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During pregnancy, the placenta forms the anatomical barrier between the mother and

developing fetus. Infectious agents can potentially breach the placental barrier resulting

in pathogenic transmission frommother to fetus. Innate immune responses, orchestrated

by maternal and fetal cells at the decidual-placental interface, are the first line of defense

to avoid vertical transmission. Here, we outline the anatomy of the human placenta

and uterine lining, the decidua, and discuss the potential capacity of pathogen pattern

recognition and other host defense strategies present in the innate immune cells at

the placental-decidual interface. We consider major congenital infections that access

the placenta from hematogenous or decidual route. Finally, we highlight the challenges

in studying human placental responses to pathogens and vertical transmission using

current experimental models and identify gaps in knowledge that need to be addressed.

We further propose novel experimental strategies to address such limitations.
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INTRODUCTION

The human placenta is the temporary extra-embryonic organ that is present only during pregnancy
and is the anatomical boundary between the mother and fetus. It has a range of functions including
transport of nutrients and gases, and hormonal production (1). The placenta forms a physical,
selective barrier between the maternal and fetal circulations, preventing transfer of pathogens. The
uterine mucosal lining, the endometrium, is transformed into the decidua during early pregnancy
(2). A range of innate immune mechanisms can respond to pathogens in both the decidua and
the placenta (3, 4). The maternal-fetal interface is a protective barrier against pathogens, but some
pathogens can transfer from the mother to fetus by different routes and cause fetal infection (3, 4).

Vertical transmission during pregnancy can occur on distinct boundaries between the mother
and the fetus: (i) the intervillous space (IVS), where placental villi is in direct contact with the
maternal blood, (ii) the implantation site or decidua basalis, where maternal cells are in direct
contact with the invading fetal trophoblast, and (iii) the fetal membranes, which are in direct
contact with the uterine cavity (5). Defense mechanisms in the cervix, such as the production of
mucus and antimicrobial peptides (AMP), limit ascending infection from pathogens present in the
lower genital tract, that otherwise may access the uterine cavity (6). However, some pathogens can
escape antimicrobial strategies at the cervix and ascend to the uterus, where they can bypass the fetal
membranes and lead to the inflammation of the membranes- also known as chorioamnionitis- and
infection of the amniotic fluid (7, 8). Pathologic and immune features of chorioamnionitis and
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intra-amniotic infection are generally associated with bacterial
invasion and inflammation [refer to (8, 9) for a comprehensive
review on these mechanisms]. Here, we focus on infections and
innate immune mechanisms at the uterine-placental interface—
cases (i) and (ii) (Figure 1).

Infections at the uterine-placental interface are commonly
associated with viruses, parasites and few bacteria (Table 1).
Viral pathogens such as human cytomegalovirus (HCMV), Zika
(ZIKV), and rubella virus are the most common vertically
transmitted pathogens through the decidual-placental interface
(Table 1) (26, 27). Non-viral pathogens, such as Toxoplasma
gondii and Listeria monocytogenes, can cross the placental barrier
via cell-to-cell transmission (Table 1) (28, 29). Fetal infection
can result in various forms of congenital anomalies in humans
(Table 1). Understanding the pathogenic mechanisms used by
infectious agents is central to preventing vertical transmission
and controlling infection during pregnancy.

How the innate immune cells and mechanisms in the placenta
and the uterus recognize and respond to protect both the
fetus and mother remains controversial due to technical and
ethical constraints. However, there are several different models
currently used to interrogate the uterine-placental interface in
pregnancy. Firstly, mice are frequently used as a pregnancy
model for infection. Although the murine models have provided
important insights into the pathogenesis of various infection
agents in the context of pregnancy, there are still limitations
with this approach. The anatomy of placentation, length of
gestation, and use of inbred strains, make extrapolation to
humans problematic (30, 31). Secondly, a range of human
trophoblast and choriocarcinoma cell lines are used as in vitro
models for infection with pathogens. In contrast to the first
trimester trophoblast in vivo, these cell lines do not recapitulate
normal human trophoblast characteristics such as expression of
the human leukocyte antigen (HLA) class I and methylation of
ELF5 (32, 33). Thirdly, human primary placental explants are
frequently used. The syncytium dies rapidly in these cultures and
it is virtually impossible to standardize the types of villi sampled
(30). Therefore, these in vitro experimental factors should be
taken into careful consideration when interpreting studies of
infection of trophoblast.

In this review, we cover the innate immune features of the
decidual-placental interface throughout gestation. We identify
the gaps in knowledge and highlight the limitations of current
studies and experimental models. Finally, we discuss novel
experimental strategies for understanding how infection affects
pregnancy in humans.

Physiology of the Placenta Throughout
Gestation
The trophoblasts of the placenta are the barrier between fetal and
maternal tissues. They are derived from the trophectoderm, the
outer layer of the blastocyst that forms an inner mononuclear
layer with an outer primary syncytium following implantation
(34). The trophoblast in contact with the maternal cells can
be: (i) syncytiotrophoblast (SCT), a single layer multinucleated,
syncytial layer formed by fusion of the underlying villous

cytotrophoblast (VCT), and (ii) extravillous trophoblast (EVT),
that invade from the cytotrophoblast shell and anchoring villi
into the transformed maternal endometrium, the decidua (2).

