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Neonatal hemophagocytic lymphohistiocytosis (HLH) is a medical emergency that can

be associated with significant morbidity and mortality. Often these patients present with

familial HLH (f-HLH), which is caused by gene mutations interfering with the cytolytic

pathway of cytotoxic T-lymphocytes (CTLs) and natural killer cells. Here we describe a

male newborn whomet the HLH diagnostic criteria, presented with profound cholestasis,

and carried a maternally inherited heterozygous mutation in syntaxin-binding protein-2

[STXBP2, c.568C>T (p.Arg190Cys)] in addition to a severe pathogenic variant in glucose

6-phosphate dehydrogenase [G6PD, hemizygous c.1153T>C (Cys385Arg)]. Although

mutations in STXBP2 gene are associated with f-HLH type 5, the clinical and biological

relevance of the p.Arg190Cys mutation identified in this patient was uncertain. To assess

its role in disease pathogenesis, we performed functional assays and biochemical and

microscopic studies. We found that p.Arg190Cys mutation did not alter the expression

or subcellular localization of STXBP2 or STX11, neither impaired the STXBP2/STX11

interaction. In contrast, forced expression of the mutated protein into normal CTLs

strongly inhibited degranulation and reduced the cytolytic activity outcompeting the

effect of endogenous wild-type STXBP2. Interestingly, arginine 190 is located in a

structurally conserved region of STXBP2 where other f-HLH-5 mutations have been

identified. Collectively, data strongly suggest that STXBP2-R190C is a deleterious variant

that may act in a dominant-negative manner by probably stabilizing non-productive

interactions between STXBP2/STX11 complex and other still unknown factors such as
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the membrane surface or Munc13-4 protein and thus impairing the release of cytolytic

granules. In addition to the contribution of STXBP2-R190C to f-HLH, the accompanied

G6PD mutation may have compounded the clinical symptoms; however, the extent by

which G6PD deficiency has contributed to HLH in our patient remains unclear.

Keywords: familial hemophagocytic lymphohistiocytosis−5 (f-HLH), STXBP2, G6PD deficiency, cytotoxic

T-lymphocytes (CTLs), natural killer cells, lytic granule exocytosis, SNAREs

INTRODUCTION

Neonatal hemophagocytic lymphohistiocytosis (HLH) is a
medical emergency that can be associated with significant
morbidity and mortality. Patients can present a diagnostic
dilemma, especially when the presentation is deemed atypical
(1, 2). Newborns and infants manifesting with HLH often have
a genetic determined HLH, also known as familial HLH (f-HLH)
(3–5). f-HLH is caused by autosomal-recessive gene mutations
that impair lymphocyte cytotoxicity such as PRF1, (FHL-2) (6),
UNC13D (FHL-3) (7), STX11 (FHL-4) (8), STXBP2 (FHL-5)
(9, 10), and RAB27A (Griscelli syndrome II) (11). However, when
the functional consequence of a mutation in any of these f-HLH
genes is unclear, it further confuses the clinical picture and can
lead to delay in therapy. f-HLH was initially described in patients
as a consequence of monogenic autosomal-recessive mutations.
Nonetheless, the landscape of genetic mutations underlying
pediatric f-HLH has further expanded, and it has also been
associated with heterozygous mutations in f-HLH genes, either
as monogenic or digenic inheritance, as well as with mutations
that can act in a dominant-negative fashion (12–15).

Over the last years, several mutations in STXBP2 gene have
been identified in f-HLH-5 patients manifesting with variable
clinical presentations (9, 10, 16, 17). However, for many of these
mutations, it is still not clear how they impact on the molecular
mechanism of cytotoxic granule secretion. STXBP2 gene encodes
for the protein Munc18-2 that belongs to the Sec/MUNC
(SM) protein family. SM proteins are essential components of
multiple intracellular membrane trafficking steps in eukaryotic
cells (18, 19). They function along with the universal membrane
fusion machinery, soluble N-ethylmaleimide–sensitive factor
attachment protein receptors (SNAREs), to ensure specificity,
and control lipid membrane fusion. SM proteins interact with
SNAREs in multiple ways using their central cavity and other
domains. They can bind monomeric t-SNAREs, for example,
STX11, as well as assembled SNARE complexes composed of
STX11/SNAP23/VAMP8 (20–23). Varying functions have been
attributed to the different binding modes of MUNC18s with
SNARE proteins. For example, MUNC18-2 can operate as a
chaperone of monomeric STX11 facilitating transport to its final
destination (at the plasma membrane), as well as an activator for
membrane fusion by promoting SNARE complex assembly (21,
23). However, how mutations in STXBP2 associated with f-HLH
interfere with different functions of Munc18-2 has remained
poorly understood.

