is used on the output of the last layer to get a
probability value. In both models, the activation in the MLP is
Leaky ReLU. Dropout with a rate of 0.1 was set between layers.

Model Configurations
As mentioned, we used two models, the LSTM based model and
the autoencoder based model. We trained the embeddings, the
LSTM parameters and the MLP in the first model, and the TCR
autoencoder, peptide LSTM encoder and MLP parameters in the
second model. The trained TCR autoencoder parameters were
loaded to the autoencoder based model and are trained again
within all model parameters.

We used Binary Cross Entropy (BCE) loss. Since we get five
times more negative samples than positive samples according to
the described sampling method, the loss is weighted, respectively,
by a factor of 5/6 for positive samples and by 1/6 for negative
samples. The optimizer was Adam with a learning rate of 1e-3
and weight decay 1e-5. We used batching with batch size 50. The
model was trained for 100 epochs. The models used 80% of the
data for training and 20% for evaluation for all datasets.

All models were implemented with PyTorch library in Python
programming language.

The prediction models were evaluated using Area Under the
Curve (AUC) score.

Hyperparameters Tuning
Both LSTM based model and the Autoencoder based model
hyperparameters were optimized using a grid search in the
hyperparameters space. The hyperparameters to optimize were
the embedding matrix dimension, the LSTM dimensions,
learning rate, weight decay, activation functions, etc. All models
were tested with the same grid search. Once the grid search
was finished, we chose five new sets of training and test set and
reported their results. Note that the results are quite robust to
most parameter changes, and that the size of the TCR-peptide
pair space is much larger than any of the training sets used during
parameter tuning.

Experiments Configuration
At the broad level, the ERGO model was trained and designed
to solve the TPP-I task. Since the train and the test set are
chosen randomly for each training process (as described above),
5 trainedmodels along with their matching train and test set were
analyzed, for each database [McPAS (23) or VDJdb (27)] and
model type (LSTM based or AE based). Train and test sizes are
detailed in Supplementary Table S2.

Single Peptide Binding
For computing single-peptide binding score, samples from each
test set were observed. For every peptide, we looked for the pairs
in the test set containing that peptide (positive and negative
samples). The ROC and AUC scores were computed according to
the model prediction of those pairs. SPB scores were computed
for the five most frequent peptides in each database (Table 1)
and three human peptides appearing in Dash et al. (18) dataset
(Table 2). Results for peptides with more than 50 reported
binding TCRs are in the Supplementary Table S4. Mean AUC
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scores are reported. Test sizes for the SPB task are detailed in
Supplementary Table S7.

Single protein scores are extracted similarly, by analyzing all
pairs in the test set that contain a peptide of the specific protein.

Multi-Peptide Selection
At first, the number of classes k was set. Trainedmodel prediction
scores were extracted for each TCR in the test set, paired with
every peptide from the top k frequent peptides in the relevant
database. The TCR target was predicted to be the peptide which
got the maximal score as the pair complement. Accuracy was
computed using the true samples in the test set. This was done
for class numbers ranging between 2 and 10, as well as 20 and 30.
Mean accuracies are shown in Figure 2A. Test sizes for the MPS
task are detailed in Supplementary Table S8.

TCR-Peptide Pairing
New test TCRs and new test peptides were deducted from
the train and test sets. TPP-I score is the AUC of the model
predictions of the original test set. TPP-II is the AUC of the
predictions of the new test TCR positive and negative samples.
TPP-III is the AUC of the predictions of new test TCR and new
test peptide pairs, positive and negative samples.

Train Data Sub-sampling
All models were trained and evaluated using the same train and
test partition. Every model train set was a sub-sample of the
original train set, while the test set remained the same. Ten
thousand new train samples were added at each iteration.

Missing Positions Training
Again, all models were evaluated with the same test set and
a train/test partition. In this experiment, the train data was
modified by dropping a single amino acid in a specific position
at a time. Practically, this was done by deleting this position for
all TCRs in the LSTM based model, or by nullifying the relevant
position in the one-hot encoding of the TCRs in the AE based
model. This experiment was repeated five times, Mean TPP-I
scores are shown in Figure 2D.

TPP Per-Number of TCRs Per-Peptide
First, TCR records per peptide were counted in the original
McPAS (23) and VDJdb (27) databases. Given a test set, the
test pairs were divided into bins, according to the number of

TCR records per peptide in the original database. The differences
between the bins were on an exponential scale. AUC score
was computed for each bin. Mean AUC scores are shown
in Figure 2F.

Comparison With NetTCR
The united IEDB and MIRA datasets were downloaded
from https://github.com/mnielLab/netTCR. Unfortunately, the
authors did not publish the IEDB train data separated from
the MIRA test data, thus we had to evaluate ERGO in another
train/test partition. We used 80% of the IEDB andMIRA data for
training and the rest of it (20%) for testing. Additional “C” prefix
and “F” suffix were added to each TCR sequence. The MIRA data
was containing new test TCRs (but was not evaluated with new
test peptides), therefore we compare NetTCR results with ERGO
TPP-II scores (Supplementary Table S3).
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