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Autoimmune disorders (ADs) are multifactorial diseases involving, genetic, epigenetic,

and environmental factors characterized by an inappropriate immune response toward

self-antigens. In the past decades, there has been a continuous rise in the incidence

of ADs, which cannot be explained by genetic factors alone. Influence of psychological

stress on the development or the course of autoimmune disorders has been discussed

for a long time. Indeed, based on epidemiological studies, stress has been suggested

to precede AD occurrence and to exacerbate symptoms. Furthermore, compiling

data showed that most of ADs are associated with gastrointestinal symptoms,

that is, microbiota dysbiosis, intestinal hyperpermeability, and intestinal inflammation.

Interestingly, social stress (acute or chronic, in adult or in neonate) is a well-described

intestinal disrupting factor. Taken together, those observations question a potential role

of stress-induced defect of the intestinal barrier in the onset and/or the course of ADs.

In this review, we aim to present evidences supporting the hypothesis for a role of

stress-induced intestinal barrier disruption in the onset and/or the course of ADs. We

will mainly focus on autoimmune type 1 diabetes, multiple sclerosis and systemic lupus

erythematosus, ADs for which we could find sufficient circumstantial data to support

this hypothesis. We excluded gastrointestinal (GI) ADs like coeliac disease to privilege

ADs not focused on intestinal disorders to avoid confounding factors. Indeed, GIADs are

characterized by antibodies directed against intestinal barrier actors.

Keywords: intestinal permeability, psychological stress, type 1 diabetes, multiple sclerosis, systemic lupus

erythematosus, microbiota, immune response

INTRODUCTION

Autoimmune disorders (ADs) are multifactorial diseases involving, genetic, epigenetic, and
environmental factors. In the past decades, there has been a continuous rise in the incidence
of ADs, which cannot be explained by genetic factors alone. Changes in our lifestyle including
diet, hygiene, exposure to social adversity, or pollutants have been suggested to be risk factors
for ADs. ADs are associated with defect of the intestinal barrier; and besides nutrition, another
environmental factor well described to impair the intestinal barrier is psychological stress. The
aim of this review is to compile evidences highlighting a relationship between stress, intestinal
barrier disruption, and occurrence of ADs. Even though no causative role of stress-induced
intestinal barrier defect on AD onset has been demonstrated so far, the goal of this manuscript
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is to combine evidences on the basis of a review of the literature
and offer a new field of research and perspectives on ADs.
We will focus on three of the most studied ADs—autoimmune
type 1 diabetes (T1D), systemic lupus erythematosus (SLE),
and multiple sclerosis (MS)—for which we could find sufficient
evidence supporting our hypothesis, that is, role of psychological
stress and defect of intestinal barrier functions.

This review is based on epidemiological and preclinical
studies. Numerous excellent and recent reviews treating either
ADs and stress, or stress and the intestinal barrier will be quoted
to support this hypothesis.

STRESS

Stress, firstly described in 1936 by Selye, is defined as a real
(physical) or perceived (psychological) threat to homoeostasis, to
which the organism has to react by an adaptive response (1).

Life time window, length, and frequency of exposure to
stress play pivotal roles in their consequences on the individual
pathophysiology. Indeed, acute and chronic stress exposure could
occur in early life in a still maturating organism or at adulthood
in mature organism. Traumatic experiences can lead to so-
called post-traumatic stress disorder (PTSD), a condition in
which the patient suffers from anxiety, depression, and flashbacks
long after the traumatic experience (2). Persisting stress or
inadequate response can lead to harmful maladaptive reactions
depending on the kind of stress that will be discussed below.
In this review, psychological stress is used as a general term
that encompasses several psychological aspects (i.e., anxiety,
depression, etc.).

