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Influenza A viruses (IAVs) circulate widely among different mammalian and avian hosts

and sometimes give rise to zoonotic infections. Vaccination is a mainstay of IAV

prevention and control. However, the efficacy of IAV vaccines is often suboptimal because

of insufficient cross-protection among different IAV genotypes and subtypes as well as

the inability to keep up with the rapid molecular evolution of IAV strains. Much attention

is focused on improving IAV vaccine efficiency using adjuvants, which are substances

that can modulate and enhance immune responses to co-administered antigens. The

current review is focused on a non-traditional approach of adjuvanting IAV vaccines by

therapeutically targeting the immunomodulatory functions of a rare population of innate-

like T lymphocytes called invariant natural killer T (iNKT) cells. These cells bridge the

innate and adaptive immune systems and are capable of stimulating a wide array of

immune cells that enhance vaccine-mediated immune responses. Here we discuss the

factors that influence the adjuvant effects of iNKT cells for influenza vaccines as well

as the obstacles that must be overcome before this novel adjuvant approach can be

considered for human or veterinary use.
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INTRODUCTION

Influenza A viruses (IAVs) are a genetically diverse group of segmented RNA viruses capable of
infecting birds and mammals, including swine, bats, and humans (1–3). IAV infections result in
a highly contagious acute respiratory disease that is capable of causing substantial morbidity but
usually low mortality (4, 5). IAVs are a significant burden to human and animal health and have
the potential to occasionally cause pandemics. Vaccination is a cornerstone of IAV mitigation.
However, the high genetic/antigenic diversity of IAVs, which is a result of (i) the rapid IAV
mutation rates (“genetic drift”) and (ii) the reassortment ability between genetically different IAV
strains (“genetic shift”), inherently limits vaccine effectiveness (6). The genetic evolution of IAVs
by genetic drift and shift associated with the heterogeneous and complex immune response to
influenza vaccines requires annual updates of human IAV vaccines and often results in vaccine
failure (2, 7). For example, the 2018–2019 influenza vaccines for humans were reported to have an
estimated vaccine effectiveness of 29% (8), based on the relative difference in influenza risk between
vaccinated and unvaccinated participants (9). This low effectiveness was due to the circulation of an
influenza H3N2 virus which was antigenically drifted from the H3N2 virus isolate included in the
vaccine (8). The use of adjuvants that increase the scope, scale, and quality of innate and adaptive
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immune responses can improve the effectiveness of IAV vaccines
significantly (10). Most adjuvants fall into two categories. The
first is delivery systems that enhance antigen release, stability,
and uptake (11). The second uses immune stimulatorymolecules,
such as Toll-like receptor ligands, that induce the release of
cytokines and chemokines from innate immune cells, which
drives antigen-presenting cell (APC) maturation and licensing
and, therefore, improves immunogenicity of the respective
antigens (12).

Although conventional adjuvants can stimulate cellular
and humoral immune responses and reduce the antigen dose
required in the vaccine, they seldom improve long-term
immunity and cross-reactivity against heterologous (i.e., belong
to the same subtype but are genetically different IAV isolates)
and heterosubtypic (i.e., belong to different IAV subtypes) IAV
strains, which is greatly needed (13). This has led researchers
to explore using non-traditional adjuvants to improve vaccine
efficacy, including the powerful immunoregulatory effects of
innate T lymphocyte populations, such as γδT cells, and CD1-
and MR-1-resticted T cells. Unlike the major histocompatibility
complex (MHC)-restricted T cells, these cells possess a
restricted repertoire of T cell receptors (TCR), perform rapid
effector responses, and recognize a limited selection of non-
peptide molecules, including small metabolites and lipids (14).
Currently, the innate T cell population with the most potential to
enhance vaccines is natural killer T (NKT) cells, which recognize
lipid and glycolipid ligands presented by the MHC class I-like
molecule CD1d (14). These cells have phenotypic characteristics
of both T cells and NK cells and express a semi-invariant
TCR (14). Upon activation, NKT cells rapidly release large
quantities of multiple cytokines and chemokines capable of
boosting adaptive immune responses. Importantly, a subset of
NKT cells known as type I or invariant NKT (iNKT) cells that
express an invariant αβ TCR, can be globally and specifically
activated using derivatives of the prototypic antigen known
as (2S,3S,4R)-1-O-(α-D-galactopyranosyl)-N-hexacosanoyl-2-
amino-1,3,4-octadecanetriol, also called α-galactosylceramide
(α-GalCer), which was first isolated from a marine sponge
(Agelas mauritianus) (15, 16). Activation with α-GalCer induces
iNKT cells to generate a potent immune response to a wide range
of co-delivered antigens.

Since the discovery of α-GalCer, numerous studies
have explored how iNKT cell responses can adjuvant
vaccines against different infectious diseases [reviewed in
(17–20)]. However, most of these studies have used the
mouse model of IAV infection, largely because it is well-
established and easy to work with. These studies have
almost invariably reported that iNKT cells are capable of
substantially enhancing the quality and the scale of IAV
vaccine responses (21–33). In this review, we summarize
the current knowledge about therapeutically harnessing
iNKT cell activities to improve IAV vaccines in mice and
other animal models. We also address important factors that
influence the adjuvant effects of therapeutically activated
iNKT cells, which must be considered to safely and effectively
exploit the adjuvant potential of iNKT cells for human or
livestock vaccines.

NKT CELL CHARACTERISTICS

Although the name “natural killer T cell” first appeared in the
literature in 1995 (34), these cells were first described in 1987 as
a subset of T cells with moderate levels of αβ TCRs and NK1.1,
a marker characteristic of natural killer cells (35–38). Over the
subsequent decade, it was established that NKT cells express a
highly restricted TCR repertoire (39), produce developmentally
regulated Th1 and Th2 cytokines (40), bind CD1d as their antigen
presenting molecule (41), and recognize glycolipid/lipid ligands
(15, 42). It was further discovered that NKT cells can be divided
into two functionally distinct classes: type I and type II NKT cells
(43). Type I NKT or iNKT cells express a highly restricted TCR
repertoire which recognizes CD1d-bound α-GalCer (44, 45).
Type II NKT cells, also known as diverse NKT cells, express a less
restricted TCR repertoire and recognize different glycolipids than
iNKT cells, such as sulfatides (46). This review will discuss iNKT
cells as it is this subset which can be therapeutically targeted using
glycolipid antigens.