The function of EVT is to transform the uterine spiral arteries
so that maternal blood is delivered to the intervillous space at
low pressure. The arteries are surrounded by interstitial EVT
that destroys the smooth muscle cells of the arterial media,
known as “fibrinoid” change (35, 36). Subsequently, endovascular
EVT (eEVT) moves down the spiral arteries from the placenta-
decidua boundary (35). These eEVT form a plug of cells, limiting
surges of arterial blood from damaging the delicate villi. EVT
invasion transforms the arteries to support optimal regulation of
blood flow into the placenta during fetal development (36). The
plugs dissipate between 8 and 10 weeks of gestation when the
full hemochorial circulation is established (37). Maternal blood
then flows into the IVS, and establishes direct contact with the
SCT allowing for proper nutrient and gas exchange between the
mother and the fetus.

HOFBAUER CELLS: THE TISSUE
RESIDENT IMMUNE CELLS OF THE
PLACENTA

Hofbauer (HB) cells are fetal macrophages of the human placenta
(38). HB cells can be detected in the placental villous stroma
as early as 3 weeks post-conception and are present throughout
pregnancy (1, 39). They are likely to have a variety of functions
including control of villous remodeling and differentiation,
hormonal secretion, and trophoblast turnover (1, 40). Several
lines of evidence have led to the postulation that HB cells
may have a role in infection during pregnancy. HB cells with
ZIKV viral particles detected intracellularly have been shown
(41, 42). Human immunodeficiency virus 1 (HIV-1) has also
been detected in HB cells from first trimester infected placenta
(43). Whether the HB cells can serve as a reservoir or limit virus
replication is still unknown. Isolated HB cells from healthy term
placenta show elevation of pro-inflammatory cytokines such as
IL-6, MCP-1, IP-10, and IFN-α upon in vitro infection with ZIKV
(44). HB cells from the first trimester placenta are also permissive
for ZIKV infection and replication (23). However, this must be
interpreted with caution because in vitro culture of HB cells
do not entirely recapitulate the complexity of villous stromal
microenvironment, such as presence of hormone and growth
factors, all of which will influence the function and activity of HB
cells (45).

MATERNAL BLOOD AND SCT INTERFACE

The SCT is the barrier between maternal blood and the placental
core as it separates the IVS from the underlying fetal villous
stroma. Blood-borne pathogens such as viruses and parasites can
potentially be transmitted through the SCT barrier (Figure 1).

How can pathogens cross the SCT barrier and the VCT
to infect the villous stroma? Although the SCT is an efficient
barrier due to its stiff, highly dense actin cytoskeleton network
and continuous membrane (46), the syncytium undergoes
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FIGURE 1 | Possible infection and vertical transmission route at the maternal-fetal interface. Illustration representing the anchoring placenta villi of early pregnancy,

with onset of maternal blood circulation bathing the intervillous space. SCT-blood interface represents the SCT barrier exposed to maternal blood and immune cells.

EVT-decidua interface represents the interface between EVT and maternal decidua cells. Major cell types of placenta trophoblast and decidua from Vento-Tormo et al.

(10) are represented. SCT, syncytiotrophoblast; VCT, villous cytotrophoblast; EVT, extravillous trophoblast; DC, dendritic cell; dNK, decidua Natural killer cells; dM,

decidua macrophages; HB, Hofbauer cell; PV, perivascular cells; FcRN, neonatal Fc receptor. Figure is created by BioRender.com.
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TABLE 1 | Vertically transmitted pathogens with clinical evidence from natural human infection.

Species Lifestyle Life cycle and pathogenesis Clinical manifestations Evidence of cellular

tropism in the human

placenta or decidua by

histology or PCR

References

Chlamydia trachomatis Intracellular

bacteria

Formation of reticulate body inside host

cell allows for rapid replication

Conversion of reticulate body to

elementary body inside host cell promotes

the release of infectious bacteria to

neighboring cell

Ectopic pregnancy, stillbirth,

preterm labor, blinding

corneal injury in neonates,

neonatal pneumonia

Whole placenta, glandular

epithelial cells, unidentified

decidual cells

(11)

Group B Streptococcus

(Streptococcus

agalactiae)

Non-motile,

extracellular

bacteria

Beta-hemolytic

Strong adherence to epithelial layer

Able to form biofilm

Neonatal GBS (sepsis and

meningitis), preterm birth

Amniotic epithelium,

amniotic fluid, chorion,

decidua

(12)

Listeria

monocytogenes

(Listeriosis)

Motile intracellular

bacteria

Utilize two bacterial surface proteins

(internalin A and B) to invade various

non-phagocytic cell types

Able to escape phagosome-mediated lysis

and multiply rapidly in host cytoplasm

Able to spread to adjacent cell through

host cell actin polymerization

Spontaneous abortion,

stillbirth, preterm labor

Placenta trophoblast (13)