The stress response is orchestrated by hypothalamic–
pituitary–adrenal (HPA) axis and sympathetic nervous system
(SNS). The neuroendocrine and autonomous responses are
mediated by hormones such as epinephrine, norepinephrine,
corticotropin-releasing hormone (CRH), adrenocorticotropic
hormone (ACTH), glucocorticoids (cortisol in human and
corticosterone in rodents) (3, 4). In the past, special attention
has been paid to glucocorticoid in stress response and immune
regulation. Endogenous glucocorticoids, part of the endocrine
stress response, have ubiquitous functions in the development,
metabolism, and inflammation. In general, glucocorticoids have
been described to dampen immune response all along the
inflammation process [for review, see (5)]: they attenuate
signaling pathways of many pattern recognition receptors (6,
7), diminish leukocyte transmigration by reducing adhesion
molecules (8), decrease the production of chemoattractants
(9), program macrophages to anti-inflammatory M2c subtype
(high expression of scavenger receptors and secretion of anti-
inflammatory cytokines) (10), and decrease T cell response (11,
12), preferentially Th1 and Th17 by promoting Th2 and Treg (13,
14). Owing to their immunosuppressive effects, glucocorticoids
have been used to treat various immune-related disorders
like ADs.

The literature of the past 60 years has focused on
immunosuppressive properties of glucocorticoids, but
glucocorticoids can also enhance inflammation and immunity

[for review, see (5)]. We will not go into the details of the
diverging effects of glucocorticoid on immune response, but part
of the explanation might reside in the diversity of glucocorticoid-
receptors in different tissues, the presence or absence of 11βHSD,
an enzyme inactivating cortisol, the time of glucocorticoid
exposure (before or after tissue injury/inflammation) (15), and
the dose (16). All those factors might explain that stressful
events inducing glucocorticoids release could play a role in AD
occurrence that can be treated by exogenous glucocorticoids. As
an example, in humans, childhood maltreatment is associated
with modified methylation of the glucocorticoid receptor gene
NR3C1 in adults in brain and in leucocytes (17–19).

ROLE OF STRESS IN AUTOIMMUNE
DISORDERS (20)

The onset of at least 50% of autoimmune disorders has
been attributed to unknown trigger factors. Many retrospective
studies observed that most of patients suffering from AD
report uncommon emotional stress before disease onset (21).
This is obviously a vicious cycle as AD causes stress in
patients (22, 23). This review will focus on three of the most
studied ADs that will provide sufficient evidence to support
the hypothesis of a role of stress-induced intestinal barrier
defect on AD onset, that is, T1D, SLE, and MS. T1D is
characterized by a defect of insulin production by pancreas
owing to an autoimmune response against host pancreatic β-
cells (24). SLE is an AD characterized by severe and persistent
inflammation that leads to tissue damage in multiple organs
(25, 26). MS is a chronic disease affecting the central nervous
system and characterized by a defect of the blood–brain barrier
and demyelination of the neurons of the central nervous system
due to infiltration of auto-reactive T cells (27, 28). The most
widely used preclinical MS model is experimental autoimmune
encephalomyelitis (EAE).

A potential association between stressful events and T1D has
been highlighted already a long time ago when Thomas Willis
links, in 17th century, T1D onset to prolonged sorrow (29). Early
life stress seems to be of particular risk for T1D development (30,
31). This is in accordance with literature highlighting neonatal
maturation of pancreas as critical and vulnerable to stressors
(32). Stress in adult has been described to increase incidence of
SLE (33) and is able to exacerbate SLE symptoms (physical pain,
sleep disturbances, and unemployment) (34). Around 70% of MS
patients reported unusual amount of stress before the onset of the
disease (35, 36).

Those epidemiological studies suggest that stress could be
involved in both triggering and exacerbating ADs. Whether
it is dependent on the kind of stress or ADs involved
is unknown, and it would be interesting to conduct both
retrospective epidemiological studies and preclinical studies to
better document the role of stress in ADs. However, some
interventional studies suggest that stress management could
benefit to AD patients. Indeed, escitalopram (antidepressant)
decreases the risk of MS relapsing in women (37). Diazepam
(tranquilizer) decreases EAE incidence and histological signs
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associated with this disease in a mouse model (38). A
meta-analysis of 21 trials showed that in the 10 studies of
children and adolescents with supportive or counseling therapy,
cognitive behavioral therapy and family system therapy reduced
glycosylated hemoglobin and as such improved diabetes control
(39). Interestingly, in the 11 studies in adults, no beneficial effect
of stress management could be observed on T1D (39).

CONSEQUENCES OF STRESS ON
INTESTINAL BARRIER AND SYSTEMIC
IMMUNE RESPONSE

Stress can affect various physiological processes. Already Selye
observed and others confirmed that the gastrointestinal tract and
the immune system are particularly responsive to stress nomatter
the origin of the stress (1).