iNKT cells recognize both endogenous and exogenous ligands
(42). Their recognition of endogenous ligands enables iNKT cells
to interact with inflamed or injured tissues which overexpress
lipid molecules (47). Most exogenous iNKT cell antigens
are glycolipid and phospholipid components of bacterial cell
walls, such as mycobacterial phosphatidylinositolmannosides
and monoglycosylceramides from gram-negative bacteria
(42, 48). iNKT cells also respond to antigens from protozoan
parasites, including phospholipids from Leishmania and
glycophosphatidylinositol from Plasmodium and Trypanosoma
(49, 50). iNKT cells in most species react to α-GalCer and its
synthetic analog KRN7000 (51–53). These molecules have been
widely used to study iNKT cell function since they strongly
activate these cells. α-GalCer stimulated mouse iNKT cells
produce a wide variety of cytokines, including IFN-γ, IL-2, IL-3,
IL-4, IL-5, IL-9, IL-10, IL-13, IL-17, IL-21, IL-22, and tumor
necrosis factor (TNF)-α and -β (54–57). Stimulated mouse iNKT
cells also secrete chemokines, including RANTES (regulated
on activation, normal T cell expressed and secreted), monocyte
chemoattractant protein (MCP)-1, eotaxins, and macrophage
inflammatory protein (MIP)-1α and MIP-1β (58–61). Many
of these cytokines modulate cellular and humoral immune
responses against foreign antigens, which is why α-GalCer
activated iNKT cells can enhance the scale and the scope of
vaccine responses against a wide variety of pathogens.

iNKT CELL-CD1d SYSTEM IN MAMMALS

The defining feature of iNKT cells is the expression of a TCRwith
an invariant Vα chain rearrangement and limited Vβ chain usage.
Mouse iNKT cells express a single α chain (Vα14-Jα18) that is
paired with a limited number of Vβ chains (Vβ2, Vβ7, or Vβ8.2)
(39, 62, 63). Rats use a homologous Vα14-Jα18 rearrangement
paired with Vβ8.2 chains but have four Vα14 genes with
differential tissue expression (64). The human invariant receptor
is composed of a Vα24-Jα18 rearrangement paired with Vβ11
(39, 65, 66), while the porcine iNKT TCR is composed of a
Vα10-Jα18 chain paired with a Vβ25-chain, both of which are
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highly homologous to the human Vα24-Jα18 and Vβ11 TCR
chains (67). A consequence of the remarkably conserved nature
of the TCR-CD1d system is that CD1d tetramers often cross-
react among different animal species. For instance, human CD1d
tetramers cross-react with mouse iNKT cells and vice versa (45),
and both mouse and human CD1d tetramers cross-react with pig
iNKT cells (68). Interestingly, rat iNKT cells are only partially
identified by mouse CD1d tetramers and require the use of rat
CD1d molecules in glycolipid-loaded tetramers (69). Overall,
the CD1d-mediated recognition of α-GalCer by iNKT cells is
highly conserved through mammalian evolution (70). This has
the advantage that many aspects of glycolipid therapy research
in preclinical mouse models can be directly translated to target
animal species, including humans.

Not all mammals harbor CD1d genes in their genomes, and
some that do, do not express functional transcripts and/or CD1d
proteins that are capable of interacting with iNKT cells. Humans
(71), primates (72, 73), mice (15), rats (64), cotton rats (74), pigs
(75, 76), and dogs (77) have been reported to possess functional
iNKT cell-CD1d systems and iNKT cells that react to α-GalCer.
Ruminants were thought to harbor two copies of CD1d that
are pseudogenes (CD1d1 and CD1d2) due to a mutated start
codon and a first intron that cannot be translated into functional
proteins (78, 79). However, it was later discovered that the bovine
CD1d1 gene has an alternative start codon that produces CD1d
proteins capable of being expressed on the cell surface (80).
Interestingly, the antigen binding site in bovine CD1d1 is smaller
than in human and mouse CD1d proteins, which prohibits α-
GalCer from binding. Instead, bovine CD1d1 appears to present
glycolipids with shorter alkyl chains than α-GalCer (80, 81). The
sequences of the equine iNKT invariant α-chain TCR and CD1d
have conserved residues that align with their human and mouse
counterparts. Nevertheless, equine iNKT cells have yet to be
isolated and horses do not respond to synthetic glycolipids that
activate iNKT cells in other species (82).

MECHANISMS OF iNKT CELL ACTIVATION

iNKT cells can be directly activated by TCR signaling after
engaging CD1d-bound glycolipid antigens, or indirectly via
cytokines from pathogen recognition receptor-stimulated APCs.
Indirect activation sometimes involves weak TCR signals from
low-affinity microbial or self-lipid antigens but can also occur
in the absence of TCR stimulation (83–88). Directly activated
mouse iNKT cells secrete a mixture of Th1 and Th2 cytokines,
which differs from iNKT cells indirectly activated through pro-
inflammatory cytokines that mainly produce Th1-type cytokines
(89, 90). The variety and the quantity of cytokines produced
by directly activated iNKT cells depend on the strength of
the interactions between the iNKT TCR and the lipid-CD1d
complex (43, 83, 91, 92). However, additional factors, including
different iNKT cell subsets, the half-life of TCR-ligand binding,
ligand density, and the uptake and presentation of iNKT cell-
activating glycolipids by APCs, may play a role in determining
their cytokine bias (93–97). α-GalCer strongly activates iNKT
cells, which induces the rapid upregulation of T cell activation

markers and the secretion of several cytokines, especially IFN-γ,
IL-2, and IL-4 within hours after stimulation. α-GalCer activated
iNKT cells also proliferate and may expand up to 10-fold in
some organs by 4 days post-treatment, after which they contract
to baseline levels (98, 99). Unlike conventional T cells, iNKT
cells do not possess memory functions. In fact, secondary α-
GalCer administration actually results in a significantly weaker
iNKT cell response compared to primary stimulation with this
antigen, characterized by reduced proliferation and cytokine
secretion (100, 101). This hyporesponsive state lasts for at
least 1 month after initial activation (101–103). The same
hyporesponsive state has been reported in mice challenged with
bacterial pathogens (104–106), toxins (107), and TLR agonists
(104). The response of iNKT cells to α-GalCer have been studied
most extensively in mice. However, in vivo studies in humans,
chimpanzees, macaques, swine, and cotton rats have found that
α-GalCer can stimulate iNKT cell activities in a wide variety
of mammals.

iNKT cells indirectly activated by APCs participate in immune
responses against numerous microorganisms that lack cognate
lipid antigens. Various pathogen-associated molecular patterns
(PAMPs) and some danger-associated molecular patterns
(DAMPs) have been shown to induce iNKT cell-activating
cytokines (108–112), such as type I interferons, IL-12, IL-18,
and IL-33 (88, 90, 113–115). Interleukin-12 signaling appears
to be particularly important as iNKT cells express high baseline
levels of the IL-12 receptor (116). Many bacterial and viral
infections stimulate sufficient IL-12 to activate iNKT cells with
low-affinity endogenous ligands or without TCR signaling
(88, 89, 113, 117, 118). Indirect iNKT cell activation may also be
induced by IFN-α and IFN-β from TLR-7- and TLR-9-activated
APCs (113) or by a combination of IL-12 and IL-18, which are
produced by TLR-4- and TLR-9-stimulated APCs (88, 90, 114).
iNKT cells can also be activated via their NK receptors that
provide both activation and regulation signals in response
to stress-induced ligands (119–121). Indirectly activated
iNKT cells develop distinct effector functions compared to
directly activated iNKT cells. One important difference is
that a large fraction of cytokine-activated iNKT cells acquire
the ability to express perforin that may allow them to carry
out cytolytic functions in vivo (54). Furthermore, indirectly
activated iNKT cells secrete large quantities of IFN-γ without
IL-4, whereas directly activated iNKT cells often produce
both cytokines simultaneously (122). The weak TCR signaling
that occurs during indirect iNKT cell activation promotes
IFN-γ production by inducing histone H4 acetylation near the
IFN-γ locus. This enables iNKT cells to produce IFN-γ upon
subsequent exposure to IL-12 and IL-18 without concurrent
TCR stimulation (114). Unlike during direct activation, iNKT
cells remain motile during stimulation with cytokines, which
may enable them to disseminate IFN-γ as they migrate,
amplifying their impact on immune responses (114). It is likely
that IAV vaccines trigger several indirect activation-mediated
iNKT cell effector functions and that some of these responses
will support (or perhaps counteract) the direct activation
effects of co-delivered glycolipid antigens. In this scenario,
achieving optimal IAV vaccine immunity will require studies to
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evaluate combining different dosages of iNKT cell agonists and
IAV vaccines.

