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History illustrates the remarkable public health impact of mass vaccination, by

dramatically improving life expectancy and reducing the burden of infectious diseases

and co-morbidities worldwide. It has been perceived that if an individual adhered to the

MMR vaccine schedule that immunity to mumps virus (MuV) would be lifelong. Recent

mumps outbreaks in individuals who had received two doses of the Measles Mumps

Rubella (MMR) vaccine has challenged the efficacy of the MMR vaccine. However, clinical

symptoms, complications, viral shedding and transmission associated with mumps

infection has been shown to be reduced in vaccinated individuals, demonstrating a

benefit of this vaccine. Therefore, the question of what constitutes a good mumps

vaccine and how its impact is assessed in this modern era remains to be addressed.

Epidemiology of the individuals most affected by the outbreaks (predominantly young

adults) and variance in the circulating MuV genotype have been well-described alluding

to a collection of influences such as vaccine hesitancy, heterogeneous vaccine uptake,

primary, and/or secondary vaccine failures. This review aims to discuss in detail the

interplay of factors thought to be contributing to the current mumps outbreaks seen

in highly vaccinated populations. In addition, how mumps diagnoses has progressed

and impacted the understanding of mumps infection since a mumps vaccine was

first developed, the limitations of current laboratory tests in confirming protection in

vaccinated individuals and how vaccine effectiveness is quantified are also considered.

By highlighting knowledge gaps within this area, this state-of-the-art review proposes a

change of perspective regarding the impact of a vaccine in a highly vaccinated population

from a clinical, diagnostic and public perspective, highlighting a need for a paradigm shift

on what is considered vaccine immunity.
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INTRODUCTION

Mumps Virus
MuV is an enveloped, non-segmented, negative-sense, single stranded RNA virus that varies
between a spherical and pleiomorphic shape of ∼200 nm (85–300 nm) (1, 2). MuV is responsible
for an acute viral infection, spread by respiratory droplets (via coughs, sneezes) and urine (3, 4).
With an incubation period of 14–25 days, MuV replicates in the nasopharynx and regional lymph
nodes, with a secondary viremia occurring late in the incubation period (5, 6). MuV can be detected
from saliva up to 7 days prior, and as late as 9 days after clinical onset of parotitis (7).
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The MuV genome of seven genes consists of 15,384
nucleotides, and encodes six structural proteins and at least
two non-structural proteins; the nucleocapsid protein (NP), V
protein (V), phosphoprotein (P), matrix (M) protein, fusion
(F) protein, small hydrophobic (SH) protein, hemagglutinin-
neuraminidase (HN) protein, and large (L) protein. The role
of the I protein is not known (1, 6, 8). The SH gene is
the most variable region of the MuV genome; a 2–4% intra-
variation and 8–18% inter-variation has been documented (9).
This gene is used in molecular phylogeny for genotyping and to
identify transmission patterns in populations (6). Despite being
serologically monotypic, 12 MuV genotypes (A to L) have been
described to date (MuV genotypes E and M are omitted, as the
MuV previously assigned to these groups were later re-assigned)
(1, 9, 10). The geographic distributions of the MuV genotypes
varies worldwide but can co-circulate and thus drive temporal
shifts in their distribution. Genotype A was frequently isolated
in Europe until the 1990’s. Currently genotypes C, D, E, G, and
H are prevalent in Europe and the United States of America
(USA) whereas genotypes B, F and I are more common in Asian
countries (Table 1) (10, 18, 86, 87).

Development of the Mumps Vaccine
Since 1946 numerous mumps vaccines have been developed
worldwide, varying in efficacy and safety profiles but primarily
consisting of an attenuated live MuV without an adjuvant (6,
87–89). Currently in Europe and for the majority of the G20
countries who have a mumps vaccine in their immunization
schedule (Table 1), the mumps vaccine is included as part of
the trivalent measles, mumps rubella (MMR) vaccine, and is
primarily administered in two doses (90, 91).

The Jeryl Lynn (JL) vaccine, derived from the genotype A
MuV strain was first developed in the USA and has been used
extensively in the United Kingdom (UK), Ireland and USA since
it was licensed in 1967 (92). Derived from a single clinical sample,
and propagated in a chick embryo cell culture, two viral isolates
(JL2 and JL5) are present, differing by ∼414 nucleotides and 87
amino acid changes (93–95).

The RIT 4385 mumps vaccine, developed from the dominant
viral component (JL5) in the JL vaccine strain appears to have
comparative safety and efficacy (seroconversion) profiles to the JL
vaccine strain (87, 96–98). However, since no controlled clinical
trials of efficacy have been published to compare the two doses
of the two vaccines, the clinical significance of this observation is
not known.

Despite the integration of the MMR vaccine into childhood
immunization programs, cyclical outbreaks [defined as two or
more cases linked by place and time (96)] of MuV have been
documented in several highly vaccinated populations such as
Ireland and the United Kingdom (6, 97–103). Between August
2018–and January 2020, 3,736 mumps cases were notified in
Ireland, primarily affecting individuals between the ages of 15–
24 years. Of the 32% of cases that stated vaccination status,
72% had received two doses of the MMR vaccine (104). An
upsurge of mumps cases has also occurred in 47 states of the
United States over the last 2 decades, primarily affecting people
between 18 and 24 years in close contact/shared settings (105).

In Indiana, 76.9% of mumps cases (84.9% of university affiliated
and 52% of community cases) had documented evidence ofMMR
vaccination (106). This results in a significant resource burden for
public health departments to control.

Several reviews, both observational and systematic have
demonstrated the clinical benefit of a mumps vaccine (107, 108),
the pathogenesis and genomic diversity of theMuV (10, 107, 108)
and the epidemiology surrounding the outbreak (1, 10, 82). It is
not clear why these mumps outbreaks occur, although it has been
alluded to be due to a number of interrelated factors, such as
sub-optimal vaccine uptake (1, 109, 110), primary or secondary
vaccine failure or failure of the mumps vaccine to protect
individuals from infection (vaccine efficacy) (107) (Figure 1).

Vaccine Hesitancy: How Public Perception
Predominates
History depicts the remarkable public health impact of mass
vaccination. Previously inevitable childhood diseases with
potentially debilitating or deadly outcomes have seen their
rates plummet worldwide or become successfully eradicated.
Immunizations of vaccine preventable diseases are estimated
to prevent ∼2–3 million deaths per annum and increase life
expectancy by ∼29 years (111). More recently there has been
a shift in the public and media perception of vaccines to their
safety, which has facilitated outbreaks such as mumps (112).
Organized opposition to vaccinations has a long history; public
outcry and resistance following the introduction of the smallpox
vaccine in the nineteenth century led to the introduction in
England of the Vaccination Act of 1853 (113).

With one in eight children in the USA under the age of 2
currently thought to be unvaccinated due to parental choice,
the WHO now considers vaccine hesitancy as one of the
ten threats to global health in 2019 (114). Vaccine hesitancy,
defined as a “delay in acceptance or refusal of vaccines despite
availability of vaccination services” involves a multitude of social,
political, cultural and emotional factors in highly vaccinated,
western populations (115, 116). One of the main issues is the
parental concerns regarding the perceived risk of a vaccine to
their child (such as timing/schedules of vaccines, associated
pain of administration, and potential adverse effects) vs. the
disease morbidity and mortality associated with the vaccine
preventable disease (117, 118). The retracted paper published
in the Lancet in 1999 (56) and “anti-vaccination” opinions on
social media have also contributed to the persistent and insistent
misinformation (116), despite vast follow-up epidemiological
studies showing no relationship between the MMR vaccine and
autism, or differing cognitive development/intelligence (118–
120). However, the resultant reaction of the public led to the
uptake of the first MMR vaccine falling sharply from 1999,
with uptake falling to below 75% in 2002 (104, 121). The age
demographic that are experiencing the most cases of mumps in
Ireland during the current ongoing outbreak would have been
scheduled to have received the first MMR vaccine between 1997
and 2003. Nevertheless, no deductions can be made, due to the
lack of vaccination status information provided with reported
cases (104).
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TABLE 1 | Comparison of vaccine strain, schedule, and coverage in contrast to the circulating mumps strain and reported cases/year within G20 countries who currently utilize mumps containing vaccines as part of

the national vaccination schedule.