Coxiella burnetii (Q

fever)

Intracellular

bacteria

Able to escape phagosome-mediated lysis

in macrophage

Spontaneous abortion,

preterm delivery, fetal death

Placenta (unknown cell type) (14)

Treponema pallidum Motile spirochaete,

extracellular

bacteria

Able to transverse tight-junction between

endothelial cells

Highly motile

Congenital syphilis Placenta (unknown cell type) (15, 16)

Toxoplasma gondii

(Toxoplasmosis)

Intracellular

parasite

Able to infect and replicate within various

host cell types

Able to switch between non-motile (for

replication) and motile state (for egress

and invasion into new host cell)

Congenital toxoplasmosis,

stillbirth

Placenta trophoblast (17)

Trypanosoma cruzi

(Chagas)

Intracellular and

extracellular

parasite

Able to propagate in various host cells and

escape

Progeny released by host cells are motile,

and able to infect distal tissue or organs

Stillbirth, preterm labor SCT, villous stroma,

placenta basal plate

(18)

Herpes simplex virus 1,

2 (HSV-1/2)

dsDNA virus Able to cross through skin lesions and

epithelial mucosal cells

Poor antibody neutralization to viral

glycoprotein D (gD)

Vertical transmission rate is very low

Spontaneous abortion,

intrauterine growth

restriction, preterm labor,

neonatal herpes

Decidua (11)

Human

cytomegalovirus(HCMV)

dsDNA virus Easily transmitted through bodily fluid

Poor antibody neutralization to viral

glycoprotein B (gB)

Can establish lifelong latency in

myeloid cells

Variable; neonatal

neurodevelopmental

damage and hearing loss

VCT, decidua, amniotic

membrane

(19)

Rubella ssRNA virus Able to enter the lymphatic system from

the respiratory tract

Can lead to a systemic infection

Viral capsid can evade host

immune recognition

Significant birth defects,

neonatal deafness,

miscarriage

Placenta basal plate and

endothelial cells

(20)

Parvovirus B19 ssDNA virus Spread through respiratory droplets

Preferential tropism for human

erythroid progenitor

Fetus is usually unaffected,

may result in severe fetal

anemia

Whole placenta, placenta

villi

(21)

Varicella zoster virus

(Chicken pox)

ssDNA virus Vertical transmission is very rare and only

happens in primary infection

Congenital varicella

syndrome, intrauterine

growth restriction, low birth

weight

No evidence, but chronic

villitis has been described

(22)

ZIKA virus (ZIKV) ssRNA virus Mosquito borne infection transmitted from

blood meal

Preferentially to invade blood monocytes

Congenital fetal anomalies

(microcephaly), miscarriage,

stillbirth

Whole placenta, amniotic

epithelium, VCT, Hofbauer

cells, decidual

macrophages, decidual

fibroblast

(23–25)
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continuous breaks or gaps and dynamic repair processes (47).
Breaks in the syncytium could potentially lead to transmission
of pathogens into the underlying VCT. Our recent work showed
that a novel population of maternal macrophages (M3) is
associated with the SCT in early pregnancy andmight be involved
in repairing the breaks in the syncytium (10). It is intriguing
that M3macrophages infected with intracellular pathogens could
possibly gain access to the underlying VCT via the syncytial
breaks (Figure 2).

Only a few viral entry receptors on the SCT are described.
Notably, the SCT lacks expression of ZIKV entry receptors, Axl,
and Tyro3 (48) and the HCMV entry co-receptor integrin α/β
(49). This is further supported by the transcriptomic expression
of viral receptors in placental cells (10, 50, 51). Expression of
surface receptors commonly used by ZIKV such as AXL and

HCMV such as NRP2 and PDGFRA are lowly expressed by the
SCT (50). In addition, there is minimal co-expression of ACE2,
the receptor gene for human severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), and TMPRSS2, the viral spike
protein serine protease gene (50, 52). In line with this, there is no
conclusive and direct evidence of vertical transmission of SARS-
CoV-2 in a placenta from a healthy individual. There are some
reports showing SARS-CoV-2 is predominantly localized at the
SCT of the second trimester placenta (53, 54) and can lead to
severe inflammatory infiltrate in the IVS (55). However, these
findings are presented in a very small number of patients with
severe disease or pre-existing pregnancy complications (54, 55).