HELPER FUNCTIONS OF iNKT CELLS

iNKT cells are capable of generating immune responses that in
many ways mirror conventional CD4+ T cell help (Figure 1).
Activated iNKT cells induce APCs to mature when they engage
antigen-bound CD1d on their surface (123). These iNKT cell-
conditioned APCs, in turn, produce cytokines and T cell
costimulatory molecules that further prime iNKT cells, causing
them to upregulate CD40L, and secrete IFN-γ and granulocyte-
macrophage colony-stimulating factor. This induces surrounding
APCs to mature and activate additional iNKT cells (113, 123,
124). iNKT cell-licensed APCs prime conventional CD4+ T cells
against co-delivered peptide antigens, which results in enhanced
cytotoxic CD8+ T cell responses and induces CD4+ T cells to
become follicular helper T (TFH) cells. iNKT cell-conditioned
APCs also acquire the ability to cross-present peptide antigens
to CD8+ T cells (125–127). The mechanisms through which
iNKT cells enhance humoral immune responses have been
extensively reviewed (128–132). One mode involves iNKT cells
directly interacting with B cells presenting glycolipid ligands
on CD1d, which is referred to as cognate B cell help. Initially,
iNKT cells recognize glycolipid antigens on dendritic cells
(DCs) and differentiate into iNKT follicular helper (iNKTFH)
cells that adopt a phenotype similar to TFH cells (133, 134).
These iNKTFH cells then activate B cells specific for protein
antigens through a process that requires CD1d expression by B
cells, B7-1/B7-2, and CD40 ligation by the iNKT cells and the
secretion of IFN-γ and IL-21. Cognate B cell help stimulates
plasmablast expansion, germinal center formation, antibody class
switching, and moderate affinity maturation (135, 136). iNKT
cells can also provide non-cognate B cell help which occurs
when iNKT cells indirectly activate B cells by inducing TFH

cells specific for protein antigens displayed by B cells (137).
This mode of activation is thought to drive enhanced antibody
production when α-GalCer is co-administered with immunizing
antigens; protein and α-GalCer are internalized by DCs that
simultaneously present peptide fragments of the protein antigen
on MHC class II to naïve CD4+T cells and α-GalCer on
CD1d to iNKT cells. The TFH cells that result provide CD1d-
independent antigen-specific help for the proliferation of B cells
in germinal centers, antibody class switching, affinity maturation,
and the generation of plasma cells and memory B cells. In
addition, activated iNKT cells trans-activate NK cells to produce
large quantities of IFN-γ that stimulate B cells to secrete IgG
(138). Non-cognate B cell help is probably important after
virus exposure when iNKT cells may shape B cell responses by
producing an early wave of IL-4 that seeds germinal centers and
activates antigen-experienced B cells (139).

The benefit of eliciting T helper responses via iNKT cells
compared to CD4+ T cells is that iNKT cells constitute a much
greater fraction of total T cells than any antigen-specific CD4+ T
cell clone (140, 141). Furthermore, iNKT cells can be globally and
specifically activated using α-GalCer analogs due to the highly

non-polymorphic CD1d molecule (67, 78, 142). Conversely,
conventional CD4+ T cells are restricted by the high level
of inter-individual MHC class II polymorphism, which limits
the efficacy of peptide-based vaccines in outbred populations.
Co-administering iNKT cell ligands with vaccines that induce
a wide array of conventional T helper cell responses has the
potential to induce wide-ranging cellular and humoral immune
responses capable of greatly improving the durability and the
cross-protection of vaccines, including against IAVs.

ROLE OF iNKT CELLS IN IMMUNITY TO
IAV INFECTIONS

Mice lacking iNKT cells are more susceptible to IAV infections
than iNKT cell-intact mice (143–146), indicating that these
cells contribute to IAV immunity. iNKT cell activation is likely
through the indirect pathway as IAVs contain no known iNKT
cell ligands. Nevertheless, stimulation may be enhanced by
interactions with CD1d-bound endogenous glycolipids which
often increase after viral infection (147). iNKT cells migrate to
the lungs during the early stages of IAV infections, alongside
the recruitment of neutrophils and the rapid induction of
pro- and anti-inflammatory cytokines that prime immune cells,
including iNKT cells (146, 148). Mouse studies have reported
that airway-resident iNKT cells prevent virus replication and
limit lung damage through a combination of (i) reducing the
suppressive capacity of myeloid-derived suppressor cells that
inhibit influenza-specific immune responses (143), (ii) activating
lung-resident NK cells (145), and (iii) directly lysing IAV-infected
monocytes (144). In addition, iNKT cells stimulated by IL-1β
and IL-23 produce large amounts of IL-22 that protects the lung
epithelium from influenza-mediated damage (149). iNKT cells
have also been investigated for their role in shaping pre-existing
immunity against re-infections with the same or heterologous
influenza viruses. Benton et al. showed that CD1d knockout
mice previously infected with A/Puerto Rico/8/34 (H1N1) or
A/Philippines/2/82/X-79 (H3N2) and re-infected after 4 weeks
with the correspondent homologous or heterologous H1N1 or
H3N2 viruses were just as susceptible to re-infection as wildtype
mice (150). These findings suggest that iNKT cell responses
might be superfluous for generating immune memory or cross-
protection after a natural IAV infection. This contrasts with other
studies showing that therapeutically activated iNKT cells improve
pre-existing immunity from IAV vaccination and suggests that
immunity generated by iNKT cells might differ depending on
whether they are activated indirectly during an IAV infection or
via glycolipid antigens.