Country Vaccine introduced Vaccines (strains) Vaccination schedule Approximate vaccine

coverage (VC)

Circulating strains Reported cases/Year

Argentina 1997 (11, 12) Present: JL (A) strain. During

outbreaks, JL/JL derived

vaccines preferred among

adolescents and adults

(12, 13)

MMR 1: 12 MThs

MMR 2: 5–6 years (catch up at 11

years).

From December 2018, the government

pays for all vaccinations (12, 14–16)

2013: MMR1: 94%; MMR2: 82%

2014: MMR1: 95%; MMR2: 96%

2015: MMR1: 89%; MMR2: 87%

2016: MMR1: 90%; MMR2: 88%

2017: MMR1: 90%; MMR2:

91% (14)

D (2005) (17)

K/94-98 (until 2013) (18)

3772: 2013

87: 2014

156: 2015

74: 2016

4396: 2017

771: 2018 (19)

Australia 1982 (20) JL (A) (21) 1982: MuCV: 12 MThs

1989: MMR 1: 12 MThs

1996: MMR 2: for adolescents

1998: MMR 1: 12 MThs; MMR 2: 4

years. Catch-up between 4 and 16

years.

2013: MMR 1: 12 MThs.

MMR 2 (MMRV): 18 MThs (20, 22)

1998: Proof of

immunization/exemption

required for welfare benefits.

2016: Immunizations required for

Family Tax Benefit “No Jab, No

Play”

2017: 93% at 2 years. (22, 23)

J/07-08 (until 2013) G (2015)

(18, 24)

216: 2013

187: 2014

633: 2015

800: 2016

806: 2017

634: 2018 (19)

Brazil 1992 (25) 1992: Urabe (B) (MMR

campaign)

1997: Urabe (B) and

Leningrad–Zagreb (N) (MMR

campaign)

2003: RIT 4385 (A) (25–29)

2013: MMR 1: 12 MThs; MMR 2: 4–6

years. Booster 1: 11–19 years. Booster

2: After 20 years.

2016: MMR 1: 12 MThs; MMR 2: 15

MThs.

Two additional boosters before 20 years,

OR a single dose if over 20 years.

(25, 26)

2013: MMR1: 100%; MMR2:

69%

2014: MMR1: 100%; MMR2:

89%

2015: MMR1: 96%; MMR2: 80%

2016: MMR1: 95%; MMR2: 77%

2017: MMR1: 97%; MMR2: 41%

(14)

K/07(CAN) and K (until 2013)

(18, 30)

2014–2015: 82% increase

in reported cases in São

Paulo (31)

Canada 1969: MuCV

1972: Trivalent MuCV

Mid-1980’s (Urabe Am9

MuCV). Withdrawn late 1980’s.

1970’s: JL (A). Two different

MuCVs are used

interchangeably (32)

MMR or MMRV vaccine.

MMR 1: 12–15 MThs

MMR 2: 18 MThs. No later than around

school entry (33)

VC of 2 doses of MuCV in

school-aged children has been

90% for the past 10 years. in

Toronto schools

VC 2017–2018:

7 years: 87.4%; 17 years;

95% (34)

A/88, C/85, 88, 11–13

Imported: D/07, 08, 09, 11;

F/11–12, G/05–13; H/07, 08,

11–13; K/07, 09, 12–13 (until

2013)

G (18, 33)

216: 2013

187: 2014

633: 2015

800: 2016

806: 2017

634: 2018 (19, 35, 36)

China 1990’s: (voluntary)

2008: (NIP)

Since 1990:

Monovalent MuCV

Imported: MuCV JL(A)

Domestic: MuCV, mostly S79

strain derived from JL(A) (37)

Pre-2008: MuCV was voluntary and at

own expense.

2008-present: MuCV introduced into

NIP. One dose of MuCV at 18–24

MThs (38)

Not Available F/95, 01–12 (11–12/CAN); J/09

(CHN-HK), G/09–11 (CHN-HK);

H/11(CHN-HK) (until 2013) (18)

2013–2015: F (99%), G (1%)

(38); K (39)

327759: 2013

187500: 2014

182833: 2015

175001: 2016

252740: 2017

259071: 2018 (19)

France 1983 1983: Monovalent MuCV;

Urabe (B) 1986: MMR. Urabe

(B) 1992: MMR of Urabe (B)

discontinued

1992-Present: JL (A) (40–42)

2005: VC documented at 24 MThs

MMR 1: 12 MThs. MMR 2: 16–18 MThs

(catch up 6–17 years) (43)

2009–2013: MMR 1: ∼90.4%.

MMR 2: 78.2%

MuCV compulsory for children

born from January 1 2018

(44, 45)

D/89; C/90 (until 2013) (18) 2: 2015 6: 2016 10: 2017

4: 2018 (19)

(Continued)
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TABLE 1 | Continued

Country Vaccine introduced Vaccines (strains) Vaccination schedule Approximate vaccine

coverage (VC)

Circulating strains Reported cases/Year

Germany Former German

Democratic Republic:

No MuCV in NIP.

Former West Germany

(FWG):

1976: (10, 46)

MuCV:

JL (A)

RIT4385 (A)

L-Zagreb (N)

[Reviewed in (10, 47)]

FWG: 1976: MuCV at 12 MThs

(voluntary); 1980: MuCV in NIP

1991: 2 MMRs. Dose 2 at >5 years

1997: MMR 1: 11–14 MThs 1998: MMR

2: 13 MThs−6 years 2001: MMR 1:

11–14 MThs MMRV: 15–23 MThs.

Catch up doses: 2–17 years (10, 46)

2009–2013: MMR 1: ∼97%;

MMR 2 /MMRV: 93%.

(41, 43, 48, 49)

A/87, 90; C/87, 90, 92, 93; D/77;

N/87; G/05, 10 (until 2013) (18)

837: 2014

699: 2015

741: 2016

652: 2017

534: 2018 (19)

Italy 1980’s (50) Pre-2001: Urabe (B), Rubini (A)

(41)

2001: JL (A), RIT4385 (A),

Urabe (B) (51)

1999: MMR offered free to all children in

the second year of life

2005–2007: Two-dose schedule as part

of NIP

2017: MMR mandatory for children born

from 2001. MMR 1: 13–15 MThs; MMR

2: 6 years (52–54)

2013–2017: MMR 1: ∼88.6%.

MMR 2: 84.2%

2018: 94.1% (55)

Genotype G (56) 808: 2013

821: 2014

675: 2015

782: 2016

829: 2017

47: 2018 (57)

Mexico 1998 (58) Present: Triple Viral SRP

(sarampo, parotidite epidémica

e rubeola). JL (A)

1998: Two MuCV introduced

2000: MuCV included to NIP

Present: MMR 1: 12 MThs; MMR 2: 6

years (59).

2017: MMR1: 79%; MMR2: 62%

2016: MMR1: 97%; MMR2: 98%

2015: MMR1: 100%;

MMR2:96%

2014: MMR1: 98%; MMR2: 96%

2013: MMR1: 89%; MMR2: 76%

(12, 14, 60)

H (2016) (59) 4142: 2014

3399: 2015

3646: 2016

(19, 59, 61)

Russian

Federation

1967 (62) MuCV used of Russian

production, in addition to

foreign combination vaccines.