Alternative transplacental mechanisms have been postulated
at the syncytial barrier. Neonatal Fc receptor (FcRn) is expressed
on the apical surface of the SCT and functions to selectively

FIGURE 2 | Toll-like receptors and potential inflammatory response at the SCT-blood interface. Predominant TLRs found in the human placenta from early and term

pregnancies. TLR2 and TLR4 are expressed in human placenta SCT, VCT, and in HB cells. Infiltration of infected maternal blood, infected immune cells, or release of

pathogenic determinant such lipopolysaccharide (LPS), peptidoglycan, or parasite materials such as hemozoin or GPI (glycosylphosphatidylinositol) into the IVS will

activate TLR-mediated signaling, leading to the production of a wide range of cytokines and chemokines. Severe infection is characterized by massive immune cell

infiltration including monocytes and neutrophils from systemic circulation and overproduction of inflammatory cytokines upon TLR activation. This may lead to SCT

inflammation and damage. SCT also secretes antimicrobial peptides as innate immune mechanisms. Figure is created by BioRender.com.
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transport maternal IgG (56). FcRn could be exploited by certain
viruses to enter the placenta including ZIKV, HIV-1, and HCMV
(19, 57, 58). Transferrin receptor 1 (TfR1) is expressed on
the apical end of the SCT, and functions as the primary iron
transporter into the basal side of the SCT to provide sufficient
iron stores into fetal circulation (59). TfR1 has been associated
with viral entry into a broad host cell range, including Hepatitis C
virus (60, 61) suggesting a possible mechanism of viral transport
across the SCT barrier. Some pathogens, although unable to cross
the SCT barrier, can still adhere to the syncytium and cause
further pathology. For instance, Plasmodium falciparum infected
red blood cells can bind with high affinity to chondroitin sulfate
A expressed on the SCT, resulting in local inflammation, syncytial
breaks, and damage (62–64).

Although the SCT is an effective barrier to most pathogens,
local inflammation, tissue damage, and FcRN or TfR1-mediated
viral entry at the SCT can potentially allow pathogen to breach
the syncytial barrier, giving opportunity for transmission from
maternal blood into placental villi (Figure 2).

MATERNAL DECIDUA AND EVT
INTERFACE

During the first trimester of pregnancy, fetal EVT invades deeply
into the uterus. The decidua basalis, the region located at the
implantation site, is populated at this time by a distinctive
subset of innate lymphocytes, decidual Natural Killer cells (dNK),
which constitute up to 70% of leukocytes. We have identified
three major populations of dNK by single-cell RNA-sequencing
with unique phenotypes and functions in early pregnancy (10).
In addition, there are populations of decidual macrophages
(dMs) (∼20%), conventional dendritic cells (DCs) and small
proportions of T cells (∼10–15%), whereas B cells, plasma cells,
mast cells, and granulocytes are virtually absent (10) (Figure 1).
The proportion of immune cells will vary throughout pregnancy,
with an increase in the proportion of T cells at term (51).

Systemic infections will reach all organs including the decidua.
Whether pathogens can also access the decidua via the cervix
is still unclear. Chlamydia trachomatis, a common sexually-
transmitted intracellular bacteria, was detected in glandular
epithelial cells and unidentified decidual cells in decidual biopsies
(11). This suggests the possibility of infections ascending and
spreading from cell-to-cell from the lower genital tract into
endometrial glands and vascular endothelium. The decidua
basalis is in close contact with fetal cells and the maternal
vasculature (Figure 1). First trimester dMs and decidual stromal
cells are susceptible to ZIKV infection and replication ex vivo
(23). Hence, infection could possibly spread from infected
maternal immune and non-immune cells at the decidua, into
uninfected VCT in the columns of the anchoring villi, and finally
into the fetal compartment. However, this is likely to be limited to
certain microorganisms which are capable of cell-to-cell spread,
have an intracellular host niche, and are able to escape host innate
defense mechanisms (Table 1).

HCMV, the most common cause of congenital infection, is
mostly reported to infect from the decidua (11, 65). Women

with primary HCMV infection and first pregnancy are more
likely to transmit the virus to their fetus, compared to
multiparous women with previous infection and demonstrable
antibodies (66–68). Low affinity maternal antibodies against
HCMV correlate with higher viral loads detected in the
decidua, whereas patients with intermediate to high neutralizing
antibodies have minimal viral replication (65), suggesting that
maternal immunity against HCMV reduces risk of vertical
transmission. HCMV protein was also detected in a range of
cells within the decidua including endothelial, decidual stromal
cells, DCs and macrophages (11, 65), suggesting that that
infected maternal leukocytes could initiate transmission through
contact and infection of endothelial cells that line decidual
blood vessels.

Despite the evidence of decidual infection, the mechanism of
vertical transmission for HCMV is still in debate. dNKs have
been proposed to play a protective role against HCMV infection
through several mechanisms including modulation of their
cytotoxic effector function (69) and the interactions between
the killer-cell immunoglobulin receptors (KIRs) expressed by
dNK and HLA molecules expressed in the infected cells (70,
71). Activating KIR2DS1 by dNKs has been demonstrated to
be more cytolytic against HLA-C2 HCMV-infected maternal
decidual stromal cells (70). Similar cytotoxic response was also
observed when peripheral blood NK cells expressing KIR2DS1
were exposed to HCMV-infected fibroblasts (71). Hence, this
implies that in the decidua, dNKs are capable of eliminating
harmful infection depending on the combination of KIR/HLA
interactions between dNK and infected cells. dNKs are also
able to control HIV-1 infection in vitro through production
of IFN-γ (72). The role of dNK in controlling viral infection
may protect against potential risk of vertical transmission from
the decidua.