Here, we describe a male newborn with neonatal HLH
carrying a maternally inherited monoallelic mutation in
STXBP2, c.568C>T (p.Arg190Cys), which is also present in

two of the four siblings and a severe pathogenic variant in
G6PD [hemizygous c.2T>C (p.Cys385Arg)]. Functional CD107a
degranulation assays showed that natural killer (NK) cells and
CD8+ lymphocytes from patient, mother, and carrier siblings
displayed a severe reduction in their ability to degranulate.
Cell killing assays showed a partial reduction in the cytotoxic
capacity of patient CD8+ cells against target cells. Biochemical
analysis shows that mutation R190C in STXBP2 does not seem
to disrupt protein or mRNA stability because it does not affect
the STXBP2 protein expression levels in patient’s peripheral
blood mononuclear cells (PBMCs), neither its interaction with
endogenous syntaxin-11 (STX11). The forced expression of
STXBP2-R190C in healthy control (H.C.) CD8+ cells resulted
in a severe impairment of granule exocytosis evidenced by
CD107a degranulation and cell-mediated cytotoxicity. Our
results indicate that mutation R190C has a severe deleterious
effect on STXBP2 function and thus in lytic granule secretion.
Interestingly, Arg190 residue is located in a region of domain
2 where other STXBP2 mutations have been found in f-HLH
patients (15, 17). Because this region is highly conserved in both
protein sequence and three-dimensional structure, these results
suggest that this undiscovered region of STXBP2 may play a
critical role during lytic granule exocytosis in CD8+ and NK
cells. Taken together, this study shows that mutation R190C
in STXBP2 impairs protein function in a dominant-negative
fashion that individuals carrying the mutation STXBP2-R190C
display an abnormal CD8 andNK cell cytotoxic function and that
the accompanied G6PD mutation may compound the clinical
symptoms and thus facilitate the triggering HLH.

MATERIALS AND METHODS

Case Presentation
A term Caucasian male was born via normal spontaneous
vaginal delivery and a birth weight of 3.6 kg. He presented
at 8 h a profound conjugated hyperbilirubinemia (bilirubin
total/direct 32.9/24.0 mg/dL). Family history of G6PD deficiency,
elevated reticulocytes, and high lactate dehydrogenase (LDH)
were suggestive of hemolysis, but Heinz bodies prep was negative.
Thrombocytopenia markedly elevated ferritin (20,365 ng/mL),
hepatosplenomegaly (HSM), liver dysfunction, and elevated
soluble interleukin 2 (IL-2) receptor were suggestive of HLH
(Table 1). CD107a degranulation was decreased; bone marrow
showed hemophagocytosis, and liver biopsy showed a dense
histiocytic infiltrate in a background of neonatal hepatitis,
consistent with HLH. Lymphocyte phenotyping showed normal
numbers of CD3T cells and no increase in activated T cells.

Frontiers in Immunology | www.frontiersin.org 2 October 2020 | Volume 11 | Article 545414

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Benavides et al. STXBP2-R190C Variant Associated With f-HLH

TABLE 1 | HLH-related laboratory data.

Lab reference Day 1 Day 12 Day 38

initiate

chemo

Day 101

cont therapy

Day 172

24 weeks

Day 321

46 weeks

complete

therapy

Platelets, /µL 150,000–450,000 65,000 161,000 889,000 485,000 519,000 511,00

Hgb, g/dL 9.5–13.5 15.6 14.5 11.0 9.6 13.0 7.1

ANC, /µL 1,000–8,000 3,700 7,500 7,500 1,500 2,580 2,800

Total bilirubin, mg/dL 0.2–0.9 32.4 11.4 6.2 0.4 0.7 0.5

Direct bilirubin, mg/dL 0.0–0.3 27.2 9.7 4.8 NA 0.1

ALT, U/L 6–50 507 127 622 66 41 32

AST, U/L 10–74 1,924 406 411 53 99 43

LDH, U/L 250–568 3,977 295 674

Reticulocyte, % 0.99–1.82% 20% 1.6%

Ferritin, ng/mL 50–200 20,365 4,930 4,091 1,717 865 233

Fibrinogen, mg/dL 200–400 199 318 216

Soluble interleukin-2 receptor, pg/mL ≤1,033 1,206 1,194

NK function lytic units* >=2.6 21.9

(normal)

CD107a degranulation** Reduced

*NK function was obtained on day 5.