Leningrad-3 (Genotype

unknown) commonly used

(43, 62)

MMR 1: 12 MThs MMR 2: 6 years. (62) 2013–2017:

MMR 1 VC: ∼98%

MMR 2 VC: ∼97%

(63)

N/53; C/94, 02–04; H/02–04

(until 2013) (18)

C and H (Novosibirsk) (64)

282: 2013

267: 2014

190: 2015

1106: 2016

4443: 2017

2027: 2018 (19)

Saudi Arabia 1991 Urabe (B)

JL (A) (41, 65)

1991: MMR 1: 12 MThs 1993: MMR

provided as a part of EPI. Required for

birth certificate 1998–2000: MMR

school campaign. 2002–present: a

3-dose schedule Measles-containing

vaccine: Nine MThs MMR 1: 12 MThs;

MMR 2: 4–6 years. (66–69)

1998–2000 Campaign: 96.4%

2000: School Campaign 96.6%

2006: ∼99% of children received

MMR vaccine in Keddah. Delays

in vaccination have been

observed

2014: MMR Campaign for

children in 1st grade (6/7

years) (67–69)

Not Available 3: 2015

14: 2016

47: 2017

118: 2018 (19)

South Korea 1981 1981–1997: Urabe AM9 (B)

1997–2000: Rubini (A)

2000-present: JL (A)

1980: MuCV introduced

1985: MMR vaccine included in NIP

1997: MMR 1: 12–15 MThs; MMR 2:

4–6 years.

2001: MMR mandatory for school

entrance (70)

Two-dose MMR VC more than

95% among pre-school children

in Korea (70).

Increase in mumps cases

attributed to Rubini strain (71, 72)

I/97-01; H/98-01, 07-10,

F/07-10 (until 2013) (18),

H and I (71)

17022: 2013

1121: 2017

19237: 2018 (19)

(Continued)
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TABLE 1 | Continued

Country Vaccine introduced Vaccines (strains) Vaccination schedule Approximate vaccine

coverage (VC)

Circulating strains Reported cases/Year

Turkey 1970’s MMR (Kizamik Kizamikçik

Kabakulak (KKK): JL (A)

(73, 74)

1970’s-1987: As part of NIP. MMR dose

1: Eight MThs; MMR 2: 15 MThs

1987–1998: MMR 1: Nine MThs

2006–present: MMR 1: 9–12 MThs

MMR 2: 6 years (compulsory, free)

(73, 74)

MMR used to eliminate Measles

and rubella.

2013–2016: VC for MMR 1:

∼97% VC for MMR 2:

90.5% (75)

Genotype H (2006–2007 winter

season) (76)

H/05-07 (until 2013) (18)

597: 2013

457: 2014

322: 2015

544: 2016

419: 2017

464: 2018 (19)

United Kingdom 1988 (77) 1988–1992: Urabe (B)

(withdrawn) 1992–1998: JL (A)

1998-present: RIT-4385 (A)

(77).

MMR 1: 12–13 MThs MMR 2: From 40

MThs (78)

2013–2017: MMR 1: ∼92.6%.

MMR 2: 88.6% (75, 79)

2017–2018 (at 5 years): MuCV 1:

94.9%; MuCV 2: 87.2%

2019 (at 5 years): MuCV 1:

94.5%; MuCV 2: 86.4% (80)

B/89, 90; C/75, 80s, 90, 98-00,

04, 06; D/96, 97, 99, 01-04;

F/99; G/96-13; H/88, 95-96, 98,

00-04; K/99, 02; J/97, 03-06

(until 2013) (18, 81)

4718: 2013

2958: 2014

1008: 2015

974: 2016

2360: 2017

1398: 2018 (19)

United States 1967 JL (A) (82) 1967: MuCV introduced

1977: MuCV advised for >12 MThs

1989: Second MMR at 4–6 years.

Current MMR/MMRV: MMR 1: 12–15

MThs MMR 2: 4–6 years. (82, 83)

2013–2017: VC for ≥1 dose

MMR: ∼91.9%. (19–35 MThs)

2017–2018: VC for two doses

MuCV 3 6/7 years: ∼ 94.3%.

However, MuCV exemption

increased to 2.2%

(84, 85)

A/45, 50, 63-91; C/08-10; D/09;

G/06-10; K/70s, 07, 08, 10;

H/88, 06–10 (up until 2013) (18)

584: 2013

1223: 2014

1308: 2015

6369: 2016

6109: 2017 (19)

NIP, National immunization program; EPI, Extended Program of Immunization; VC, Vaccine Coverage; MuCV, mumps containing vaccine; MMR1, measles mumps rubella dose 1; MMR2, measles mumps rubella dose 2; JL, Jeryl Lynn

(Genotype A).
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FIGURE 1 | Current perspectives on recent mumps outbreaks seen in vaccinated populations (blue circles). How impactful a vaccine is defined may lead to a

paradigm shift in what constitutes an effective vaccine.

Heterogeneity of immunization coverage in specific
populations or geographic locations of susceptibility is also
becoming an important epidemiological issue in maintaining
proficient population immunity for mumps (3, 109, 122). The
WHO recommends a >95% MMR vaccine coverage for herd
immunity. Maintenance of such coverage is well-demonstrated
in Finland, where a country-wide 2-dose MMR vaccination
program initiated in the 1980’s eliminated measles, mumps and

rubella within 25 years (123, 124). Recent publications from
around the world indicate that the level of MMR vaccine uptake
is far lower than what is recommended [reviewed in Ramanathan
et al. (125)] (101, 126–129). Of the G20 nations that implement
a mumps vaccine within their vaccination schedule, only 3
countries have maintained vaccine coverage levels of >95%
(Table 1). However, poor uptake/incomplete vaccination alone
may not be the only issue relating to mumps outbreaks. In the
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Netherlands, mumps outbreaks still occurred with an overall
herd immunity threshold of 86–92%, and where 96 and 93%
received the first and second MMR at 14 months and 9 years,
respectively (125, 130).

FACTORS FACILITATING CURRENT
MUMPS OUTBREAKS IN HIGHLY
VACCINATED POPULATIONS

The Changing Criteria of Mumps Diagnosis
The clinical presentation of mumps is pathognomic (bi-lateral
parotitis); therefore supporting laboratory diagnosis was rarely
employed in the past. As the classical symptoms of mumps are
not always typical, there may have been a significant number of
individuals in the past who may have been infected but were not
identified as such. When mumps vaccination was introduced in
1967, the criteria the vaccine had to meet was the proof that it
was clinically effective, i.e., that it reduced the risk of disease in
vaccinated individuals in real-world conditions over a set period.
Such an example was seen the USA; the reported cases (i.e.,
diagnosis of clinical symptoms) of mumps declined from >100
cases per 100,000 population before 1967 (pre-vaccine era) to
10 cases per 100,000 population in 1977, a reduction of 99%
(105, 110, 126, 131). To note, clinical efficacy was probably based
upon the reduction of the “classical bilateral presentation” rather
than the milder mumps presentation. Therefore, one could argue
that the original vaccine efficacy for clinical manifestations was
over estimated.

Currently the laboratory diagnosis of mumps infection in
Ireland is based upon two approaches: detection of mumps
RNA by reverse transcriptase PCR (RT-PCR) in a buccal
swab containing saliva, throat swab or urine specimen, and
serological detection of immunoglobulin M (IgM) using a
capture assay (132, 133). Both approaches for diagnosis
are impacted significantly by the quality and timing of
sample collection post-onset of symptoms and also if the
subject is mumps naïve or had received mumps containing
vaccine (87, 126, 134, 135).

There are challenges in using standard serological laboratory
diagnostic methods to reliably confirm mumps re-infection
of individuals who had been previously naturally infected or
vaccinated (130, 136). Briefly, vaccinated individuals re-infected
with MuV may only generate a weak or undetectable IgM
response (133). Although a rise in IgG titer may also not
occur in vaccinated individuals (87, 137), numerous studies have
documented a rapid, variable increase in mumps-specific IgG
levels, with neutralization antibody concentrations present up to
10 months post-infection (130, 138, 139).

Therefore, Reverse Transcriptase-Polymerase Chain Reaction
(RT-PCR) is recommended (133, 140), and was formally
introduced in 2015 as the principle diagnostic tool in Ireland to
detect mumps in oral fluids (141). RT-PCR can identify current
mumps infection more effectively in vaccinated individuals than
serological techniques alone as it identifies the presence of
the MuV vs. the immunological response (IgG, IgM), and has

been previously shown to 100% correlate with viral culture
results (140, 141).