Actors of Intestinal Barrier and Function
Intestinal epithelium is the mammalian organism’s biggest
surface in contact with the environment. Therefore, intestinal
barrier functions are highly diverse and well developed. The
intestinal barrier has to fulfill conflicting functions. Indeed, the
intestinal barrier allows the transport of nutrient but at the same
time filters and defends the organism from harmful luminal
content (pathogens, toxins, etc.). Among the main actors of the
intestinal barrier we can quote, intestinal microbiota, intestinal
epithelium, and immune response (innate and adaptive). All
those actors are in close relationship and regulate one another
[for review, see (40)]. Intestinal microbiota not only participates
in the protection against pathogens colonization but also
contributes to maturation of intestinal epithelium and immune
system and provides various nutritional compounds (41). The
intestinal epithelium is formed by distinct cell types distributed
along the crypt–villus axis. Although they all derive from
a common stem cell progenitor located in the crypts, their
morphology and roles differ [for review, see (42)]. The intestinal
epithelium is renewed every 5 days, and this constant renewing
confers high plasticity and protection to the intestinal barrier
because defective cells are removed rapidly (43). Intestinal
permeability is the ability of intestinal epithelium to allow the
selective entrance of luminal antigens into the organism (44).
Another actor of the intestinal barrier is the intestinal immune
system. Gut-associated lymphoid tissue (GALT) represents the
inductive site for B and T cells of mucosal intestinal barrier
and includes the Peyer patches (PPs), the appendix, and isolated
lymphoid follicles (ILFs). The humoral response in the intestines
can be divided into four stages: predominant IgA induction in
mucosal B cells, recirculation of IgA plasma blasts and homing
into the intestinal mucosa, terminal B cell differentiation to
plasma cells with local IgA production, and export of IgA through
the intestinal epithelial layer [for review, see (45)]. Most intestinal
T cells mature in peripheral lymphoid organs where they acquire
the expression of intestinal homing receptors to migrate to
the effector site of the intestines, that is, the mucosal epithelia
and the lamina propria. Intestinal lymphocytes are continuously
exposed to food and microbial antigens. These lymphocytes help

to maintain the integrity of the intestinal barrier and immune
homeostasis. Owing to their close location to luminal antigens,
they have dual functions: regulatory functions (i.e., maintaining
tolerance toward food antigens and commensal microbiota) and
effector functions (i.e., prevention of pathogenic invasion) [for
review, see (46)]. Innate lymphoid cells (ILCs) are lymphocytes
that do not express the type of diversified antigen receptors
expressed on T cells and B cells. ILCs are largely tissue-resident
cells participating in tissue homeostasis [for review, see (47)]. A
defective intestinal barrier will lead to inappropriate intestinal
but also systemic immune response leading to gastrointestinal
disorders and to extra-intestinal diseases like autoimmune
diseases (48–50).

Intestinal barrier homeostasis is highly regulated,
and a defect in microbiota composition could lead to
intestinal hyperpermeability and intestinal inflammation.
Intestinal inflammation not only will contribute to intestinal
hyperpermeability (51) but also will favor microbiota
colonization by pathobionts (52). Microbiota, intestinal
permeability, and immune response mutually regulate one
another making it difficult to define their respective role as cause
or consequence in complex established pathologies.

Psychological Stress Impairs Intestinal
Barrier
Stress plays a role in the course of gastrointestinal disorders
like irritable bowel syndrome (IBS) (53–55) and inflammatory
bowel disease (IBD) (56). IBS is a very interesting model to study
the consequences of stress on the intestinal barrier. Indeed, the
occurrence of stressful events is considered as a contributing
factor triggering and/or maintaining IBS (57, 58), suggesting that
dysfunctional interactions in the brain–gut axis contribute to the
pathophysiology of the disease (59) and as such justifying its new
classification as a disorder of the brain–gut interaction (60). In
this review, we will focus on the consequences of psychological
stress on the intestinal barrier and its consequences on systemic
immune response (Figure 1).