TRANSMEMBRANE PATTERN
RECOGNITION RECEPTORS: TOLL-LIKE
RECEPTORS

Pattern recognition receptors (PRR) are encoded in the germ-line
and recognize specific, conserved pathogen-associated molecular
patterns (PAMPs). These include Gram-negative bacteria
lipopolysaccharide (LPS), Gram-positive bacteria lipoteichoic
acids, lipoprotein, DNA, RNA, glucans, and peptidoglycans
(73, 74). Pathogen recognition is not only an essential component
of the innate immune response against infection, but also plays
an important role in bridging the innate and adaptive systems by
Toll-like receptors (TLR) activation of antigen presenting cells
by up-regulation of major histocompatibility complex (MHC)
and co-stimulatory molecules (75).

TLRs, the most studied family of PRR, are type I
transmembrane proteins with large extracellular domains
containing leucine-rich repeats that are expressed at the cell
surface or intracellularly (76). Each TLR recognizes distinct
PAMPs, leading to the activation of the transcription factor
NF-κB and/or the interferon-regulatory factor (IRF) family, and
the production of a wide range of cytokines and chemokines,
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including type I IFNs (76, 77). TLRs are expressed by immune
cells (macrophages, DCs, and B cells) as well as non-immune
cells (fibroblasts and epithelial cells) (74).

TLRs at the Human Uterine-Placental
Interface
Expression of TLRs is dynamic and changes in response to
different pathogens and cytokines (74). TLR2 (which recognizes
bacterial proteoglycan) and TLR4 (which recognizes bacterial
LPS) are the most well-studied, with immunohistochemical
evidence of expression in healthy primary SCT at term (78–
80). In contrast, in the first trimester, TLR2 and TLR4 proteins

are expressed in VCT and EVT, but minimally in SCT (81,
82) (Figure 3). There is therefore variation in TLR2 and TLR4
expression in the different trophoblast lineages across pregnancy.
Why and how such dynamic regulation of TLR expression occurs
during gestation requires further investigation in a broader range
of human placental samples (different donors, gestation stages,
genetic background, sampling regions). It is likely that alteration
in cytokines profiles in the microenvironment as pregnancy
progresses (83) may result in the variation in the expression of
TLRs in the placenta. Current evidence is only limited to in vitro
TLR2/4 stimulation studies using placental explants and primary
first trimester trophoblast cells, which drives the expression of

FIGURE 3 | Toll-like receptors and potential inflammatory response at the decidua. Predominant TLRs found in the human placenta from early and term pregnancies.

TLR2 and TLR4 are expressed in EVT. dM and dNK also express a wide range of TLR families, where stimulation of TLR agonists lead to the production of a variety of

cytokines and chemokines. Infiltration of infected cells and release of PAMPs in the decidua, which will activate TLR-mediated signaling. Overproduction of

inflammatory cytokines at the decidua may lead to local inflammation. Figure is created by BioRender.com.
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pro-inflammatory cytokines IL-6, IL-8, TNF-α, and IFN-γ (78,
80, 81).

TLR2 and TLR4 proteins are expressed in HB cells, confirmed
by co-expression of CD68 in healthy term placentas (78). In early
pregnancy, our findings indicate that only TLR4 but not TLR2
transcripts are expressed in steady-state HB cells (10) (Figure 4).
Enhancement of IL-6 and IL-8 secretion upon stimulation of
isolated first trimester HB cells with TLR4 agonist, LPS (84),
does suggest a role for TLRs on HB cells in bacterial recognition
and placental inflammation during early pregnancy. HB cells are
postulated to have a role in viral replication (41, 42), however
evidence on the expression and function of viral nucleic acid
sensing receptors TLR3, TLR7, TLR8, and TLR9 in HB cells is
lacking. Our findings show that TLR7, which recognizes viral
single-strand RNA (ssRNA) (85) is expressed in steady-state HB
cells (Figure 4) (10).

Other TLRs have also been shown to be expressed in
decidua cells. dMs and dNKs isolated from first trimester
pregnancies show steady state level expression of TLR1-9
transcripts and respond to a broad range of PAMPs, including
heat-killed bacteria, microbial membranes, and nucleic acids
(86). Stimulating primary dMs with these PAMPs produces high
levels of TNF-α, IL-1β, IL-6, IL-8, IL-12, IL-10, and IL-1RA,
whereas dNKs secrete IL-6, IL-8, and IFN-γ (86). This study
suggests that, in addition to the physiological roles of dMs and
dNKs in accommodating the uterus for placentation, dMs and
dNKs may play a role in pathogen recognition and antimicrobial
response via activation of TLR signaling (Figure 3). The extent
to which subsets of dMs or dNKs population (10) are critical for
TLR-mediated response at the decidua is currently unknown.

In malaria endemic populations, single nucleotide
polymorphisms (SNPs) within the TLR4 coding and TLR9
promoter regions are associated with variation in disease severity
and parasitemia control (87, 88). In the case of pregnancy
malaria, primiparous infected mothers with common TLR4
and TLR9 polymorphic variants are correlated with severe
complications such as low birth weight and maternal anemia
(89). This highlights the importance of studies involving large
cohorts of individuals which include genotyping from pregnant
mothers living in malaria endemic regions (see section on
“Challenges and future perspective”).