**CD107 day of life 24−3% (11–35), MCF 33 (207–678)—decreased CD107a expression.

Expression of SAP and XIAP in CD8+ T cells and NK cells
was normal, ruling out X-linked lymphoproliferative disease. As
noted by Allen et al., the marked elevated ferritin of >10,000 in
pediatrics is highly diagnostic of HLH (24). Certainly, the clinical
picture with hemophagocytosis in the bone marrow biopsy and
decreased CD107a are also suggestive that this is a true causative
effect (25). It may be relevant that NK cytotoxic activity was
partially reduced, but CD107a degranulation is abnormal, as has
been reported for patients with splicing mutations in STXBP2
associated with immunodeficiency and late-onset HLH (26).
Although it is atypical for classic cases of primary HLH, the
percentage of activated T cells was normal as it was previously
observed in other cases (27).

Gestational alloimmune liver disease (GALD) was unlikely as
there was nomaternal history ofmiscarriage or infant loss, and he
had normal abdominal magnetic resonance imaging and normal
buccal biopsy. No bacterial or viral pathogens were found—no
metabolic disorders and no mitochondrial disorders or bile-acid
synthetics abnormalities.

With suspected GALD, he received intravenous
immunoglobulin (IVIG) (1 g/kg per dose, 3.5 g total) on
days of life (DOL) 1–5 that resulted in improved liver functions
and ferritin and normalization of the platelet count (Table 1).
However, liver transaminases remained moderately elevated,
suggesting the need for additional therapy. Therefore, on
DOL 12, a pulse of dexamethasone 10 mg/m2 daily was given
× 14 days. Transaminases and ferritin remained elevated,
resulting in initiation of dexamethasone, etoposide, and
monthly IVIG on DOL 38 (age 5 weeks). This led to complete
normalization of transaminases, and the HSM also resolved.
Because ferritin remained elevated by DOL 101 (age 14.5 weeks),
continuation therapy with pulses of dexamethasone, etoposide,

and cyclosporin-A (CsA) was given. Treatment was complicated
by significant anemia requiring packed red blood cell (pRBC)
transfusions and decreased etoposide dosing. With suspected
CsA-induced eryptosis, CsA was weaned slowly from age 34
weeks. All therapy was discontinued at age 46 weeks. He is
currently 2.5 years old growing and thriving with no evidence
of HLH reactivation. After discontinuing IVIG, from the age of
1.5 years, he did suffer four episodes of viral-induced hemolysis
that were attributed to his severe G6PD deficiency requiring
blood transfusion with each episode. No reactivation of HLH
was noted.

Antibodies
Mouse anti-CD3 (OKT3 functional grade purified) was
purchased from BD Pharmingen (San Jose, CA, USA). Rabbit
anti–syntaxin 11 and rabbit anti-STXBP2 were purchased for
Synaptic System (Göttingen, Germany). Mouse anti–MUNC13-4
was purchased from Santa Cruz Biotechnology (Dallas, Texas,
USA). Rabbit anti–F-actin was purchased from Sigma (St. Louis,
MO, USA). Secondary antibodies donkey anti–rabbit-IRDye800
CW-conjugated and donkey anti–mouse-IRDye680-RD
conjugated were purchased from LiCor (Lincoln, NB, USA).

Cells and Transfection
Written consent was obtained from the family of the f-HLH-
5 patient using a protocol approved by the institutional review
board at Minnesota Children’s Hospital. Control blood samples
were collected in EDTA tubes and processed within 24 h
of venipuncture. PBMCs were obtained by density gradient
centrifugation (Lymphoprep, Axis-Shield) and resuspended in
complete medium (RPMI 2 supplemented with 10% fetal
bovine serum, L-glutamine, penicillin, and streptomycin; all
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from Invitrogen). Isolated cells were activated and expanded
using Dynabeads (Human T-Expander CD3/CD28 from Life
Technologies; Grand Island, NY, USA) for 5 days in complete
medium. After this time, beads were removed using a magnet
and cells used for different experiments. The human K562
erythroleukemia and murine P815 mastocytoma cell line were
from the American Type Culture Collection (Manassas, USA)
and maintained in complete medium.