The case numbers of more recent mumps outbreaks should
always be assessed with this question in mind; are the number
of mumps cases increasing, or/and are we better at diagnosing an
acute infection? The latter seems to be themost probable, asmany
individuals who are being tested do not present with classical
symptoms. In addition to enhanced surveillance of mumps cases,
further optimizations of technologies are also occurring; the
utilization of next-generation sequencing demonstrated that by
editing one 2-fold degenerate nucleotide in the forward primer
and three 2-fold degenerate nucleotides in the probe sequence
optimized the fluorescence intensity and clinical sensitivity of
the real-time RT-PCR when compared to the CDC-developed
and WHO-recommended RT-PCR target [(NP) gene] leading to
∼11% increase in clinical sensitivity (i.e., Ct values that were∼3.7
cycles lower) (142).

Are Primary and Secondary Vaccine
Failures Implicated?
Much is not known about the immunological response to the
mumps vaccine strain. However, a number of young adults
who were vaccinated as children over the last two decades have
demonstrated an increased risk of MuV infection with time,
which is assumed to be related to a decline of antibodies to
sub-protective levels of immunity (40, 101, 125, 128, 143–146).

Primary Vaccine Failure
Primary vaccine failure is defined as the lack of a sufficient initial
antibody response to a vaccine in a recipient resulting in a lack
of protective immune responses (6, 147). Although this type of
vaccine failure may be because of improper storage/handling or
administration of the vaccine, impacting its efficacy, it may also
be due to the initial immunological response of an individual
to the vaccine, which is usually quantified by the presence of
antibodies that should be detectable in the weeks following
vaccination. Primary vaccine failure was attributed to primary-
school outbreaks of both mumps and measles in Ireland, which
subsequently resulted in reducing the age for the second dose of
MMR2 vaccine from 10–14 years in 1999 to 4–5 years of age (6).
With the cyclical outbreaks occurring, it has been proposed that
primary vaccine failure could again be a factor.

How is a response to a vaccine determined? In pre-licensure
studies of the JL andUrabemumps vaccines, high seroconversion
and low failure rates were observed in children after the
first vaccine dose (>90 and 5.5%, respectively), demonstrating
that the vaccine induced an antibody response (148–153). A
more recent study by Ong et al. demonstrated that a ≥2-
fold increase in mumps antibodies 30-days post-vaccination
was considered to be an adequate response of immunity (154).
Vaccine effectiveness (i.e., seroconversion post-vaccination) of
2 vaccine doses has only been conducted on the JL strain; 6
studies provided a median vaccine efficacy of 88%. These studies
have shown that 2 doses of MMR were more effective (but not
statistically significant) than a single MMR dose to combat the
incidence of mumps infection (101, 126, 145, 151, 152, 155).
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Mumps-specific antibodies have been detected 1–2 years post-
vaccination and without substantial decline for 8 years after
mumps vaccination, with the immunogenicity and efficacy of
the MMR vaccine showing comparable immunogenicity levels
to post-vaccination levels at 3 years (148, 156). However, most
studies of this vaccine (involving either a mumps-specific vaccine
or a combined vaccine) only followed-up to 30–56 days post-
vaccination (157–167). Despite few follow-up studies estimating
post-vaccination antibody titers specific to the vaccine mumps
strain, the evidence of seroconversion post-vaccination in a
number of studies indicate that primary vaccine failure does not
seem to be a significant contributor to the outbreaks that have
been recently observed (118, 149, 150, 152, 158, 168–171).

It has been noted that a small percentage of the population
do not seroconvert post-vaccination; <1% who received the
MMR vaccine were seronegative 4–9 years after the first dose
of MMR (n = 616) (143). Poor immune responses to primary
vaccination has been shown to be a good indicator of infection
susceptibility (172). This is in agreement with the correlation
of pre-outbreak JL virus neutralization titres and ELISA results
being significantly lower in individuals who became infected
compared to non-infected individuals (173). Further studies of
these individuals may provide insights of which immunological
process are integral to develop immunity.

Secondary Vaccine Failure
The current methods used to determine immunity against
mumps cannot discriminate between primary and secondary
vaccine failure; only the timing of these tests can assess
whether an individual ever mounted an immune response post-
vaccination or whether the response is detectable years post-
vaccination. Primary vaccine failure encompasses the failure to
mount an immune response to a dose of a vaccine, secondary
vaccine failure refers to a more gradual loss of immunity after
a successful initial response that occurs over a number of years
post-vaccination (174). Several factors have been proposed to
be implicated with secondary vaccine failure, such as waning
immunity, a lack of cross-neutralization, and natural boosting.

Waning Immunity
Waning immunity is defined as a decline in immunological
protection proportional to time since vaccination. Potential
waning immunity has been documented in the current mumps
outbreaks seen in Europe and the USA, mostly affecting young
adults within highly vaccinated populations attending tertiary
education who have received two doses of the MMR vaccine in
early childhood (40, 110, 126, 144, 145, 175–181).

A number of studies from the USA, where a JL vaccine
has been used since 1971 have demonstrated waning immunity
within the population. The risk of developing clinical mumps
was shown to increase by 10–27% for every year post-MMR
vaccination (125), with the rates of mumps infection rising from
1.6 cases per 1,000 in those who received the second dose of
the vaccine within 2 years of the outbreak, to 11.3 cases per
1,000 in those who received it over 13 years prior. Using a
mathematical model with analytical limitations, a recent meta-
analysis of six studies estimated that vaccine-derived immune

protection to MuV wanes about 27 years post-vaccination (182).
Kennedy et al. (183) also demonstrated a decrease of ∼20% in
mumps neutralizing antibody titers over 10 years.

In contrast, other studies appear to contradict, these findings,
showing no link between mumps protection and time elapsed
following administration of mumps vaccine (138, 148, 149, 184,
185). LeBaron et al. (143) andGothefors et al. (186) demonstrated
that 70–99% of individuals still had detectable anti-mumps
antibodies ∼10 years after initial vaccination. Cohen et al. (101)
also demonstrated minimal antibody level decline after two
MMR doses 6–7 years after second vaccination. Neutralizing
antibodies against the JL-5 vaccine strain has also been detected
in ∼80% for age groups 2–20 years, 67% for age group 24–26
years; and 77% for age group 50+ years (187).

Implementation of a third dose of the MMR vaccine has
been shown to be effective as a stop gap measure in limiting
disease spread in outbreak settings situations (129). Individuals
vaccinated for the third time had a 78% lower risk of contracting
mumps, with a decreased attack rate of 6.7 vs. 14.5 cases per
1,000 when compared to those who received a second dose. More
than 50% of those who received a third dose of the MMR vaccine
showed a 4-fold increase in mumps antibody titers (105, 106, 168,
188). An increase in mumps IgG humoral immunity was also
observed post-vaccine administration. However, this immunity
boost has been shown to be a transient effect, with mumps
antibody titers returning to pre-third dose of mumps-vaccination
levels 1 year after vaccination.

Therefore, as waning immunity is thought to be an important
factor facilitating mumps outbreaks, the emphasis placed on the
quantity/quality of mumps-specific antibodies may need to be
re-assessed. It is yet undetermined if the total loss of detectable
antibodies correlates to a loss of clinical protection, as the
minimal level of neutralizing antibody required for protection
against mumps has not yet been defined (184).

Cross-Neutralization
Antigenic variation and thus reduced cross-neutralization
between the vaccine and circulating strains of different MuV
genotypes have been cited as possible explanations for mumps
outbreaks in highly vaccinated populations (125, 184, 189–191).
Recent outbreaks in Europe and Northern America (including
Ireland) have shown the circulating MuV during the current
outbreaks to be genotype G (135, 184, 192, 193). This MuV
genotype was first identified in 1996, and has demonstrated
intra-genotype diversity of up to 7% (Table 1) (6, 134).