TLRs in Animal Models of Placental
Parasite Infection
Animal models have also been used to study the functional role
of TLR signaling, particularly for pathogens that are intracellular
at some stage of their life cycle (Table 1). TLR4 and TLR9
are strongly activated by malaria parasite PAMPs such as
glycosylphosphatidylinositol (GPI), DNA, and hemozoin (90, 91)
(Figure 2). In a mouse model of placental malaria, TLR4, and
Myd88 signaling activation resulted in placental expression of
pro-inflammatory markers, such as IL-6 and TNF-α (92, 93).
These studies also demonstrated that malaria parasite infection
and inflammation in the mouse placenta lead to reduced fetus
growth rate and disorganization of the vascular space in the
placenta (92, 93). However, TLR-mediated inflammation and

FIGURE 4 | Dotplot representing normalized and log transformed values

expression of TLR (TLR1-10), NLR genes (NOD1, NOD2, NLRP1, NLRP3) and

IDO1 at steady state in early pregnancy from Vento-Tormo et al. (10). Origin of

cell types from placenta (red), decidua (blue), and maternal blood (green) are

labeled as differences in font color. Dot size represents the fraction of cells

from a certain cluster expressing a gene and color scale represents normalized

log transformed expression of the gene in that cluster. dS, decidua stroma; F,

fibroblast; MO, monocyte; Endo, endothelial; Epi, epithelial; SCT,

syncytiotrophoblast; VCT, villous cytotrophoblast; EVT, extravillous trophoblast;

DC, dendritic cell; dNK, decidua Natural killer cells; dM, decidua macrophages;

HB, Hofbauer cell; PV, perivascular cells. Figure is created by BioRender.com.

pathology in the human placenta upon malaria infection is
unknown and remains to be further investigated.

Studies of congenital toxoplasmosis are also currently limited
to animal models. TLR2 and TLR4 are associated with
recognition of T. gondii’s infection in mice (94). Engagement of
the T. gondii ligand by TLR2 and TLR4 at the SCT-blood or
in the EVT-decidua compartments is plausible, although there
is still no direct evidence for such host-parasite interaction in
humans. TLR11 has a role in controlling T. gondii infection in
mice (95, 96), however in humans TLR11 is a pseudogene and is
not expressed (97).
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CYTOSOLIC PATTERN RECOGNITION
RECEPTORS: RIG-I, MDA5, AND
NOD-LIKE RECEPTORS AT THE
UTERINE-PLACENTAL INTERFACE

Cytosolic PRRs play an important role in fighting against viral
infection by eliciting host type I interferons (IFN) antiviral
response through recognition of single and double stranded RNA
(ssRNA and dsRNA) (98, 99). Examples of PRRs are the cytosolic
retinoic acid-inducible gene-I-like (RIG-I) and the melanoma
differentiation-associated protein 5 (MDA5) receptors, both
expressed in the SCT and VCT of term placenta (100). In the
human placenta, there is limited information on the function
of RIG-1 and MDA5, but they may play a crucial role in
recognizing a variety of RNA viruses, including ZIKV and dengue
virus (101).

The Nucleotide binding Oligomerization Domain-like
receptors (NOD-like receptors; NLR) recognizes intracellular
pathogen products which have entered into the host cytoplasmic
compartment (74). Both NOD-1 and NOD-2 receptors, which
are known to detect intracellular bacterial peptidoglycans (102),
are expressed in the SCT in the first trimester and term placentas
(103, 104). The NLR pyrin-containing 1 and 3 proteins (NLRP1
and NLRP3) form the major inflammasome complexes, which
contribute to activation of inflammatory caspases and pathogen
clearance (105, 106).

Activation of NLRP3 and AIM2 inflammasomes, together
with high expression of IL-1R, IL-1β, and caspase-1 was
recently shown in the placental tissue of mothers infected with
P. falciparum with significant pathology (107). In a murine
model of intra-amniotic inflammation induced by bacterial
LPS, tissue sections from the decidua basalis region expressed
high levels of NLRP3, but negligible caspase-1 activation
suggesting a possible non-canonical activation of the NLRP3
inflammasome (108). Our analysis shows that decidual dM1
expresses high levels of NLRP3 transcript at steady state
compared to other cell types (10) (Figure 4), thus dM1 may
play a role in NLRP3-mediated pathogen recognition during
early pregnancy.

SECRETED HOST DEFENSES AT THE
UTERINE-PLACENTAL INTERFACE

Antimicrobial Peptides
AMP secreted by epithelial and immune cells are small peptides
that bind and destroy most groups of pathogens—bacteria,
yeasts, fungi, and viruses (109). In addition to direct killing of
pathogens, AMPs can rapidly modulate innate host immune
responses by recruiting myeloid cells and lymphocytes to the site
of infection and mediating activation of TLR (110, 111). The
human placenta expresses high levels of β-defensins, a family
of broad spectrum antimicrobial peptides which participate in
direct bactericidal and anti-viral activity (112). Specific subtypes
of β-defensins (HBD-1, 2, and 3) are expressed in SCTs (112),
suggesting these AMPs can target potentially bacterial or viral
infection from the maternal blood.