CD8 cells from H.C. were transfected with the indicated
ECFP-STXBP2 constructs using the NEON microporation
system (Invitrogen, Grand Island, NY, USA) using a 100 µL tip
and following manufacture’s protocol for PBMC transfection.

Cytotoxicity Assays
The killing activity of effector cells was evaluated using a non-
radioactive cytotoxicity assay Cytotox-96 (Promega) following
the manufacturer’s specifications. For assessment of cytotoxicity,
expanded PBMCs were supplemented with 0.5µg/mL anti-CD3
mAb, mixed with 2 × 104 target P815 cells and incubated in
quadruplicate for 4 h at 37◦C. Effector-to-target cell ratios ranged
from 10 to 0.65 in 100 µL medium in 96-well V-bottom plates.
After 4 h, plates were centrifuged at 250 × g for 4min, and
50 µL of supernatant was transferred to a new flat-bottom 96-
well-plate; 50 µL of the substrate was added to each well in
the new plate and incubated for 30min at room temperature.
The reaction was stopped using 50 µL of stop solution for
each well. LDH release was measured at 490 nm using a 96-
well-spectrophotometer (Spectramax, Molecular Devices). The
following formula was used to calculate the percent cytotoxicity:
cytotoxicity (%) = (experiment – effector spontaneous –
target spontaneous/target maximum – target spontaneous) ×

100. Also, the killing activity of the patient CD8+ cells was
evaluated with the EarlyTox Caspase-3/7 NucView 488 Assay
Kit (Molecular Devices) following manufacturer’s instructions.
Briefly, target and effectors cells were incubated separately
with a membrane-permeable NucView-488 caspase 3/7 substrate
during 30min. CD8+ cells were activated with anti-CD3 (OKT3)
antibody 15-min previous incubation with the substrate ends.
Effectors and target cells were combined in 10:1 ratio in a
black flat-bottom 96-well-plate. The fluorescence was measured
during 130min with an interval of 5min in a fluorescence
microplate reader (ImageXpress R© Pico–Molecular Devices). The
percentage of specific cell death was measured a percentage
of cells that became positive for NucView 488 signal over
the time.

Degranulation Assay
PBMCs isolated from control and patient samples were incubated
in the absence or presence of target cells (K562 or P815) at 1:1
ratio for 2 h at 37◦C. After this time, cells were labeled using
the following combination of fluorescently labeled antibodies:
anti–CD107a-PE, anti–CD56-APC, anti–CD8-FITC, and anti–
CD3-PerCP. Data were acquired using LSR-II flow cytometer
(BD) and with CytoFlex-S (Beckman). For NK cell analysis,
CD3−CD56+ NK cells were gated and assessed for surface
expression of CD107a. For CD8+ cell analysis, CD3+CD8+ cells

were gated and assessed for surface expression of CD107a. The
term “% CD107a appearance” reflects the difference between the
percentage of NK cells expressing surface CD107a after target
cell stimulation and the percentage of NK/CD8+ cells expressing
surface CD107a after incubation with medium alone.

Coimmunoprecipitation Assays
Primary CD8+ cells were lysed using a lysis buffer (25mM
Tris, 150mM NaCl, 1mM EDTA, 5% glycerol; pH 7.4)
containing 1% NP-40 followed by centrifugation at 14,000
rpm for 15min. Coimmunoprecipitation experiments were
carried out using the CO-IP kit from Pierce (Thermo
Scientific) following manufacturer’s instructions. Briefly, after
cell lysis and centrifugation, supernatant was collected and
incubated with agarose beads coupled with anti-STXBP2
antibody for 20 h at 4◦C. Complexes bound to the beads
were pelleted by centrifugation followed by five washes with
lysis buffer containing 1% NP-40. Proteins bound to the
antibodies were eluted using elution buffer pH 2.8. The
eluted fractions were tested by Western blotting using the
indicated antibodies.