STUDIES USING iNKT CELL AGONISTS
WITH IAV VACCINES

At least 17 publications have reported the effects of iNKT
cell agonists for adjuvanting IAV vaccines (Table 1). Most
of these studies have used mice because they are relatively
inexpensive and compatible with a wide variety of vaccine
formats. However, swine and non-human primates [pigtail
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FIGURE 1 | Invariant natural killer T cells activate and regulate innate and adaptive immune responses that enhance influenza A virus (IAV) vaccine immunity. The

co-administered IAV vaccine antigens and the selected α-GalCer analog are internalized by dendritic cells that simultaneously present the α-GalCer analog on CD1d

to iNKT cells and IAV epitopes on major histocompatibility complex (MHC) II to CD4+ T cells. Cytokines secreted by iNKT cells increase MHC class II and CD40

presentation to naïve CD4+ T cells, which generates follicular T helper cells (TFH) that provide non-cognate help to B cells. iNKT cells also undergo indirect activation in

response to proinflammatory cytokines released by IAV-stimulated antigen-presenting cells (APCs), with or without engagement of the iNKT TCR by CD1d-presented

self-antigens. iNKT cell-licensed dendritic cells (DCs) generate vaccine-specific CD8+ T cells which become further activated by cytokines secreted by α-GalCer and

IAV-stimulated APCs as well as iNKT cells and CD4+ T cells. The iNKT cells recognizing α-GalCer on DCs differentiate into iNKT follicular helper (iNKTFH) cells that

provide cognate help to B cells specific for vaccine antigens. iNKT cells also boost humoral immunity by trans-activating natural killer cells that can stimulate B cells to

secrete immunoglobulin G.
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macaques (Macaca nemestrina)] have also been tested. To our
knowledge, Ko et al. were the first group to explore adjuvanting
IAV vaccines with iNKT cell agonists (26). They reported that
BALB/c mice intranasally co-administered with three doses (1
week apart) of α-GalCer and HA antigen derived from the
mouse-adapted A/PR/8/34 (PR8, H1N1) IAV were much better
protected from a lethal dose of the homologous virus than mice
immunized with vaccine alone. α-GalCer induced greater levels
of mucosal and systemic IgA and IgG antibodies. The same
group later demonstrated that a single intranasal vaccination
with inactivated PR8 and α-GalCer was sufficient to induce long-
lasting PR8-specific IgG and IgA that protected mice from PR8
infection 3 months after the vaccination (22).

iNKT cell agonists have also been assessed for their ability to
improve vaccine-mediated cross-protection against heterologous
and heterosubtypic virus infections. Kamijuku et al. administered
α-GalCer to BALB/c mice in combination with HA-based
vaccines derived from a variety of IAV strains. Strong protection
was induced against heterologous IAV strains within the same
HA vaccine subtype and partial protection was generated against
the heterosubtypic strains (23). A follow-up study demonstrated
that an inactivated whole-virion vaccine of H5N1 IAV generated
robust cross-protection against a heterologous H5N1 IAV strain
when administered intranasally with, but not without, α-GalCer.
The cross-protective effects of iNKT cell activation were found to
be mediated by mucosal IgA production and effector responses
that require IL-4, but not IFN-γ (23).

Other strategies that have been tested include a study where
the α-GalCer derivative α-C-galactosylceramide (α-C-GalCer)
enhanced the immune response elicited by a live attenuated
A/PR/8/34 virus expressing only the first 73 amino acids in
the NS1 gene; NS1 is needed to inhibit critical innate host
immune factors (27). BALB/c mice were co-administered the
live attenuated virus (LAV) vaccine with different doses of α-
C-GalCer ranging from 0 to 4 µg/mouse. Interestingly, only
mice that received low doses of α-C-GalCer survived, while
mice treated with the 4 µg dose or the LAV vaccine alone were
not protected. This finding suggests that activating iNKT cells
too strongly may be detrimental for LAV vaccine applications
since their limited replication capacity might be abolished by
iNKT cell-mediated innate immune responses before they have
had an opportunity to induce vaccine-specific immunity. α-
GalCer has also been used to adjuvant the normally poorly
immunogenic IAV M2 ectodomain (M2e); BALB/c mice co-
immunized with M2e and α-GalCer were fully protected against
a highly pathogenic H5N1 avian IAV infection and exhibited
significantly reduced morbidity and lung viral titers compared
to mice that were immunized without α-GalCer (25). The
enhanced protection was associated with augmented IgG1 and
IgG2 antibody levels and greater IFN-γ and IL-4 upregulation
after infection. Another study tested the efficacy of α-GalCer-
peptide conjugated vaccines composed of synthetic long peptides
(SLP) containing an immunogenic peptide covalently attached
to α-GalCer by a cleavable linker (28). This ensures that the
vaccine peptide and α-GalCer are delivered to the same APC
and enables iNKT cells to license the same APCs involved in
stimulating conventional CD4+ and CD8+ T cell responses

against the vaccine antigen. C57BL/6 mice were vaccinated
with α-GalCer conjugated SLPs composed of an immunogenic
peptide of chicken ovalbumin and challenged 6 weeks later
with a recombinant ovalbumin expressing IAV. The SLP vaccine
provided much greater protection than previous infection with
the backbone virus. However, it remains to be determined
whether this approach provides protection against non-OVA-
expressing IAVs. Another strategy used an “adjuvant vector cell”
(aAVC) system comprised of CD1d+ HA mRNA-transfected
cell lines (NIH3T3 for mice and HEK293 cells for humans)
loaded with α-GalCer. C57BL6/J mice immunized with aAVC-
HA were protected from a lethal dose of PR8 2 weeks later. The
efficacy of this approach seemed to depend on the formation of
germinal centers and TFH cells and was more effective than a
co-administration of free antigen and α-GalCer (29).

Many articles reporting the adjuvant activities of iNKT
cells for IAV vaccines have used the intranasal delivery route
of administering α-GalCer because of the importance of this
site for pulmonary immunity. α-GalCer administered by this
route remains localized to the nasal-associated lymphoid tissues
and cervical lymph nodes where it becomes concentrated in
the intracellular vesicles of DCs. These DCs co-localize with
iNKT cells that accumulate in these tissues through a process
that requires the chemokine receptor CXCR6 and its ligand
CXCL16 (23). α-GalCer can also induce effective immunity when
delivered to tissues beyond the site of infection. For instance,
Galli et al. showed that mice immunized via the intramuscular
route with α-GalCer admixed with HA/NA subunits from human
influenza viruses generated antibody titers that were 1–2 logs
higher than mice immunized with protein alone and greatly
enhanced survival after a lethal IAV infection (30).

iNKT cell responses have also shown promise for generating
cross-reactive CD8+ T cells against serologically distinct IAV
subtypes, which is a major shortcoming of current IAV vaccines.
Guillonneau et al. examined cytotoxic CD8+ T cell responses in
C57BL/6 mice subcutaneously immunized with an inactivated
PR8 vaccine, with and without α-GalCer, that were infected
with a heterosubtypic H3N2 IAV 6 weeks later (24). iNKT cell
activation enhanced the survival of long-lived memory cytotoxic
CD8+ T cells capable of clearing virus from the lungs while
paradoxically diminishing acute phase cytotoxic T cell responses
through iNKT cell-dependent production of indoleamine 2,3-
dioxygenase, an immune suppressive enzyme (24). The induction
of long-lasting CD8+ T cells was associated with the upregulation
of Bcl-2, which is a pro-survival gene. The adjuvant effects of
iNKT cells have also shown potential to improve DNA-based
vaccines, which stimulate only modest immunity in humans.
Two studies have demonstrated that vaccinating mice with α-
GalCer derivatives and DNA vaccines encoding an HA consensus
sequence of an H5N1 IAV or the IAV M2 protein induces M2-
specific cellular and humoral immune responses and protection
from virus challenge (21, 31).