The JL vaccine strain (genotype A), differs phylogenetically to
the circulating MuV (genotype G) (125). In vitro studies of the
genotypic distribution and temporal shift of MuV suggest that
cross neutralization between wild type and vaccine genotypes
may be approximately half the concentration measured against
the vaccine strain (130). Pre-infection neutralization titers in
mumps positive cases were also significantly lower against
genotype G vs. mumps vaccine strain, potentially due to amino
acid differences in B-cell epitopes and/or N-linked glycosylation
sites on the HN and also within the F protein (194). Santak et al.
(195, 196) also demonstrated that conformational changes within
the F protein may lead to immunological escape.
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Despite the decline/scarcity of cross-neutralizing antibodies,
different mumps vaccines used worldwide have been shown to
prevent significant clinical mumps infection during outbreaks
(101, 197). Dependent on the strain, a 2–16-fold variation of
patient sample titers has been shown to be protective in in
vitro plaque reduction neutralizations (149, 151, 198). Although
the sera of one of these studies, was collected only 6 weeks
after MMR vaccination, a time point that may not signify the
concept of waning immunity and antigenic differences, several
other groups have shown that the most divergent strains of MuV
can be neutralized in vitro with only slight variations in titers,
supporting the concept that MuV is serotypically monotypic
(184, 190, 195, 198). Epitopes of the MuV that are presented to
CD8+ T-cells have been shown to be present in not only the
circulating strains of virus but also in a number of vaccine strains
(199). In addition, Lewnard et al. (182) also found no evidence
that recent mumps outbreaks were due to the emergence of MuV
strains escaping vaccine-driven immunological pressure.

Therefore, the limited data does not suggest that antigenic
drift of the MuV leading to diminished neutralization capacity
of the vaccine strain could fully explain the recent outbreaks
(125). Further studies into the cross-neutralizing capacity of the
mumps vaccine strain administered 15–20 years previously to the
current circulating strain of MuV in countries where outbreaks
are being observed will allow better deductions to be made.
It is possible that differences in the neutralization capacity of
vaccine-induced antibodies against different MuV strains may be
more significant when levels of neutralizing antibody are low and
become “overwhelmed” when the mumps viral load challenge is
high (200).

Natural Boosting
Several prominent MMR/mumps vaccine studies were
undertaken at a time when there was still a high prevalence
of circulating wild type virus, which enabled sub-clinical
boosting to occur in an individual. Such natural boosting is
illustrated in Belarus, where a subpopulation of vaccinated
individuals only had a small amount of their overall mumps IgG
antibody levels specific to the vaccine-strain (201). Neutralization
antibodies against Iowa-G/USA06 (the circulating wild type
virus) were also present in pre-infection plasma of all mumps
cases during a recent outbreak in the US (173). This indicates
that the mumps vaccine alone is not solely responsible for
the high levels of mumps antibodies (202), and that long-
term antibody persistence or protective efficacy data of the
vaccines used may not truly reflect the current circumstance
of viral transmission/circulating within a highly vaccinated
population (99).

Herd immunity increases the chance for natural mumps
boosting for an individual is at a minimum, reducing the
potential of the frequency of mumps outbreaks (123, 124, 184).
With less opportunity for subclinical boosting (asymptomatic
response to the circulating virus), the impact of other elements
of waning immunity may play an increasingly critical role in the
re-emergence of mumps outbreaks (98, 171). Additionally, as the
heterogeneous uptake of vaccines in this modern era is leading to
susceptible individuals within the community, future work will

need to encompass genotyping of circulating MuV to examine
how impactful subclinical boosting was on early measures of
vaccine efficacy in current populations.

LABORATORY DETERMINANTS OF AN
EFFECTIVE IMMUNE RESPONSE TO
MUMPS VACCINE

Why Do We Consider Antibodies to Be the
Best Measurement of Vaccine Efficacy?
The evolution of an individual’s immune response differs
between natural infection and vaccination, in particular the
difference in the affinity and specificity of an immunological
marker such as antibodies (203).

True correlates of mumps immunity after vaccination have
been poorly characterized; to date, there are no reliable correlates
of protection from either symptomatic mumps infection (clinical
immunity), or individuals previously exposed to MuV (204).
Therefore, a serological surrogate/ substitute is used (205).
Mumps vaccine efficacy is quantified by a single measure, IgG
which may not suffice to evaluate the magnitude of the actual
humoral response. Borgmann et al. (206) proposed an increase
in mumps-specific IgG titer in sera as a diagnostic criteria of
mumps reinfection (206). It has been suggested that vaccinated
individuals have modified B-cell responses to MuV that allow for
the rapid generation of IgG antibodies and a blunted or absent
IgM response (207, 208). In addition, emerging data in Simian
Immunodeficiency Virus studies suggests that not all antibody
responses are equal, and qualitative features of antibodies may
be key to defining protective immune profiles (209).

Despite its use, the correlation to mumps-specific IgG
concentrations and neutralization titers against the JL virus
is poor, suggesting that IgG concentrations do not adequately
represent a sufficient surrogate correlate of protection (194).
This is demonstrated in Finland; only 24% of vaccinees had no
detectable mumps antibodies after 21 years (123, 124). Data from
the European Sero-Epidemiology Network (ESEN2) project in
2004 reported that MMR immunization uptake in Ireland in
2004 was 92% (6), however it was also suggested that only 80–
85% of 15- to 24-year-olds in Ireland had detectable antibodies
to MuV by either natural immunity or immunization (210).
In 2011, vaccine coverage of medical students in Germany was
reported to be 75.1% (211). In children between the ages of
1–17 years, where 88.8% had been vaccinated with the MMR
vaccine at least once, only 76.8% showed prevalence of antibodies
(212). However, 7.8% showed a prevalence of antibodies to
measles and rubella in the absence of mumps-specific antibodies.
Therefore, previous measurement of anti-mumps-specific IgG
that represented immunity induced by the mumps vaccine
appears to be overestimated (99, 213).

Antibody levels of other components of the MMR vaccine
have seen similar trends. Waning rubella antibody titers have
been observed, despite the number of acute rubella and
congenital rubella syndrome cases not increasing. It has also been
shown that college students who received rubella vaccination
during childhood and had low/no antibody response were able
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to mount a secondary response when challenged with rubella
indicating that an individual’s low antibody levels are not always
indicative of susceptibility to infection (214). Measles antibodies
can also be detected for up to a decade post-vaccination, with
>90% of individuals still measles IgG positive at 6–7 years of
age (144, 215). However, as with mumps and rubella, waning
measles antibody titers have been observed (143, 216). Despite
this, a recent longitudinal study of up to 10 years demonstrates
how effective theMMR vaccine has been in preventing diagnosed
measles cases during the 1990’s/2000’s (217).

Similarly, three doses of the Hepatitis B (HBV) vaccine in
a cohort of Alaskan natives showed >95% seroconversion in
children and young adult post-vaccination and provided long
term and durable protection against chronic HBV infection.
Although no increase of HBV prevalence were observed 51%
individuals had low to undetectable antibody levels after 30 years.

These observations suggest that an individual’s antibody
levels do not indicate susceptibility to infection, that either
an antibody titer lower than recommended guidelines is still
protective, or/and is an ineffective surrogate of protection. This
is emphasized in a study by Amanna et al.; (218) responses to
non-replicating protein antigens (tetanus and diphtheria) were
shown to have approximate antibody half-lives of 11–19 years. In
comparison, antibodies following wild type infection were shown
to have half-lives of 50 years or more which was thought until
recently to confer a more prolonged lifelong protection (214,
218, 219). However, reinfections observed in individuals that
were previously naturally infected have demonstrated that the
quantitative measurement of antibodies do not indicate sterile
immunity (220).

It is also important to stress that seroconversion rates due
to immunization/natural infection only reflects a change of
antibody status from negative to positive, but not necessarily
the intensity of antibody response. In addition, there is no
consistency in the timing of sample collected post-vaccination
to test vaccine efficacy, and between the serological tests utilized
for detecting mumps antibodies. As a result, documented
seroconversion rates of the mumps vaccines used vary widely
(JL: 74–100%, RIT 4385 strain: 88–98%, Urabe Am 9: 79–100%,
Rubini: 35–95%).