Immunostaining and STED Microscopy
CD3/CD28-activated cytotoxic T-lymphocytes (CTLs) fromH.C.
individuals were transfected with the indicated constructs using
a Neon Microporation System (Thermo Scientific) and mixed
with or without of P815 target cells at 1:1 ratio, pelleted by
centrifugation, and incubated for 15min to generated conjugates.
Cells were then seeded in 24-well-plates containing polylysine-
coated glass cover slips. Cells were fixed for 10min with PBS
containing 4% paraformaldehyde. Cells were permeabilized with
PBS buffer containing 0.1% Triton X-100 and then blocked
with 3% bovine serum albumin in PBS for 30min at room
temperature. Cover slips were extensively washed with PBS
and mounted with Prolong Gold antifade reagent (Invitrogen).
Images were collected using a Leica SP8-STED-3X microscope
(Leica Microsystem) using cyan fluorescent protein and yellow
fluorescent protein settings.

RESULTS

Subjects Carrying STXBP2 R190C Variant
Display Impaired CTL and NK Cell Function
A term Caucasian male born via normal delivery presented
within 8 h of age with hypoglycemia, profound conjugated
hyperbilirubinemia, thrombocytopenia, and markedly elevated
ferritin. He displayed HSM, liver dysfunction, and elevated
soluble IL-2 receptor. Bone marrow showed hemophagocytosis,
and liver biopsy showed a dense histiocytic infiltrate in a
background of neonatal hepatitis, consistent with HLH (see
Materials and Methods, Case Report, and Table 1). An HLH-
gene panel exome sequencing revealed a heterozygous variant
in exon 7 of STXBP2, c.568C>T (p.Arg190Cys) with uncertain
clinical significance but predictive to be pathogenic by in silico
analysis (polyphen and SIFT). STXBP2 has been associated
with autosomal recessive familial-HLH type 5 (f-HLH-5, Online
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FIGURE 1 | CTL and NK cells expressing the STXBP2R190C mutation exhibit impaired functions. (A) Pedigree showing the inheritance of genetic variant and clinical

traits. (B) Patient carries a maternally inherited heterozygous R190C variant. Sanger sequencing chromatograms of the genomic DNA region of STXBP2 extending

(Continued)
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FIGURE 1 | from exon 7 and intron 7 of a healthy control (H.C.), patient and mother. Patient and mother have one allele with C > T variant (yellow shaded) that results

in arginine-to-cysteine substitution. (C) Cytotoxicity assay to measure CTL-mediated cell killing. Equivalent numbers of CD8+ T cells (effectors) from age-matched

H.C. (infants: green circles; adults: green diamonds), patient cells (red), mother (blue), and father (purple) were incubated with anti-CD3 antibody in the presence or

absence of P815 target cells (targets) at the indicated cell ratios. (D) CD107a assay to measure degranulation of NK and CD8 cells. PBMCs from age-matched H.C.,

patient, mother, and father were incubated in the presence or absence of K562 cells (for NK cells assay) or P815 and anti-CD3 antibody (for CD8 assay) for 4 h at

37◦C. Cells were stained using anti–CD107a-PE, anti–CD56-APC, anti–CD8-FITC, and anti–CD3-PerCP antibodies and analyzed by flow cytometry.

CD3−CD8−CD56+ cells were gated for NK cells and CD3+CD8+ for CD8 cells and analyzed for the appearance of CD107a on the surface upon incubation with

target cells. (E,F) Graphs showing the percentage of NK cells (E) and CD8 cells (F) that increased CD107a staining upon stimulation. Plots are mean ± S.D. of 3–4

independent experiments. Statistical analysis was done by one-way ANOVA, **p < 0.01. (E,F) Graphs showing the percentage of NK cells (E) and CD8 cells (F) that

increased CD107a staining upon stimulation. Plots are mean ± S.D. of 3–4 independent experiments. Statistical analysis was done by one-way ANOVA ** p<0.01.

Mendelian Inheritance of Man # 217). No other sequencing
or copy number variants were found in additional genes
tested [AP3B1, BLOC1S6 (PLDN), TNFRSF7 (CD27), UNC13D
(MUNC13-4), XIAP (BIRC4), ITK, LYST, MAGT1, PRF1,
RAB27A, PRF1, SH2D1A, SLC7A7, STX11]. Sanger sequencing
was performed on the region between exon and intron 7 of
patient, mother, sibling, half-siblings, father, and H.C. to confirm
the identified variant and mode of inheritance. Results showed
that patient, mother, and two half-siblings (S2, S3), but not S1,
S4, father, and H.C., carry the same variant STXBP2, c.568C>T
(p.Arg190Cys) (Figures 1A,B).