Microbiota Dysbiosis
Stress is modifying microbiota in animal and human. Neonatal
maternal separation induces microbiota dysbiosis in mice at
different ages (61, 62). Limited nesting stress alters microbiota in
rat pups (63). In adults, chronic water avoidance stress increases
susceptibility to indomethacin-induced hyperpermeability in
mice, and the effect is transferable via fecal microbiota transfer
(64). Germ-free (GF) mice have exaggerated HPA stress response
after restraint stress (65), showing the role of microbiota in the
regulation of stress response. Mice exposed to social disruption
stress have increased circulating IL-6 and MCP-1 levels; these
effects were totally abolished by antibiotic treatment showing the
importance of microbiota in the induction of stress effects (66).

In humans, decreased total abundance of Actinobacteria,
Lentisphaerae, and Verrucomicrobia is associated with PTSD in
South African individuals (67). Microbiota dysbiosis has been
described in IBS patients [for review, see (68)].
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FIGURE 1 | Consequences of stress on intestinal barrier and systemic inflammation. Psychological stress can impair intestinal barrier at different levels. Indeed,

stress can lead to microbiota dysbiosis, intestinal hyperpermeability, and intestinal inflammation. Interestingly, all these elements are highly connected and regulate one

another. Microbiota dysbiosis can trigger intestinal hyperpermeability and intestinal inflammation; and in contrast, both intestinal hyperpermeability and intestinal

inflammation can induce microbiota dysbiosis. Finally, stress can also induce systemic inflammation that might be related to intestinal inflammation.

Stress Is Associated With Intestinal

Hyperpermeability
In preclinical models and epidemiological studies, stress has
been associated with an increase of intestinal permeability.
Chronic water avoidance stress increases intestinal permeability
and decreases tight junction protein expression in colon of
adult rat (69) and overall intestinal permeability in mice (70).
Chronic neonatal maternal separation, a model of early life
stress, also increases intestinal permeability in rat (63, 71,
72) and mice (73). Maternal separation applied just for one
time (acute stress) increases intestinal permeability in rats
(74). Combination of different stressors [subacute (isolation,
limited movement) and chronic crowding stress] also decreases
tight junction mRNA expression in rats (75). In a mouse
model of social disruption, a social stressor, bacterial RNA
(Lactobacillus spp.), is increased in spleen, which indicates
bacterial translocation (76).

In human, acute psychological stress like public speaking
has also been shown to induce intestinal hyperpermeability
(77). Intestinal hyperpermeability has also been described
in IBS patients (78). The stress hormones cortisol (human)
and corticosterone (mice) have been shown to mediate
stress increased intestinal hyperpermeability as administration
of the GR agonist dexamethasone mimics the intestinal
hyperpermeability (69, 74).

Stress Exacerbates Intestinal and Systemic

Inflammation
Chronic neonatal maternal separation in rats increases cytokine
expression, myeloperoxidase activity, and mast cell numbers
in colonic tissue and exacerbate TNBS-induced colitis (71).
Neonatal maternal separation in mice increases TNFα expression
by intestinal tissue in young adult (61) and lipopolysaccharide
(LPS)-stimulated TNFα secretion of isolated lamina propria
immune cells in aging (62). Acute restraint stress augments
histamine release by mast cells (79). Acute acoustic stress
increases intestinal IL-17 and IL-22 expression in mice (80).

In human, stress aggravates IBD symptoms including higher
release of pro-inflammatory effectors (56). In IBS, an increased
state of activation of immune cells has been described even
though this observation is under debate (81).

Not only the intestinal immune system is influenced
by psychological stress, but there is also evidence for
modified systemic immune response without direct proof
that inflammatory immune cells were activated in the
gastrointestinal tract. Neonatal maternal-deprived rats have
increased cytokine expression in liver and spleen (71). Humoral
immune response against microbiota is increased in neonatal
maternal-deprived mice (62, 73). Social disruption stress in mice
increases bacterial translocation and induces circulating IL-6 and
MCP-1 (66, 76).
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Stress is associated with an increase in pro-inflammatory
response as described in PTSD patients (82). A meta-analysis of
several studies showed that IL-6, TNFα, and IL-1β secretion are
increased in response to acute stress in human (83). Childhood
victimization is associated with elevated C-reactive protein (CRP)
levels in young adult (84, 85).