Although mouse models have demonstrated that iNKT cell
activities can greatly enhance IAV vaccines, it remains unclear
whether the same approach would be successful in humans
as mice are not natural IAV hosts and mouse and human
iNKT cells differ considerably in frequency, subsets, and tissue
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TABLE 1 | Summary of studies on modulating immune responses to influenza A virus (IAV) using invariant natural killer T (iNKT) cell agonists.

Animal model Vaccination Vaccine format iNKT cell agonist

(dose per animal)

Mode of action References

Route Strain/subunit

Mouse (BALB/c) i.n. H1N1 PR8 Immunization with PR8 HA antigen with

α-GalCer three times at 1-week intervals.

Infection with 20 LD50 PR8 2 weeks after

final immunization.

α-GalCer (0.125,

0.5, 2 µg)

α-GalCer induced mucosal secretory

IgA as well as systemic IgG antibody

responses against virus-derived

antigen and reduced clinical signs.

(26)

Mouse (BALB/c) i.n. H1N1 PR8 Immunization with inactivated PR8 with

α-GalCer. Infection with 20 LD50 PR8 2

weeks and 3 months after immunization.

α-GalCer (0.5 µg) α-GalCer induced both mucosal and

systemic antibody responses,

provided protective immunity against

challenge with live PR8 and induced

cytotoxic CD8+ T cells.

(22)

Mouse (BALB/c) i.n./i.m. H1N1 PR8

H1N1A/Yamagata

H3N2A/Guizhou

B/Ibaraki

Immunization with PR8, A/Yamagata,

A/Guizhou, or B/Ibaraki HA vaccine with

α-GalCer twice at 4 weeks apart. Infection

with 40 LD50 PR8 2 weeks after the

second immunization.

α-GalCer (2 µg) i.n., not i.m., vaccination (PR8 and

A/Yamagata) with α-GalCer boosted

IgA and IgG and cross-protection

against heterosubtypic virus infection.

(23)

Mouse (BALB/c) i.n. H1N1 PR8 Immunization with PR8 with α-GalCer

twice at 4 weeks apart. Infection with 40

LD50 A/Yamagata, A/Guizhou, or B/Ibaraki

2 weeks after the second immunization.

α-GalCer (2 µg) i.n. vaccination with α-GalCer

protected against challenge with

homologous (A/PR8) and

heterologous (A/Yamagata) viruses.

(23)

Mouse (BALB/c) i.n. H5N1 NIBRG14 Immunization with NIBRG14 (H5N1)

inactivated vaccine with α-GalCer twice, 4

weeks apart. Infection with 103 PFU of

A/Vietnam (H5N1) or A/HK483 (H5N1)

influenza virus 2 weeks after the second

immunization.

α-GalCer (2 µg) i.n. vaccination with α-GalCer

increased nasal IgA and serum IgG

and induced cross-protection against

H5N1 influenza infection.

(23)

Mouse (BALB/c) i.n. H1N1 rNS1 1-73 Immunization with live attenuated rNS1

1-73 with different amounts of α-C-GalCer.

Infection with 100 LD50 PR8 3 weeks after

the immunization.

α-C-GalCer (0.11,

0.33, 1, 2, 3, 4 µg)

α-C-GalCer used between 0.1 and 1

µg per mouse reduced mortality and

morbidity. The adjuvant also

increased the amount of influenza

virus-specific total IgG, IgG1, and

IgG2a antibodies as well as IFN-γ

secreting CD8+ T cells.

(27)

Mouse (BALB/c) i.n. H1N1 PR8 Immunization with inactivated PR8 with

α-GalCer or α-GalCer analogs. Infection

with 5 LD50 PR8 4 weeks after the

immunization or 100 LD50 PR8 5 weeks

after immunization.

α-GalCer (0.5 µg);

KBC-007 (0.5 µg);

KBC-009 (0.5 µg)

Co-immunization with α-GalCer,

KBC-007 and KBC-009 increased

PR8-specific systemic IgG and

mucosal IgA. α-GalCer and KBC-009

(but not KBC-007) increased

antigen-specific lymphocyte

proliferation, cytokine production, and

cytotoxic CD8+ T cell activity and

induced complete protection from live

virus infection.

(32)

Mouse (C57BL/6) i.v. H1N1

PR8-OVA257

Immunization with SLP-conjugated

vaccine PR8-OVA257 with α-GalCer.

Infection with 104 PFU HKx31-OVA257

6–8 weeks after the immunization.

α-GalCer (76 ng) α-GalCer-peptide conjugates induced

OVA-specific T cell responses and

protected against IAV infection.

(28)

Mice (C57BL/6) i.m. HA/NA from

H3N2 PNM07

Immunization with PNM07 protein and

α-GalCer twice at 2 weeks apart.

α-GalCer (0.1 µg) Immunization with H3N2 PNM07 plus

α-GalCer increased titers of

H3N2-specific antibodies.

(30)

Mouse (C57BL/6) i.m. HA/NA from

H1N1 NC20

Immunization with NC20 protein with

α-GalCer twice at 2 weeks apart. Infection

with 100 LD50 H1N1 A/WS/33 2 weeks

after the second immunization.

α-GalCer (0.1 µg) α-GalCer increased the survival rate

after challenge.

(30)

Mouse (C57BL/6) i.m. H3N2 PNM07 Immunization with H3N2 PNM07 protein

with α-GalCer twice at 0 and 2 weeks,

boosted with PNM07 at 30 weeks.

α-GalCer (0.1 µg) Immunization with H3N2 PNM07 plus

α-GalCer resulted in a higher antibody

response and increased expansion of

the antigen-specific memory B cells.

(30)

Mouse (C57BL/6) s.c. H1N1 PR8 Immunization with inactivated PR8 with

α-GalCer. Infection with 104 PFU of live

H3N2 HKx31 6 weeks after immunization.

α-GalCer (1 µg) Vaccination with α-GalCer increased

the survival of long-lived memory

cytotoxic CD8+ T cell populations

capable of boosting protection

against heterologous IAV challenge.

(24)

(Continued)
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TABLE 1 | Continued

Animal model Vaccination Vaccine format iNKT cell agonist

(dose per animal)

Mode of action References

Route Strain/subunit

Mouse (BALB/c) i.m. pCHA5 for

H5N1

Immunization with pCHA5 with C34 twice

at 3 weeks apart. Infection with 200 LD50

NIBRG14 (a reassortant H5N1 virus) 2

weeks after the immunization.

C34 (2 µg) C34 increased titers of HA-specific

antibodies and T cells and improved

survival after challenge.

(31)

Mouse (C57BL/6) i.v. H1N1 PR8 Immunization with PR8 HA

mRNA-transfected CD1d-allogeneic cells

loaded with α-GalCer (aAVC-HA). Infection

with 103 PFU PR8 2 weeks after the

immunization.