Additionally, whole-genome sequencing studies were

performed on a research basis with corresponding parental
consent. Patient was found to have a pathogenic variant in
glucose 6-phosphate dehydrogenase (G6PD) [heterozygous

c.2T>C (Cys385Arg) dbSNP:rs222 Tomah variant, WHO type
I variant <10% of normal G6PD activity]. Consequently, he
was also diagnosed with severe G6PD deficiency as his two

other male half-siblings (S1, S3). Interestingly, however, he only
had evidence of transient hemolysis before he was started on
CsA treatment.

CTL and NK cell functions were assessed using PBMCs
from the patient, mother, father, and H.C. age-matched (H.C.–
infant; H.C.–adult) as previously described (14). The cytotoxic
activity of CD8+ T cells was determined toward P815 target
cells incubated in the presence of anti-CD3 antibodies. Cytolytic
activity was tested in quadruplicate at different effector/target
(E:T) cell ratios ranging from 10:1 to 0.65:1. These assays revealed
that the CD8+-specific killing activity of the patient and mother
was ∼20–35% reduced compared with that of control CD8+ T
cells (Figure 1C). Given the partial reduction in lytic activity,
we next determined whether this defect was due to impaired
secretion of lytic granules. Toward this end, we measured NK
cell degranulation upon exposure to K562 target cells (28, 29).
In these assays, we observed that significantly fewer NK cells of
the patient (7.7%), mother (9.0%), sibling 2 (13.1%), and sibling
3 (5.4%) displayed CD107a at the cell surface compared with NK
cells from father (25.6%), H.C.–infants (15.9%), sibling 1 (28.9%),
sibling 4 (21.0%), or H.C.–adults (32.9%) (Figures 1D left panel,
E). A similar CD107a degranulation defect was also evidenced
in CD8+ cells (Figures 1D right panel, F). Taken together, these
results demonstrate that the STXBP2 R190C mutation partially
impairs effector cell cytolytic function but severely compromised
lytic granule release in a manner similar as in the f-HLH-
5 disorder.

The R190C Mutation Does Not Affect
STXBP2, STX11, or MUNC13-4 Protein
Expression Levels
Arginine 190 resides within a region of domain 2 highly
conserved among different SM proteins (STXBPs 1-3;
Figure 2A). The crystal structure of STXBP2 shows that
R190 is located closely to two previously described mutations
associated with f-HLH: V487M (15) and I232del (10, 17)
(Figure 2B). Interestingly, V487 is next to D489 that
forms an ionic bond with R190. Some f-HLH-5 patients
bearing mutations in STXBP2 exhibit low levels of STXBP2
protein, probably due to mRNA or protein instability (10).
As STXBP2 binds to and stabilizes STX11, these patients
usually also show low STX11 levels (9, 10, 16). To elucidate
the cause for the reduced cytotoxicity and degranulation of
this patient’s CTL and NK cells, we evaluated the protein
expression levels of STXBP2 and STX11, as well as of other
related f-HLH protein MUNC13-4, STX3, and Lck. For
this purpose, equivalent amounts PBMC lysates from H.C.
individuals or the patient were analyzed by Western blotting.
Results showed that STXBP2, STX11, MUNC13-4, STX3,
RAB27a, and Lck were expressed at similar levels in H.C.
and patient cells (Figure 2C). The intensity of the bands
corresponding to each protein was quantified by densitometry
and normalized to actin as a loading control. This analysis
showed comparable values between the patient and control
samples (Figure 2D). These results indicate that the impaired
cytotoxic activity of the immune cells in this patient was not
due to decreased expression of STXBP2, STX11, RAB27a,
or MUNC13-4.