Antiviral Interferons
Recognition of PAMPs by PRRs during infection leads to
production of pro-inflammatory cytokines that can aid in
clearing the pathogen (74). Studies on the direct role of pro-
inflammatory cytokines on the placenta in the case of infection is
limited. Inflammatory mediators can directly influence infection
outcome and fetal development, but they can also cause damage
to the placenta if produced in excess (113). Amongst the
proinflammatory cytokines associated with uterine-placental
infection during pregnancy, the antiviral IFN are the most
well-characterized.

IFNs are secreted by a variety of cell types as the first line
of defense against viral infection (114). Type I IFNs, including
IFN-α and IFN-β, are potent antiviral cytokines. IFN-α and
IFN-β bind to the IFNAR1/2 receptor and lead to expression
of IFN stimulated genes (ISGs), which control virus infection
through a variety of mechanisms (114). Loss of IFNAR in the
placenta leads to vertical transmission and fetal mortality in
murine herpesvirus-68 (MHV68) infected mice (115). In the
mouse model of ZIKV infection, type I IFN-mediated signaling
is essential for the control of viral replication in the placenta,
but can also lead to significant placental pathology and fetal
mortality (116, 117). The mechanism of type I IFN-mediated
placental pathology has been recently elucidated. IFN-induced
transmembrane (IFITM) protein, which normally blocks viral
entry into host cells, impairs syncytin-mediated fusion of VCT
to form SCT, leading to aberrant placental development (118).

Type II IFN, IFNγ, predominantly produced by NK and
CD4+ T cells is crucial in controlling parasitic infection, such
as T. gondii in mice (94, 119). However, elevated levels of
IFNγ in response to T. gondii infection can lead to pathological
effects during pregnancy including fetal demise (119, 120). Severe
placental pathology and fetal death have also been associated with
elevation of IFNγ during pregnancy in amurinemodel of malaria
(121). Hence, proper regulation of type I and II IFN-mediated
signaling at the uterine-placental interface is crucial in limiting
pathogen replication, whilst preserving a balanced environment
for normal placental development (122). Type III IFN, IFNλ,
are constitutively secreted by the human SCT, which presumably
confers antiviral effects against ZIKV infection (123–125).

INTRACELLULAR HOST DEFENSES AT
THE UTERINE-PLACENTAL INTERFACE

Tryptophan Metabolism by IDO
Indoleamine 2,3-dioxygenase (IDO) is a host intracellular
enzymewhichmetabolizes the amino acid tryptophan (126). IDO
has been associated with maternal immunoregulation during
pregnancy (127). It also plays a key role in the control of
bacterial and viral replication, through limiting the bioavailability
of tryptophan (128). IDO also inhibits the replication of several
parasitic pathogens including T. gondii in human fibroblasts
(129) and Leishmania spp in human macrophages (130). Mouse
infection with L. monocytogenes showed that IDO is elevated
in an IFN-γ-dependent manner in stromal cells of the metrial
gland and decidua basalis; a crucial process to resolve bacterial
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infection in the mouse placenta (131). Our findings also show
IDO1 expression is enriched in epithelial glandular and DC1 cell
type in the first trimester decidua (10) (Figure 4). The presence
of IDO in decidua suggests that the enzyme might have a central
role in limiting parasitic, viral, and bacterial replication, thus
preventing their spread to the fetus.

CHALLENGES AND FUTURE
PERSPECTIVES

Research on how the human placenta safeguards itself against
infections is challenging due to obvious logistical and ethical
issues in obtaining tissue from early in gestation (Box 1).
Although animal experimental models have provided important
insights relating to the immune responses to pathogenic
infection, major differences between human and animal
placentas must be considered (30, 31). Likewise, differences
between strains of pathogens adapted for mice compared with
human clinical isolates should be taken into account as this
may lead to variation in pathogenesis and cellular response.
One such example is the use of mouse CMV, which is unable to
cross the mouse placental barrier, unlike the HMVC counterpart
which can be transmitted transplacentally in humans (132).
Therefore, all data obtained from studies of infection in pregnant
animals needs careful interpretation and consideration prior to
translation to clinical infection in humans.

Inherent properties of trophoblast cell lines, primary cultures
or explants vary between donors, and are likely to be confounded
by the area of the placenta that is sampled and as well as stage
of gestation (133). For instance, villous placental explants will
vary depending on the types of villi sampled and the presence of

BOX 1 | Perspective of vertical transmission and innate immune function

during pregnancy and infection.

A variety of maternal infections can lead to vertical transmission (Table 1).