5 × 105 aAVC-HA

precultured with

α-GalCer

(500 ng/mL)

Vaccination with aAVC-HA preserved

body weight, increased survival after

infection, and increased titers of

HA-specific IgG.

(29)

Mouse (BALB/c) i.p. M2e peptide Immunization with M2e peptide with

α-GalCer twice at 3 weeks apart. Infection

with 103 PFU H5N1 3 weeks after the final

immunization.

α-GalCer (1 µg) α-GalCer co-administered with M2e

peptide reduced morbidity, mortality

and up-regulated IFN-γ, IL-4 after

challenge.

(25)

Mouse (BALB/c) i.m. DNA vaccine

encoding M2

Immunization with DNA vaccine encoding

M2 with α-GalCer three times at 2-week

intervals. Infection with 1 LD90 PR8 2

weeks after the final immunization.

α-GalCer (1 µg) α-GalCer increased M2-specific IgG;

lymphocyte proliferation; IFN-γ and

IL-12 and IL-4 production; and

survival rate after virus challenge.

(21)

Mouse (BALB/c) i.m. H1N1 CA07,

A/Hong Kong

(H3N2),

B/Phuket, and

B/Texas

Immunization with split influenza HA

vaccine with 7DW8-5 twice at 2-week

intervals. Infection with 10 MLD50 H1N1

CA04 3 weeks after the final immunization.

7DW8-5 (1 µg or 10

µg)

7DW8-5 was sufficient to protect the

mice from lethal infection but did not

completely prevent virus replication.

(33)

Pig i.n. H1N1 OH07 Immunization with inactivated SwIV OH07

with α-GalCer once. Infection with

homologous SwIV OH07 (106 TCID50 per

pig) 3 weeks after the immunization.

α-GalCer (50 or 250

µg)

α-GalCer increased IAV-specific

mucosal IgA and upregulated the

expression of BAFF.

(151)

Pig i.n. H1N1 OH07 Immunization with inactivated SwIV OH07

with α-GalCer once. Infection with

homologous SwIV OH07 (106 TCID50 per

pig) 3 weeks after the immunization.

α-GalCer (50 or 250

µg)

α-GalCer (250 µg) administration

reduced pulmonary viral load and

increased SwIV-specific IgA secretion

both in the lungs and the airways.

(152)

Pig i.m. H1N1 CA04 Immunization with inactivated H1N1 CA04

with α-GalCer twice at 16-day intervals.

Infection with 106 TCID50 CA04 16 days

after the immunization.

α-GalCer (100

µg/kg)

Vaccination with α-GalCer enhanced

both systemic and mucosal

influenza-specific antibodies and

inhibited viral replication in the upper

and the lower respiratory tracts.

(153)

Pigtail macaques i.v. Live-attenuated

IAV encoding

three distinct

SIV epitopes

(flu-SIV)

A single dose of α-GalCer pulsed onto

whole blood for 2 h and re-infused with

flu-SIV; additional vaccinations without

α-GalCer on days 28, 56, and 119.

α-GalCer (5 µg) α-GalCer reduced vaccine-specific

CD8+T cells and had no effect on the

frequency of iNKT cells or IAV-specific

antibodies; reduced influenza-specific

CD8+ T cells.

(72)

PR8, H1N1 strain A/Puerto Rico/8/34; NC20, H1N1 strain A/NewCaledonia/20/99; A/WS/33, H1N1 strain A/Wilson-Smith/1933; PNM07, H3N2 strain A/Panama/2007/99; A/Yamagata,

H1N1 strain A/Yamagata/120/86; A/Guizhou, H3N2 strain A/Guizhou/54/89; B/Ibaraki, B/Ibaraki/2/85; rNS1 1-73, a PR8 mutant virus expressing only the first 73 amino acids in the

NS1 gene; NIBRG-14, reassortant virus derived from PR8 and A/Vietnam/1194/2004 (H5N1) virus (in which the polybasic HA cleavage site has been excised); M2e, ectodomain

of M2 protein; CA07, A/California/07/2009 (H1N1) virus; A/Hong Kong, A/Hong Kong/4801/2014 (H3N2) virus; B/ Phuket, B/Phuket/3073/2013 (Yamagata lineage) virus; B/Texas,

B/Texas/2/2013 (Victoria lineage) virus; OH07, a zoonotic SwIV H1N1 (Sw/OH/24366/07); CA04, H1N1pdm09 strain A/California/04/2009; α-C-GalCer, alpha-C galactosylceramide;

α-GalCer, alpha-galactosylceramide; 7DW8-5, 4-fluorophenylundecanoyl-alpha-galactosylceramide; aAVC-HA, HA-expressing artificial adjuvant vector cells; i.m., intramuscular; i.n.,

intranasal; i.p., intraperitoneal; s.c., subcutaneous; i.v., intravenous; WB, whole blood.

distribution. Therapeutically activating iNKT cells failed to
improve anti-IAV cellular and humoral immune responses when
attempted in pigtail macaques, which are considered a good
translational model for human IAV infections (72). Nevertheless,
we previously reported that α-GalCer substantially increased the
efficacy of a killed pandemic 2009 H1N1 IAV vaccine in pigs
that were challenged with the homologous virus. Protection was
associated with higher levels of vaccine-specific antibodies and
T cells and reduced viral replication in the upper and lower
respiratory tract compared to pigs that received the vaccine alone

(153). Similar results were obtained in studies by Dwivedi et al.
and Renu et al., who showed that intranasal co-administration of
α-GalCer with UV-inactivated H1N1 vaccines increased mucosal
IgA levels, upregulated lung expression of the B cell activation
factor BAFF, and substantially reduced virus loads in pigs (151,
152). Collectively, these results are encouraging as swine and
human iNKT cells share several key characteristics, and like
humans, pigs are natural hosts of IAVs. Furthermore, there may
also be potential to use iNKT cell antigens for vaccines against
swine influenza and other pig pathogens.
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FACTORS THAT INFLUENCE THE
ADJUVANT POTENTIAL OF iNKT CELLS

Studies in mice have established that the effects of iNKT cell
activation are influenced by a variety of interacting parameters,
which should be considered when attempting to use these
agents to adjuvant vaccines. Some of the main factors are
discussed below.

iNKT Cell Subsets
The iNKT cell compartment consists of multiple subsets that
play distinct roles during pathogen-host interactions and which
produce different effector functions after glycolipid stimulation.
Subset development occurs through a linear differentiation
process characterized by sequential changes in surface markers
and transcription factors. Human iNKT cells develop into CD4−

or CD4+ subsets that secrete Th1 or a mixture of Th1 and Th2
cytokines upon activation, respectively (54, 154). However, these
differences in cytokine production are less apparent for mouse
iNKT cells (85). Another difference is that the CD4+ subset of
iNKT cells predominates in mice (155), while human iNKT cells
are mostly CD4− (54, 156, 157). Like humans, iNKT cells in pigs
are mainly CD4− (52, 68, 75, 153), and both humans and pigs
contain a subset of CD8+ iNKT cells which is absent in mice
(54, 68, 75, 156, 157).