This highlights that the assays used to detect immunity
to MuV may not always detect an adequate post-vaccination
response. Only a small number of serological commercial
assays such as the detection of Hepatitis B surface antibody
(anti-HBs) (221) and rubella IgG (222) have been designed
using WHO reference material as a standard for quantification.
However, even utilizing this reference standard demonstrates
significant differences in the determined quantification of
either anti-HBs or rubella IgG depending on the assays used;
although a value for anti-HBs of 10 IU/ml is regarded as
protective against significant HBV infection, the detection of this
anti-HBs is significantly influenced by which anti-HBs assays
is used (223–227). Therefore, it is possible that the current
assays/tests mechanisms utilized to measure mumps antibodies
are too insensitive/inappropriate/crude to identify nuances in the
immune response which could correlate with immunity against
mumps. In addition, variation within neutralization epitopes i.e.,

the quality of the antibody present could be a more important
correlate than quantity (190, 198).

Are There Better Correlates of Protection?
Though labor-intensive, neutralizing antibodies are considered
to be a better correlate of mumps immunity. Antibodies
against the haemagglutinin-neuraminidase protein (HN) and
nucleoprotein (NP) have been shown to neutralize MuV,
however, repeated attempts to define a titer that provides
a protective threshold titer have been inconclusive (203,
228). In older studies, during field evaluations of the JL
vaccine, neutralizing antibody titers of 1:2–1:4 in unvaccinated
individuals was considered seropositive and protective from
mumps infection (149, 151, 152). Using a more contemporary
wild-type isolate (Iowa-G/USA06), a 1:8 neutralizing titer cut off
was defined between case patients and exposed patients, despite
the fact that no cut-off could fully discern between the two groups
(173). However, that these results are dependent on the challenge
virus strain used in the assay. Rasheed et al. demonstrated a 6-
fold lower neutralization titer to the G-genotype when compared
to the JL vaccine strain in 18–23 year olds (229). This has also
been seen between mumps vaccine strains vs. circulating strains
in India and China (47, 197). Despite studies in more highly
vaccinated populations demonstrating that HN-inhibiting titers
after natural disease were 1:9 compared to 1:5 post-vaccination,
neither appeared to prevent reinfection (173, 218–220, 230).
There is increasing evidence that the mumps-specific antibody
response is broader than neutralization alone (112). Avidity
testing for virus-specific IgG has been proposed (3, 220, 229).

Is Lymphoproliferative Immunity a Better
Correlate of Protection?
Individuals who lack measurable mumps-specific antibody levels
may be susceptible to infection but protected from significant
illness as they may be protected by cell-mediated immune
memory. Prolonged T-cell responses are reported after other
vaccinations; 14–16 years after a single dose of the rubella vaccine
RA27/3, a T-cell proliferative response to neutralizing antibody-
inducing peptides suggest T helper and B-cell interactions. This
indicates that full vaccine effectiveness could be dependent
on mounting both an antibody and cell-mediated immune
response (214).

Although cell mediated immunity has not been as well-
assessed in mumps infection, a lymphoproliferative response
was induced in infants vaccinated at 6, 9, or 12 months of
age was induced (231) with antigen-specific T-cells reported to
appear within 1 month of infection (183). Lymphoproliferative
responses to measles and mumps vaccine viruses were shown
to persist in two thirds of the population at least 6 years after
immunization (232), with T- and B-cell immunity persisting for
10 years post-immunization (202).

Low levels of mumps-specific memory B-cells have also been
documented suggesting that mumps infection or vaccination
may not generate a robust B-cell memory (136, 233). Two
principal mechanisms for maintaining long-term humoral
immunity have been proposed and reviewed by Amanna
et al. (218): associations between memory B-cell levels and
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antibody may reflect an epiphenomenon in which serum
antibody levels and memory B-cells are equally stable but
independently maintained. If memory B-cells and plasma cells
are independently regulated, then multiple re-exposures to
antigens may cause divergence between memory B-cell levels and
antibody levels (218). Antigens with the highest rates of boosting
through vaccination or latent viral infection coincidentally
showed the weakest association betweenmemory B-cell titers and
antibody titers (234).

Although the role and efficacy of T-cell immunity to mumps
infection is unclear, there is a possibility that certain MuV strains
may be capable of escaping vaccine induced T-cell responses,
which may not be considered of significance until B-cell waning
immunity comes into play (198). In individuals who did not
respond to vaccination (i.e., had a ≤2-fold of mumps antibody
titers 30 days post-vaccination), several genes including those
implicated in antigen presenting, processing, T-cell response and
function showed significantly increased expression, with MHC
Class II HLA-DRB3 and HLA-DRA, and CD86 induced when
compared to responders 1 day post-MMR vaccination. This
may indicate that the stimulation of a rapid adaptive immune
response limits antigenic presentation and hence prevent the
differentiation of memory B-cells to antibody-producing plasma
cells (154).

Differences in predicted B-cell and T-cell epitopes between JL5
vaccine strain and other vaccine strains may also be implicated
in the outbreaks witnessed (235). Although, it has also been
shown that natural mumps infection or vaccination do not
always induce both cellular and humoral immunity. de Wit
et al. (199, 236, 237) has shown the presence of Th1-type CD4+

T-cells recognizing a MuV epitope in a HLR-DR restricted
manner. In addition, the response of IFN-γ and TNF producing
CD8+ T-cells specific to MuV epitopes are lower in vaccinated
individuals when compared to individuals who were naturally
infected (199, 213, 236–238). Utilizing current knowledge and
new technologies may help define a better surrogate correlate
of protection and potentially determine a cut-off between the
immunity of a vaccinated individual and a secondary mumps
infection. This may potentially move the diagnostic preference
from serological tests to more comprehensive functional assays.

Why Vaccinate If You Cannot Define
Protection?
Despite the large resurgence of mumps outbreaks, there is
insurmountable evidence highlighting the benefit of the mumps
vaccine (Table 2). Routine childhood MMR vaccination has
resulted in a dramatic decrease in the incidence of mumps cases,
and has shifted the peak age-specific attack rates from a young
children (manifesting between 5 and 15 years) to one that affects
young adults, in particular those who have close interaction
with other young adults (18–24 years) (6, 110). Additionally,
clinical manifestations and severity of disease in vaccinated vs.
unvaccinated individuals differ (129, 248). AlthoughMuV can be
clinically asymptomatic in about 15–30% of those who become
infected, the vaccine against mumps confers protection in a dose
response manner; unvaccinated individuals saw an attack rate of

TABLE 2 | Differences between Mumps vaccinated and unvaccinated persons.

Vaccinated Not vaccinated

Symptoms (7, 101, 239, 240) Milder Severe

Transmission (197, 241, 242) Low High

Mumps viral load and replication (243–245) Low High

Mumps isolation rates (135, 239) Low High

Duration of viral shedding (244) Shorter Lasts Longer

Asymptomatic infection (135, 246, 247) 66% 15–40%

Despite evidence of mumps infection in a vaccinated population, there is evidence to

suggest a less severe clinical manifestation of the viral infection.

31.8–42.9%, whilst one dose and two doses of the JL vaccine were
4–13.6% and 2.2–3.6%, respectively (135, 219, 246).

Based on the reduction seen upon the introduction of a
mumps vaccine, it has been proposed that MMR vaccination
also prevents the transmission of the virus. There is limited
knowledge regarding the shedding and transmission of MuV, but
it is thought that close contact and transmission of a certain viral
load may induce clinical symptoms (243, 246, 249). Modeling
data suggests that infectious MuV shedding decreases rapidly
after the onset of symptoms, however 8–15% are patients are
thought to still be virally shedding 5 days after the onset of
symptoms (244). This could be the reason why the transmission
of MuV can be exacerbated by close social situations within
a heterogeneously vaccinated population. Outbreaks generally
occur in situations of intense contact such as college dormitories,
boarding schools, and youth summer camps (191), with up to a
third reporting some contact with a mumps case (105).

Evidence of lower levels of viral replication also suggests a
clinical benefit of the vaccine (243, 244). Viral load and presence
of the mumps vaccine genome in areas of viral replication
was lower in vaccinated individuals vs. unvaccinated individuals
(243). In addition, patients who contracted mumps but had two
doses of MMR have been shown to shed less MuV in their
urine, with fewer experiencing bilateral parotitis or orchitis than
unvaccinated individuals (239), This suggests that immunity
induced by MMR vaccination limits virus transmission and
complications (241, 242).