DEFECT OF INTESTINAL BARRIER IN
AUTOIMMUNE DISORDERS (86)

We provided evidence that stress might play a role in onset or
course of ADs, and we reviewed the well-documented deleterious
role of stress in intestinal barrier functions. We will now
summarize the data regarding the defect of the intestinal barrier
in ADs. Indeed, the observed defect of the intestinal barrier in
ADs is an interesting lead that largely contributes to the rise of the
hypothesis, suggesting a contribution of stress-induced intestinal
barrier defect in ADs (Figure 2).

Microbiota in Autoimmune Disorders
Microbiota is known to contribute to intestinal mucosal
permeability and induction of innate defenses and as such
represent a risk factor for ADs (87, 88). A growing body
of evidence suggests that intestinal microbiota can affect the
incidence and/or severity of immune-mediated extra-intestinal
diseases (89). Aberrant microbiota has been described in patients
suffering from T1D (90), SLE (88), and MS (91). Knowledge
regarding microbiota dysbiosis in AD patients and animal
models will be summarized here, and interventional studies,
which help to understand the role of microbiota in those diseases,
will be discussed at the end of the paragraph.

Increased microbial diversity and low level of butyrate have
been observed in feces of pediatric T1D patients (92, 93).
In the BABYDIET cohort, early development of islet auto-
antibodies is associated with alteration in the composition of
mucin-degrading bacteria, that is, increase of Bacteroides and
decrease of Akkermansia (94). A reduction of microbial diversity
is more pronounced before the time of diabetes onset (95). Fecal
transplantation of NOD diabetic microbiota in NOD-resistant
mice induced insulitis, suggesting a diabetogenic gut microbial
community (96, 97). Antibiotic treatment accelerates disease
development (98, 99), suggesting a protective role of microbiota
colonization in T1D.

Microbiota dysbiosis has been observed in relapsing–
remitting MS patient compared with healthy control (100–103)
with no consensus on the involvement of a particular bacterial
species. In contrast, another study comparing 16S RNA profiles
of feces from MS and healthy patients has not shown any
differences (101). Demyelination initiates after colonization with
feces of specific pathogen-free mice (104). Microbiota depletion
by non-absorbable antibiotics delays the development of EAE
by reducing the number of mesenteric Th17 cells (105). GF
mice present attenuated symptoms in both spontaneous and
induced EAE models (104, 106), suggesting a deleterious role
of microbiota colonization in MS. Furthermore, microbiota

shapes and predicts the course (chronic-progressive or relapsing–
remitting) of EAE in a mouse model (107).

Only a few studies on human SLE microbiome in small
cohorts report microbial dysbiosis (108–110), but they are
confirmed by preclinical studies in mouse models (110). A study
performed in a larger and diversified cohort of SLE patient
showed that the severity of disease is associated with more severe
microbiota dysbiosis (111).

Interventional Studies: What Do They Tell Us?
Here, we will focus on direct supplementation by living bacteria
like probiotic and fecal microbiota transplantation (FMT)
treatment but not on indirect interventions like prebiotics or
nutritional compounds produced by bacteria, as short chain fatty
acids, for example, which may involve indirect effects. Once ADs
are diagnosed, the production of antibody against self-antigen
will remain and will still damage tissues, but this process could
be delayed or reduced. Probiotics are living microorganisms that
confer a health benefit to the host (112). Probiotics are known
to have beneficial effects on the intestinal barrier (113, 114) and
anti-inflammatory properties (115–119) and as such represent an
interesting tool to delay, reduce, or even prevent ADs.

Animal studies suggest beneficial effects of probiotics
supplementation on EAE via a stimulation of IL-10 production
(106, 120–124). Clinical studies showed that a mixture of
probiotics improves expanded disability status score and
decreased inflammatory markers (125). Regarding T1D,
probiotic treatment delays the onset of T1D in an experimental
rat model and improves the intestinal barrier (126). Probiotics
also protect NOD mice from T1D by reducing intestinal
inflammation (127). In humans, it has been demonstrated in the
TEDDY (The Environmental Determinants of Diabetes in the
Young) cohort that early probiotic supplementation is associated
with a decreased risk of islet autoimmunity as compared with
late or missing supplementation (128). In animal models for
lupus nephritis, probiotic administration lowers inflammatory
response in the kidney and intestines in female and castrated
males but not in non-castrated males (129).