Mouse iNKT cell subsets can be classified according to their
development lineages that are acquired during thymic selection
(Table 2). These are composed of the three major functionally
distinct subsets, NKT1, NKT2, and NKT17, which express the
master transcription factors T-bet, GATA-3, and RORγt that also,
respectively, engender the fate of Th1, Th2, and Th17T helper
cell subsets as well as ILC1, ILC2, and ILC3 innate lymphoid cells
(95, 158–161, 163–165). Each iNKT subset expresses different
levels of the transcription factor PLZF, which is critical for the
development and the innate functions of iNKT cells (168–170).
Additional iNKT cell subsets that differentiate extrathymically
have been identified, including NKTFH and NKT10 cells. NKTFH

cells are characterized by the expression of Bcl-6 and the
secretion of IL-21 and are located in the germinal centers of
lymphoid organs. NKTFH cells provide help to B cells during the
formation of germinal centers and drive the affinity maturation
of antibodies toward lipid antigens (134, 135). NKT10 cells are
equivalent to type-1 regulatory T cells (TREGS) and produce
IL-10 and IL-2. This subset induces the differentiation of anti-
inflammatory macrophages and provides help to TREGS. Instead
of expressing PLZF like other NKT cells, NKT10 express E4BP4,
a transcription factor associated with IL-10 production (166).

Individual iNKT cell subsets differentially accumulate in
lymphoid and non-lymphoid tissues (171). In mice, most liver
iNKT cells are NKT1 cells, while NKT2 cells predominate in
the lung, spleen, and mesenteric lymph nodes (56, 162, 171).
NKT17 cells are most plentiful in the lymph nodes, lung, and
skin (56, 162, 171), while NKT10 cells preferentially accumulate
in adipose tissue (167, 171) and NKTFH cells localize in germinal
centers, especially in the spleen (134, 135). The effector functions
of each subset are distinct and range from NKT1 cells that
stimulate proinflammatory responses capable of suppressing

cancer and infectious agents (83, 172) to tolerogenic NKT2 and
NKT10 cells that inhibit autoimmune diseases (173–175). Such
diversity in function needs to be considered when targeting the
adjuvant activities of iNKT cell agonists because, depending on
the route of vaccinations, some subsets may have more influence
on shaping anti-IAV immune responses than others, which could
considerably affect the quality and the durability of protection.
Another consideration is the extensive variability in iNKT
cell subset ratios among inbred mouse strains and genetically
outbred humans and animals, which can result in extensive
variability in outcomes. Indeed different ratios of NKT1/NKT2
subsets are thought to underlie the dimorphic responses that
α-GalCer treatment elicits in C57BL/6 and BALB/c mice for
a host of different diseases (95). Currently, a unifying model
linking iNKT cell transcription factors and functions is lacking
for humans (and other species). Nevertheless, iNKT cells are
probably comprised of functionally distinct subsets in all species
that expresses these cells. Accordingly, the variability in iNKT cell
subsets should be considered a potential source of variation in
people or animals administered glycolipids to stimulate iNKT cell
adjuvant activities.

iNKT Cell Agonists
Since α-GalCer is the first iNKT cell ligand to be discovered
and strongly activates iNKT cells, this agent and its synthetic
derivative KRN7000 have been widely used to study the
therapeutic potential of iNKT cells, including their adjuvant
activities (18, 19, 176). α-GalCer is a glycosylceramide molecule,
composed of an α-anomeric sugar linked to a 26-carbon-
long fatty acid chain and an 18-carbon-long sphingosine base
(15). While this glycolipid induces a mixed Th1/Th2 cytokine
response, various structural analogs of α-GalCer that skew iNKT
cell cytokine production toward a Th1 or Th2 response have
been developed. These modifications include altering the length,
saturation level, and branching of the alkyl and sphingosine
chains, while other derivatives contain modifications at the
glycosyl head (96, 97, 173, 177–181).

In general, α-GalCer analogs with truncated fatty acid chains
or the addition of double bonds in the acyl chain, such as
OCH ((2S,3S,4R)-1-O-(α-D-galactopyranosyl)-N-tetracosanoyl-
2-amino-1,3,4-non-anetriol) and C20:2, skew iNKT cells toward
producing Th2 cytokines (173, 177). In contrast, iNKT cells can
be preferentially activated to produce Th1-like cytokines by (i)
α-GalCer derivatives that contain a CH2 group in place of the
glycosidic oxygen (180), (ii) α-C-GalCer analogs that contain an
oxygen residue in the galactose sugar ring (182), and (iii) 7DW8-
5 and C34 analogs that, respectively, possess methylene and
aromatic residues inserted into their fatty acid chains (183, 184).
Most studies on the adjuvant activities of iNKT cells use α-
GalCer, which generates potent cellular and humoral immunity
due to the mixed Th1/Th2 cytokines elicited. However, several
Th1-inducing reagents, including 7DW8-5 and C-glycoside,
substantially enhance vaccine responses against malaria, HIV,
and IAV vaccines in mice (33, 180, 183). Some studies have
reported that these agents are superior to α-GalCer for boosting
vaccine-mediated immune responses due to a greater ability to
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TABLE 2 | Key characteristics of the main invariant natural killer T (iNKT) cell subsets.

iNKT cell subset Transcription factor Signature cytokines Tissue distribution References

NKT1 T-bet, PLZFlow IL-4, IFN-γ Liver, spleen, lung, small intestine (56, 95, 158–162)

NKT2 GATA3, PLZFhi IL-4, IL-5, IL-13 Lung, spleen, mesenteric lymph nodes (56, 159–163)

NKT17 RORγt, PLZFint IL-17, IL-22 Lymph nodes, lung, skin (56, 159–162, 164, 165)

NKTFH Bcl-6 IL-21 Germinal centers of lymphoid organs (134, 135)

NKT10 E4BP4, PLZF− IL-10, IL-2 Adipose tissue (166, 167)

trans-activate other immune cells, especially NK cells, to produce
IFN-γ (92, 183).

The burgeoning list of synthetic iNKT cell ligands provides
new opportunities to tune iNKT cell responses for a desired
vaccine-supporting immune outcome. For IAV vaccines, the
most promising iNKT cell-stimulating antigens are those which
polarize mouse iNKT cells to produce Th1 cytokines or a mixture
of Th1 and Th2 cytokines, which are naturally important for
antiviral immune responses. Nevertheless, many of these reagents
do not polarize human iNKT cells to the same degree as mouse
iNKT cells due partially to the structural differences in mouse
and human CD1d molecules that affect TCR/CD1d/antigen
interactions (91, 92, 178). This is an important consideration
for translating preclinical animal vaccine studies
to humans.