It should be noted also that individuals who received two
doses of MMR, and had a positive correlation between viremia,
salivary viral loads and systematic clinical mumps infection may
have an increased risk of transmitting virus. These individuals
also lacked mature functional responses, with low neutralizing
antibody titers and avidity indexes (239).

Overall, evidence demonstrates a clinical advantage to
receiving a mumps vaccine (Table 2). Currently no global
consensus exists for the measurement of mumps antibodies,
mumps avidity or neutralizing titers that correlate to vaccine
response and protection in healthy individuals. If a biomarker
is discovered, it could be utilized as an international diagnostic
reference standard to allow global harmonization and evaluation
of the relative effectiveness of the different vaccination programs
worldwide. Such an attempt was conducted by Andrews
et al. (250), who reported on the European Sero-Epidemiology
Network project which was established to harmonize the
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seroepidemiology of five vaccine preventable infections including
measles, mumps, and rubella in eight European countries.
The study concluded that the development of an international
standard for mumps would help in the standardization and
comparability of mumps antibodies in the different enzyme
immunoassays used in laboratories. However, to date, no
international reference standard for mumps has been established.

Can Improvements to Vaccines Be Made?
In response to infection, the human immune system launches a
series of immunological responses with the goal of controlling
or eliminating the pathogen. If the pathogen circumvents the
frontline defense of the innate immune system, an adaptive
immune response specific for the pathogen will become activated
to respond, with the intention to generate humoral- and
cell-mediated immunity. Humoral immunity, represented by
antibodies secreted by B-cells are not effective against pathogens
that invade host cells. Therefore, cell-mediated immunity
instructed by the innate immune system are additionally
necessary and consist of B-cells and T-cells. The unique
compositions of the B-cell receptor and T-cell receptors specific
for the invading pathogen proliferate and gain effector functions
based on the antigen fragments presented on antigen presenting
cell by MHC class II molecules. The activated Th-cell produces
cytokines, resulting in the activation of macrophages (Th1 help),
B-cells (Th2 help, called plasma cells), or cytotoxic T-cells.
While most plasma cells, produce and secrete large amounts of
antibodies, some differentiate into memory cells [reviewed in
(251, 252)].

Vaccination aims to stimulate the host immunological process
and formation of cell-mediated immunological memory via
the use of live-attenuated or of inactivated/subunit vaccine
components to promote a cell-mediated immune response.
Extensive knowledge gaps significantly hinder improvements
to the mumps vaccine and prospects for mumps eradication
and maintaining proficient population immunity (3, 122, 187).
Few studies have collected data that examines different aspects
of mumps immunity and are limited in their predictive value
for future outbreaks (253). For example, the importance of T
and B-cell responses in protective mumps immunity and how
memory/plasma cell numbers are homeostatically maintained
post-infection or vaccination is relatively unknown (252). It
should be acknowledged that the mechanism of protection of
infection may not be the same mechanism of recovery from
infection, which may make the identification of a common
correlate of protection and recovery difficult (203). Therefore,
if a correlate or surrogate correlate is unobtainable to define
an individual’s protection to mumps, should we re-consider
and re-focus efforts on optimizing the vaccine using available
historical clinical and trial data?

Administration
It has been suggested that wild-type infection could confer
a “better quality,” broader and prolonged immuno-activation
than vaccine-induced immunity. This is reflected in mean
neutralizing antibody titers detected post-mumps vaccination,
which were over five times lower than those detected following

wild type infection. Similarly, hemagglutination-inhibiting titers
after natural disease were 1:9 compared to 1:5 post-vaccination
(214, 218, 219).

The use of a live-attenuated virus vaccine is intended
to mimic immunological reactions and responses between
the host and wild type virus (254). The current live-
attenuated MMR vaccine is intramuscularly injected, a route
that significantly differs from the natural infection mode of
transmission. However, emphasized by differing immunological
kinetics between immunized and naturally infected individuals
when subjected to wild type pathogens, injectable vaccines
are considered not to be the best inducer of antigen-specific
mucosal immune responses for mucosal pathogens, especially
if the mode of administration is not the natural route (the
respiratory tract) (255, 256). Improvements on a broader range
of antigen delivery systems will improve vaccination strategies
and potentially prolong the effect of a vaccination by producing
a localized immunological response in the relevant tissues (257,
258).

Mucosal vaccines such as intra-nasal vaccination have
advantages over traditional injectable vaccines as they can
induce an effective, more robust immune response without
any physical discomfort and more closely replicate the natural
route of infection for mumps (255, 259). B-cells induced by
the mucosal response are also capable of secreting IgA class of
antibodies in the lumen, where the interaction and neutralization
of specific antigens form IgA-antigen complexes are easily able
to be entrapped in the mucus and eliminated by cilial epithelial
cells (259). Activated mucosal lymphocytes can also reach other
mucosal sites via the lymphatic system and have the capability to
transfer immunity (260).

Such an example is the intranasal immunization of
inactivated influenza. With a 70–90% similar efficacy between
the injectable and intranasal influenza in healthy individuals this
intranasal vaccine can elicit the secretion of haemagglutinin and
neuraminidase specific IgA antibodies in the upper respiratory
tract, and corresponding IgG antibodies (258). Live, cold adapted
attenuated nasal influenza vaccine has been routinely used in
Russia for over 50 years (261). Other liquid live-attenuated
intranasal vaccines are available; “Nasovac R©” in India, and
“FluMist R©” in the US, UK and New Zealand (258, 259, 262).

Development of Improved Vaccines
Inactivated vaccines consisting of heat/chemical or live-
attenuating monovalent or multivalent pathogens in
animals/cell lines were developed to protect against disease
causing microorganisms (263). Less emphasis was placed
on understanding the mechanisms related to conferring
immunological memory; the focus lay on the availability, mass
production and administration of the vaccine to introduce herd
immunity into populations (264).

Currently, the least expensive and time effective method to
licensure is the comparison of serologic responses of the new
vaccine to an existing licensed vaccine, which can lead to a bias on
the development of novel vaccines (222). This methodology also
does not account for the fact that each vaccine developed elicits
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its own immunological signature and may need to be considered
on an individual basis (265).

Raymond et al. (266) has suggested that embryonated
chicken egg-based vaccines may induce antibodies that are more
preferential to egg adapted strains better than wild type virus.
Amino acid substitutions/differences in key antigenic targets due
to the passage of the growing virus within this environment may
optimize the growth of the virus, but could lead to differences
over time that could affect the immunogenicity or potency of
the vaccine (172, 222, 267). The JL vaccine contains two isolates
of the JL Strain (JL2 and JL5) and whilst no immunological
differences have been documented, JL2 grows to higher titers
than JL5 in embryonic eggs and also demonstrates significant
sequence variability (94, 268). Zost et al. (269) also demonstrated
that an egg selected mutation within a glycosylation site in the
2016–2017 influenza vaccine strain led to the production of
poorer neutralizing antibodies to the vaccine strain compared to
wild type influenza virus.

Vaccine RIT 4385 strain derived from one of the two distinct
virus subtypes of the JL vaccine (JL5) showed comparable
seroconversion rates despite inducing a significantly lower
geometric mean antibody titer when compared to recipients
of the JL vaccine, but does not have any longitudinal trials
investigating its efficacy, even though there are populations who
are currently receiving it (101, 270).

The significant time gap between pathogen emergence and
vaccine licensure, could potentially lead to antigenic drift.
There is potential that modern biotechnologies could be
utilized to design novel vaccine platforms (251, 271, 272).
Clinically derived recombinant MuV lacking the expression of
the immunomodulatory V or SH protein are currently being
investigated (273). In China, a vaccine consisting of the prevalent
wildtype virus genotype (F) has recently been produced and is
currently undergoing trials (269).