FMT with microbiota from different diabetes resistant mouse
strains delays the onset of T1D in NOD diabetes-prone mice
(97). Few studies investigate to role of FMT on AD symptoms,
and most of the time the recommendation for FMT treatment
was to target associated gastrointestinal troubles. Neurological
symptoms are improved and MS progression is paused in
three MS patients who underwent FMT treatment for chronic
constipation (130). Unfortunately, no data are available on
intestinal barrier functions of probiotics and FMT treatments in
parallel to beneficial effects on ADs.

Mimicking
Antigens from infectious agents and myelin proteins can share
structural similarities called molecular mimicry. This molecular
mimicry can be responsible for activation of naïve autoreactive
T cells recognizing peptides from infectious agents but also from
self-antigens myelin proteins. Cross-reactivity could occur when

Frontiers in Immunology | www.frontiersin.org 5 August 2020 | Volume 11 | Article 1823

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Ilchmann-Diounou and Menard Psychological Stress and Intestinal Barrier Dysfunctions

FIGURE 2 | Defect of intestinal barrier and systemic immune response is observed in three examples of autoimmune disorders (ADs): type 1 diabetes (T1D), systemic

lupus erythematosus (SLE), and multiple sclerosis (MS). (A) T1D is associated with microbiota dysbiosis, intestinal hyperpermeability, increased IL-17 secretion in the

intestine and at systemic level, and increased myeloperoxidase (MPO) in the intestine. Interestingly, colonization by a complex microbiota is protective from type 1

diabetes. (B) SLE is associated with microbiota dysbiosis and increased secretion at the intestinal level of IL-17 and IL-22 by T cells and IFN-α and IFN-β by dendritic

cells. At the systemic level, there is a higher secretion of IL-6 and TNF-α by monocytes and macrophages in SLE. Interestingly, colonization by a complex microbiota is

deleterious for SLE onset. (C) MS is associated with microbiota dysbiosis, intestinal hyperpermeability, and increased secretion at the intestinal level of IL-17 and IFN-γ

by T cells. At the systemic level, the number of innate lymphoid cell (ILC) population was observed in MS. Interestingly, colonization by a complex microbiota is

deleterious for MS onset.

important motifs are conserved and overall structures of TCR–
peptide–MHC interaction are similar, suggesting that cross-
reactivity may happen frequently (131). Myelin basic protein, the
immunodominant autoantigen of MS, cross react with Epstein–
Barr virus (EBV), influenza A virus, herpes simplex virus, human
papilloma virus (132), or human herpesvirus-6 (133). Regarding
EBV, MS patients seem to have increased antibody titers against
certain antigens of the virus than have control subjects even
before the onset of MS (134). Despite cross-reactivity, infectious
agents can impair self-antigen tolerance by indirect activation
(135). It has been showed that an integrase expressed by
intestinal Bacteroides encodes a low-avidity mimotope of the
pancreatic β-cell autoantigens and as such might participate to
T1D onset. Colonization of GF mice with Bacteroides promotes
the recruitment of diabetogenic CD8+ T cells to the gut (136).

Intestinal Hyperpermeability in
Autoimmune Disorders
In ADs, intestinal hyperpermeability has been described,
resulting in an increased entry of luminal antigens derived from
food and/or intestinal microbiota or pathogens. The associated

inflammation has been suggested to participate in AD onset
and/or exacerbation.

Even though it is still unclear whether intestinal
hyperpermeability is a trigger or a consequence of T1D
progression (93, 137, 138), epidemiological and preclinical
studies demonstrated that intestinal hyperpermeability occurs
before disease onset (139, 140). Reversion of intestinal
hyperpermeability by treatment with a zonulin 1 (intestinal
homolog of a Vibrio cholerae enterotoxin, which reversibly
increases intestinal permeability) inhibitor ameliorates T1D
manifestation in rat model (141). Microbial translocation in
pancreatic lymph nodes activates NOD2, and IL-17 production
in pancreatic lymph nodes and pancreas which contributes to
T1D development (142).

Intestinal hyperpermeability precedes EAE onset and
increases while disease progresses (143). In this model, increased
intestinal permeability is associated with the increase of crypt
depth and mucosa thickness in jejunum and ileum, as well as
with an overexpression of zonulin 1 (143) as observed for T1D
(141, 144).