Vaccine Format
Studies with different disease models have shown that α-
GalCer treatment can have diverse immune effects depending
on the timing, route, and dose of α-GalCer administration.
Understanding how these parameters affect the adjuvant
activities of therapeutically activated iNKT cells is critical for
optimizing iNKT cell-adjuvanted IAV vaccines. The timing of
α-GalCer treatment is a concern for prime-boost vaccination
strategies that administer more than one α-GalCer dose. This is
because the strong activation from a primary vaccination may
render iNKT cells hypo-responsive to an additional stimulation.
Most studies on the adjuvant activities of iNKT cell agonists
for IAV vaccines employ multiple vaccine applications (Table 1)
even though iNKT cells are reported to remain anergic to
restimulation within 3 months after the initial stimulation. These
reports seldom assess whether increases in immune responses are
from the effects of iNKT cells stimulation or from the vaccine
antigen alone. However, it has been shown that the intramuscular
delivery of α-GalCer avoids iNKT cell anergy in both mice and
pigs (21, 30, 52, 153), suggesting that the risk of iNKT cell hypo-
responsiveness may be low if prime-boost vaccination strategies
were employed with IAV vaccines using the i.m. route.

Studies that have employed inactivated IAV vaccines, viral
peptides, and DNA vaccines have used a variety of immunization
routes, although intramuscular injection is the most common.
In contrast, iNKT-adjuvanted live attenuated IAV vaccines have
mostly been delivered intranasally to induce protective immunity
at the site of infection. In general, the systemic routes of
vaccine and α-GalCer co-administration globally activate iNKT
cells in a way that greatly enhances neutralizing antibodies (21,
23, 30). However, this route is not as effective as intranasal

administration at inducing secretory IgA antibodies necessary
for cross-protection against heterologous virus strains (23).
Studies that have compared the efficacy of different vaccination
sites include the report by Galli et al. which showed that the
intraperitoneal, subcutaneous, intramuscular, and intravenous
immunization routes were equally effective and better than
intranasal administration at inducing vaccine-specific antibodies
(30). Another study showed that BALB/c mice intranasally
vaccinated with α-GalCer in combination with HA antigen
derived either from A/PR8 (H1N1) or A/Yamagata (H1N1) were
protected from subsequent infection with A/PR8 (H1N1) live
virus and that the A/Yamagata HA antigen vaccine induced
anti-PR8 HA IgA and IgG antibodies. In contrast, the same
vaccines administered by the intramuscular route failed to induce
IgA antibodies and did not provide cross-protective immunity
(23). The same study compared the effect of intraperitoneally
and intranasally delivered α-GalCer on an intranasally delivered
A/PR8 (H1N1) vaccine. Despite strongly activating splenic and
hepatic iNKT cells, intraperitoneally delivered α-GalCer did not
induce anti-PR8 IgA and IgG antibodies as a response to the
A/PR8 HA antigen vaccine administered intranasally, indicating
that iNKT cell ligands must be co-administered with viral
antigens to enhance an intranasally delivered vaccine (23).

The adjuvant effects of glycolipid-stimulated iNKT cells
enhance immune responses to a wide variety of vaccine formats.
Such versatility stems from the powerful immunoregulatory
properties of iNKT cells, which affect almost every branch
of the immune system and which are generally more diverse
than the immunomodulatory effects induced by traditional
adjuvants. A drawback of this potency is that iNKT cell responses
can reduce the efficacy of live attenuated virus vaccines by
inducing antiviral host responses that eliminate the weakened
vaccine virus before it has had a chance to induce adaptive
immunity. Consequently, it will be necessary to carefully titrate
each glycolipid ligand to find a dose that increases, rather
than decreases, immunity against live attenuated virus vaccines.
Dosage is less important for non-attenuated vaccines, although
high doses of glycolipid ligands may render iNKT cells anergic to
secondary activation.

POTENTIAL PITFALLS

Several obstacles must be overcome before the
immunomodulatory activities of iNKT cells can be used
for human or livestock vaccines. Of paramount concern is
the safety of this strategy as the potent cytokine responses
generated by therapeutically activated iNKT cells can sometimes
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result in immunopathological inflammation and/or disease
exacerbation (185–187). This includes reports that α-GalCer
administration can induce acute airway hyper-reactivity in mice
(188), non-human primates (189), and pigs (76). In addition, the
co-administration of α-GalCer and the model antigen ovalbumin
resulted in allergic airway inflammation in mice (190). These
results should serve as a note of caution that combining
α-GalCer with intranasally administered IAV vaccines could
cause potentially life-threatening airway inflammation. Another
concern is that α-GalCer-stimulated iNKT cells may increase
the risk of vaccine-associated enhanced respiratory disease. This
phenomenon occurs when inactivated IAV vaccines include a
virus strain of the same hemagglutinin subtype as a subsequent
challenge virus, but with substantial antigenic shift (191). This
occasionally generates IgG antibodies that cross-react with the
heterologous virus proteins but lack the ability to neutralize the
heterologous virus effectively. These antibodies might instead
bind epitopes in the HA stem region (HA2) of the heterologous
virus, which facilitates infection of host cells by enhancing virus
fusion activity (191). As iNKT cell activation boosts the size
and the complexity of humoral responses, it is possible that
they will also increase non-neutralizing antibody responses
against heterologous viruses. Another concern is the potential
that immunity from iNKT cell-adjuvanted vaccines will be
inconsistent and unpredictable due to the high interindividual
variability in iNKT cell frequency and function in genetically
outbred species, including humans (192, 193). Indeed some
studies have reported that only patients with high iNKT
cell frequencies were likely to benefit from iNKT cell-based
treatments (194, 195). It is currently difficult to predict whether
an individual’s iNKT cells will produce an immunogenic or
tolerogenic response to stimulation, and the danger exists
that iNKT cell activation might actually reduce the efficacy of
IAV vaccines. This is further complicated by the phenomenon
that iNKT cells undergo substantial age-related alterations in
concentration and effector functions that are likely to impact
their response to glycolipid antigens (196–200). Finally, it
is important to consider that most studies in this field were
conducted using mouse models which, although they have
provided extensive knowledge about the fundamental role of
iNKT cells during IAV infections, do not closely mirror humans
for iNKT cell physiology. Furthermore, mice are not natural
hosts of IAV infections and usually develop much more severe

disease than humans when infected with mouse-adapted IAV
strains (201). Thus, another obstacle is the need for more
studies in valid preclinical animal models to translate iNKT
cell-adjuvanted vaccination to the clinic.

CONCLUDING REMARKS

Durable and broadly protective IAV vaccines are greatly needed
to counteract the growing threats of morbidity, mortality, and
economic losses from seasonal and pandemic IAV infections.
Current vaccine formulations do not provide long-lasting and
cross-protective immunity, partly because they do not induce
sufficient T cell help from virus-specific T cells. iNKT cells may
help to overcome this limitation because they can be uniformly
and specifically activated by therapeutic glycolipid antigens to
supply a universal form of T cell help capable of expanding virus-
specific antibodies and CD8+ T cells. Nevertheless, significant
hurdles remain before the adjuvant activities of iNKT cells can
be utilized in humans and livestock for vaccines against IAV
and other pathogens. Future research should focus on testing
this approach using preclinical animal models with high human
translational potential, such as swine and non-human primates.
Such studies will help determine the translatability of iNKT cell-
adjuvanted vaccines for other respiratory diseases which have
shown promise in mouse models (202).
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