In addition, despite being extremely pleomorphic, utilizing
MHC epitopes as potential B-cell and T-cell vaccine candidates
are also being investigated (81, 274, 275). Vaccine design
has involved the utilization and templating of epitopes that
previously induced a B-or T-cell response during natural disease
that are considered to be immunogenic enough to induce
similar responses if administered in a vaccine. However, the
appropriate B-cell and T-cell epitope/peptide candidates to
induce a protective immunological response can be difficult
to correctly identify and synthesize, as it may differ to
the immunodominant epitope and host presentation of that
antigen (251, 276). Prediction of MHC-peptide binding and
cleavage has demonstrated mismatches in both vaccine T-
cell and B-cell epitopes in vaccinated individuals highlighting
small number of distinguishing amino acid changes of the
JL5 major strain (235). The importance of understanding T-
and B-cell responses and how antigen-specific memory cells
numbers are homeostatically maintained post-infection is crucial
to understand to ensure successful vaccine development (252,
277).

Since the 1990’s, significant progress has also been made
in developing flexible, amplifiable, scalable, inexpensive, and
cold-chain free RNA vaccines, such as synthetic mRNA

molecules encoding only the antigen of interest and self-
amplifying RNA (sa-RNA) (264). Such examples include an
experimental mRNA vaccine candidate (mRNA-1273) which
encodes a stable form of the SARS-CoV-2 spike protein and
has been accepted as a trial candidate for clinical trials in
healthy male and female individuals (278, 279). In addition,
sa-RNA viruses as gene delivery and vaccine vectors have also
demonstrated therapeutic efficacy in a number of preclinical
studies. In the context of influenza, sa-RNA vaccines have shown
comparable results of protection at lower doses than mRNA
vaccines (272, 280, 281).

Exponential developments in the “OMIC” area has enabled
further vaccine development and understanding of the
immunological response and challenges surrounding this area
(282). Systems vaccinology, which includes immunoformatics,
DNA/RNAseq, microarrays, mass spectrometry proteomics,
transcriptomics, and metabolomics have all shown huge
potential in elucidating differences in vaccine strains, vaccine
growth and individual response in depth and on an epigenetic
level allowing the identification of new vaccine antigens with
increased speed and sensitivity (235, 263, 283–285).

Adjuvants, a group of biological and chemical compounds
could also be considered to enhance and improve the longevity of
the immune response of a vaccine such as the MMR. Adjuvants
have been successful in significantly reducing overall antigen dose
in vaccine formulations as well as alter and broaden the host
response through epitope spreading and qualitatively shaping
the effector function of antibodies through subclass selection
(173, 286).

The re-purposing of live-attenuated vaccines as TIbV are also
being investigated. Trained Immunity based Vaccines (TIbV)
elicit heterologous protective effects by inducing a broader,
lasting priming of innate immune cells, in addition to the
intended specific immunological response and memory of
conventional vaccines [reviewed in (287)]. MMR and BCG
vaccines have been considered as potential TIbV in the context
of the current coronavirus disease 2019 (COVID-19) pandemic
(288), however further research is needed.

Potency of Virus
The mumps component of a vaccine is an unpurified product
whose potency is measured through a biological assay for the
substance rather than through evaluation of integrity of physical
form (quantitative PCR after cell culture) (289). A monovalent
mumps vaccine lot is used to characterize the performance of
the mumps potency assay with international reference standards.
Degradation products are neither identified nor quantified (290).
Currently, the minimum potency of the mumps vaccine used
varies between brands used [summarized by Su et al. (107)]
(291). However, this potency measurement differs to other
MMR vaccines strains previously used [reviewed in (10)]. In
addition, the maximum required potency is not usually specified.
Atrasheuskaya et al. (172) demonstrated that the four out of 14
lots of vaccine associated with six cases of viral transmission post-
vaccination to previously vaccinated contacts were in fact twice as
potent as the lots that were not associated with viral transmission
post-vaccination (172, 292). This may impact the use and efficacy
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of specific vaccines. Due to their neurovirulence and increased
incidence of aseptic meningitis and mumps cases, the Urabe Am
9 and Rubini mumps vaccine strains were discontinued in many
countries (87, 293, 294).

Comparing alternative culturing technologies and defining
a viral potency range for vaccines could help reduce variability
within the MMR vaccine (292). Ensuring the use of a reference
sample that had similar replication rate and composition as
the virus to be tested will allow accurate determination of
the quantity of virus present per lot of vaccine. Investigating
novel vaccine candidates shown to induce a similar quantity
but qualitatively different antibodies will help segregate and
reveal potential correlates of protection (209). Incorporating
more modern technologies such as microarray technology
or antibody pattern/profiling (rather than single antibody
measures) to investigate biomarkers of neutralizing antibody
response and/or correlates of protective immunity, in
addition to incorporating what has been accomplished
in Finland will allow further understanding of mumps
immunity (123, 124, 173, 195, 196, 295).

Are the Current Perceptions of What Is
Expected of a Vaccine Skewing the Overall
Benefits It Elicits?
The efficacy of a vaccine is defined by disease prevention (sterile
immunity, establishment of primary infection and shedding
of mature virus particle), or complications associated with
infection (orchitis, neurological issues etc.) (203). Despite the
well-documented success of the global immunization programs
demonstrating how vaccines significantly attenuate disease
and onward transmission of infection, they are rarely totally
efficacious (demonstrated in pre-licensure clinical trials) or
effective (determined by practical use) (99, 173, 296).

Therefore, does “immunity” refer to sterile immunity or solely
to protection from symptomatic infection? What defines an
effective vaccine, or what constitutes vaccine failure? Does the
medical profession and the “pro-vaccine” message contribute to
the public skepticism regarding immunization? Is it time to shift
the medical and public perception paradigm from “protection
of infection following vaccination” to “protection from serious
clinical mumps manifestation”?

The lack of definition leads to misinterpretation by health
professionals and media of what is truly occurring. Such
an example is currently observed with influenza; individuals
who have recently being vaccinated against influenza and
subsequently become infected with influenza, assume that
the vaccine has “failed” even though there is a reduction
in symptoms.

The current assertion that vaccines “protect against” or
“eliminate” the risk of infection may contribute to the
misperception about what level of protection a vaccine actually
provides (vaccination efficacy) perpetuated by the witnessing of
visible clinical disease and outbreaks despite vaccination (116,
297, 298). Therefore, definition and consensus of what is termed
a true “vaccine failure” is required to inform both the clinical
and public perception of what the function of a vaccine is.

Deciding what the clinical endpoint of a vaccine is i.e., infection
with mild clinical symptoms vs. natural infection/disease with its
associated complications and assessing the impact of the vaccine
in a heterogeneously vaccinated population will allow a better
consensus of what is required.

A paradigm shift in what is considered to be a good vaccine
i.e. one that provides protection against serious clinical sequalae,
in addition to identifying a reliable laboratory marker for this
protection is required (203). By focusing on, and acknowledging
that vaccines may not prevent infection but will attenuate the
clinical complications/consequences that arise from infection in
addition to reducing onward transmission will provide a more
realistic view of the benefits of vaccination (297). Immunity is
therefore beneficial but does not necessarily mean protection.

DISCUSSION

If we can decide whether the end point of a vaccine is either the
prevention of infection or protection against serious sequalae of
infection, its efficacy and impact can be determined and will have
enormous implications on how vaccine failure can be studied,
quantified and interpreted. This teasing out of the immunological
response to MuV will ultimately provide potential correlates
with robust predictive power, suggest directions for further
vaccine improvement, and enable the discovery of potential
biomarkers to help create a more efficient diagnostic assay that
can discern between different infectious diseases and vaccination
vs. disease status. The identification and incorporation of a
correlate into diagnostic protocols which can be widely accessible
may potentially allow global harmonization of criteria defining
immunological protection against mumps.

The medical and scientific field needs to inform the public
more accurately about what a good vaccine consists of, which
may result in a more positive attitude toward vaccines. In the
majority of individuals, a vaccine can prevent serious clinical
sequalae and associated complications following wild type
infections, but also significantly reduce onwards transmission
in particular to the cohorts who are not vaccinated due to a
contraindication to vaccination. This is the positive and realistic
view of vaccination which should be presented rather than the
current flawed message of “get the vaccine and be protected
from infection.” The public deserves, and will appreciate, a more
accurate and informed message.
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