Intestinal barrier defect and subsequent exposure to microbial
products play an important role in the pathology of SLE
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(145, 146). sCD14, lysozyme, and CXCL16 are markers of
antimicrobial response found increased in SLE subject attesting
to a defect of the intestinal barrier (147).

Intestinal Inflammation
T1D is associated with increased intestinal myeloperoxidase
activity and goblet cell (producing mucus) density, supporting
the idea that early intestinal inflammationmight lead to intestinal
hyperpermeability (148, 149). Many studies suggest that the
increased number of Th17 cells is involved in the pathogenesis
of autoimmune diabetes. Higher numbers of IL-17 secreting
cells are detected in recent-onset T1D-promoting inflammatory
response to β-cells (150, 151). Th17 is increased in the peripheral
blood of children with T1D (151, 152). In vitro IL-17 potentiates
inflammatory and proapoptotic responses on human islets
cells (151). Anti-IL-17 treatment reduces islet T cell infiltrates
and GAD65 autoantibodies in NOD mice (153). Neutrophil
extracellular traps (NETs) might contribute to the generation of
ADs by exposing autoantigen (154). The role of NET has been
studied particularly in T1D. Indeed, degradation of NETs in the
gut prevents immune infiltration of pancreatic islet preserving
β-cell mass and systemic inflammation (155).

In a mouse model of SLE developing severe nephritis,
α4β7 expressing T cells is increased in PPs and pro-
inflammatory cytokines (IL-17, IL-22, IFNα, and β) are much
more expressed in distal ileum (156). Furthermore, intestinal
monocytes/macrophages of SLE patients have an altered
expression of type 1 interferon-stimulated genes, HLA-DR,
and Fcγ receptors (157, 158). Monocytes isolated from plasma
of SLE patients release higher pro-inflammatory cytokines
in response to LPS than do healthy patients (159). More
generally, higher production of pro-inflammatory cytokines by
monocytes/macrophages has been described in SLE patients [for
review, see (160)].

In MS, elevated Th1 and Th17 pro-inflammatory responses
are observed in lamina propria, PPs, andmesenteric lymph nodes
(143). GF EAE animals produce lower levels of IFNγ and IL-17 in
the intestines associated with a higher number of Treg cells (104).
Monocolonization of GF animals with segmented filamentous
bacteria, IL-17 inducer in gut (161, 162), induces EAE and
shows that microbiota can affect neurologic inflammation by

recirculation of Th17 to the brain, causing inflammation (106).
Autoreactive T cells from gut could migrate in different organs
depending on pathologies, to brain in the case of MS, to liver in
the case of autoimmune cholestatic liver disease (163, 164), or
to the kidney in the case of SLE (165). Interestingly, not only T
cells seem to be involved in MS but also circulating ILC. Indeed,
a higher number of ILC have been observed in MS patients (166).

CONCLUSION

As a conclusion, compiling evidences highlight the importance
of both intestinal barrier defect and stress in ADs. Stress is
well known to have long-lasting deleterious consequences on
the intestinal barrier. A transversal research on ADs, stress,
and intestinal barrier function would be of great interest and
would bring new understanding in the pathophysiology of
ADs. Identifying stress-induced intestinal barrier dysfunction as
an actor of ADs could bring new possibilities for therapeutic
targets and especially preventing strategies toward the spreading
epidemic of ADs. Therapeutic strategies suggest that probiotics
and FMT treatment might improve AD symptom, but preventive
strategies in an at-risk population still need to be explored. In
this review, we did not mention autoimmune thyroid diseases
(AITDs) that are the most frequent ADs (167). It is difficult to
study AITDs by themselves, as they are often observed together
with other ADs, which are named polyautoimmunity (168).
Then, even though there are sufficient data supporting the role
of stress in AITD onset (20), evidences for a defect of intestinal
barrier functions in AITD are sparse, and only two studies are
available regarding microbiota dysbiosis (169, 170). For those
reasons, we did not use AITD to illustrate the hypothesis of
this review, supporting a role of stress-induced intestinal barrier
disruption in the onset and/or the course of ADs. However, we
wanted to mention the case of AITD as data on intestinal barrier
function would be of great interest in the future.
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