The exact mechanisms these pathogens use to escape host defense

and cross the placental barrier into the fetal compartment are not entirely

known. Experimental models that recapitulate infection of the human placenta

and thus vertical transmission are challenging to set up. More data and

representative experimental models are needed to answer these questions:

(i) how do different pathogens escape or modulate the maternal-fetal host

innate immune barrier (ii) why do some pathogens lead to congenital

infection but not others? Studying infected human placentas will be essential

in understanding this but access to these samples is difficult especially

in low and middle-income countries (LMIC) where maternal infection is

particularly prevalent (WHO, Maternal mortality index 2019). Despite evidence

of expression in primary placental tissue, functional studies on important

innate immune features such as TLRs, AMPs, RIG-I, MDA5, NLRs, and IDO

during infection and pregnancy are lacking. Understanding how different cell

types at the uterine-placental interface (HB cells, dNKs, and dMs) respond

to pathogen challenge is essential, but remains under-researched. A critical

obstacle is to also extrapolate the protective and pathological mechanisms of

cytokines from mouse to human infection. Therefore, systematic comparison

of the innate immune effector mechanisms across gestation, in the placenta

and decidua from natural human infection vs. healthy pregnancy, will provide

a more accurate representation in clinical settings.

attached decidual tissue (133). Caution is therefore needed when
interpreting data using these experimental models.

To overcome such limitations, population-based cohort
studies of women with infection during pregnancy with extensive
tissue sampling should be performed. These need to include
and focus on LMIC where infection is still a major cause of
maternal and fetal mortality and morbidity. Cohort studies
and epidemiological surveillance on maternal infections can
offer significant insights into disease pathogenesis and accelerate
clinical interventions (134). Collaborations between clinicians
and researchers for population-based cohort collection and
sample processing will be instrumental to achieving this goal.
Biological samples such as blood or placenta collected from
controls and infected pregnant individuals could be stored
and cryopreserved retrospectively. To capture the overall
heterogeneity of infected and non-infected placenta samples,
sampling, and biobanking criteria of different regions of placenta
should be considered (135). Protocols are now available to use
frozen tissue processed for single-cell/nuclei and spatial genomics
(136, 137). Hence, application of single-cell “omics” on infected
vs. healthy human placental and decidual samples will enable us
to evaluate cellular heterogeneity in response to infection.

The capacity to detect transcripts specific to host or
pathogen mRNA from the same tissue using in situ nucleic
acid hybridization methods will provide direct quantification
of infection burden and identification of potential target host
cells within the same tissue (138). Recent advances in spatial
transcriptomics methods have also allowed gene expression
signatures to be quantified and resolved from individual tissue
sections (139). Combination of these emerging technologies
with new methods to integrate single-cell and spatial data
computationally (140) will provide an unbiased approach to
characterize and profile the transcriptome of individual cells in
situ from the placenta and decidua in response to infections.
We anticipate that high-throughput datasets generated from
cohort sampling studies will unravel novel cell states and
tissue spatial localization associated with placental infections
and inflammation. This will also allow us to better characterize
not only the innate immune response or makers of infection,
but also other adaptive immune states in the human placenta
(Box 1).

The use of in vitro models will also further define host
responses to infection. The recent generation of human
trophoblast stem cells (hTSCs) (141) and three-dimensional (3D)
trophoblast organoids (142, 143) offer a great opportunity to
study infections in early pregnancy where the access to first
trimester placental samples is a concern. More importantly, the
hTSCs and trophoblast organoids fulfill the criteria characteristic
of human first trimester trophoblast in vivo (32). Both hTSCs
and trophoblast organoids can differentiate in vitro into SCT
and EVT with appropriate media (142, 143) allowing infection
experiments on both the major trophoblast subpopulations
present at the two major sites of contact between maternal and
fetal cells. Sequencing of both host and pathogen transcriptomes
from infected trophoblast at single-cell resolution will also
advance our understanding on host-pathogen interactions in
placentas (144, 145).
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Further refinement of the trophoblast organoid and
hTSCs culture system is needed to address key biological
questions unanswered by current models. These include
studying the effect of infection on cellular crosstalk between
trophoblast and other primary placental cells such as HB
cells, or decidual cells in culture, such as dNK or decidual
stromal cells. Adaptation of CRISPR/Cas9 genome editing
technology for the trophoblast organoids or hTSCs will
offer novel insights into essential host genes required for
vertical transmission and placental defense mechanisms
in humans.

CONCLUSION

Major maternal and fetal complications as a result of infection
are still a concern, especially in LMIC with highest prevalence
reported in countries of sub-Saharan Africa (WHO, Maternal
mortality index 2019). Profound limitations on current study
models and ethical regulations on studying human placenta have
significantly delayed the development of therapies and vaccines
for maternal-fetal infection. How vertical transmission occurs
and how the uterine-placental innate immune system reacts to
infection remain as major unresolved questions. Revolutionary
advances in single-cell genomics, imaging, computational,
and stem cell biology methods are currently underway to
study the molecular and cellular mechanisms of human
diseases. Therefore, it is now an exciting time to apply
these transformative technologies to comprehensively address

fundamental questions on host-pathogen interaction at the
human uterine-placental interface.
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