To further evaluate whether the R190C mutation affects
the ability of STXBP2 to bind to STX11, we performed
coimmunoprecipitation experiments in which endogenous
STXBP2 in PBMCs was immunoprecipitated and the amount
of associated STX11 was analyzed by Western blotting. We
observed that the amount of STXBP2 immunoprecipitated
with an anti-STXBP2 antibody was comparable in the patient
and control samples, as it was the amount of STX11 that
coimmunoprecipitated with STXBP2 (Figure 2E, IP lane).
Densitometry analysis of the STX11 bands normalized
to the amount of immunoprecipitated STXBP2 further
supported these results (Figure 2F). Similarly, STX3,
a known interactor of STXBP2 (21), but not Vamp8,
coimmunoprecipitated with STXBP2 to the same extent in
patient and H.C. samples.
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FIGURE 2 | The STXBP2 mutation does not influence protein expression or the Munc18-2/STX11 interaction. (A) Alignment of human STXBP1/2/3 showing that

arginine 190 reside is conserved among them. (B) Crystal structure of Munc18-2 (PDB:4CCA) with the R190 residue highlighted in magenta, residue D489, which

(Continued)

Frontiers in Immunology | www.frontiersin.org 7 October 2020 | Volume 11 | Article 545414

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Benavides et al. STXBP2-R190C Variant Associated With f-HLH

FIGURE 2 | makes electrostatic interaction with R190, in yellow and previously described f-HLH-5 mutations are shown in blue. (C) Western blots showing the

expression levels of Munc18-2, STX11, STX3, MUNC13-4, RAB27a, and Lck in lysates prepared using PBMCs from H.C. and patient. Actin staining of the same

membranes was used to assess for equivalent protein loading. (D) Bands in the Western blot that corresponded to Munc18-2, STX11, and MUNC13-4 were

quantified by densitometry and normalized to the intensity of actin in the same lane. Densitometry results are expressed as the percentage of those obtained using

control samples, which were set as 100%. Values represent the mean ± SD of two independent experiments. (E) Coimmunoprecipitation experiments using lysates

generated from H.C. or patient PBMCs. Endogenous STXBP2 was immunoprecipitated using an anti–STXBP2 antibody, and the amount of STX11, STX3, and

VAMP8 that coimmunoprecipitated was analyzed by Western blotting. (F) Bands in the Western blot that corresponded to the fraction of STX11, STX3, and VAMP8

that coprecipitated with STXBP2 were quantified by densitometry and normalized to the amount of STXBP2 immunoprecipitated in the same lane. Densitometry

results were expressed as the percentage of those obtained in control samples, which were set as 100%.

STXBP2-R190C Displays a Normal
Localization Pattern
STXBP2 was proposed to function as a chaperone by binding
monomeric STX11 and facilitating its transport to the plasma
membrane (21, 22). To determine whether STXBP2-R190C
interferes with this function, we analyzed the subcellular
localization of EYFP-STX11 when it is cotransfected with
either ECFP-STXBP2-WT or ECFP-STXBP2-R190C in human
CD8 lymphocytes. Results showed that EYFP-STX11 localized
to intracellular vesicles and on the plasma membrane at
the immunological synapse (Figure 3, arrowheads) in both
ECFP-STXBP2-WT– and -R190C–cotransfected cells. The extent
of colocalization between EYFP-STX11 with either ECFP-
STXBP2-WT or ECFP-STXBP2-R190C was similar, as evidenced
by the Pearson colocalization coefficient (Figure 3). These
results suggest that the mutation R190C in STXBP2 does not
interfere with the interaction with STX11 and neither with its
subcellular distribution.

Expression of STXBP2-R190C in Normal
CD8+ Cells Reduces the Effector Function
Because the STXBP2 R190Cmutation identified in the subjects is
monoallelic, and it does not affect the STXBP2 protein expression
level or interferes with the interaction with STX11, we wanted to
investigate whether it might act in a dominant-negative fashion
as it was described for other STXBP2 mutations (14). To test
this hypothesis, we analyzed whether the sole expression of
STXBP2-R190C in H.C. CD8+ cells is sufficient to impair its
effector functions. For this purpose, we transfected H.C. CD8+

cells with either ECFP-STXBP2-WT, ECFP-STXBP2-R190C, or
ECFP-STXBP2-P477L or mock-transfected. Mutation STXBP2-
P477L was previously described a pathogenic variant as a biallelic
form only (9, 10). Analysis of cell killing activity against P815
target cells displayed that ECFP-STXBP2-R190C–transfected
cells have a reduced activity, but not ECFP-STXBP2-WT,
ECFP-STXBP2-P477L, or mock-transfected cells (Figure 4A).
To evaluate whether the effect of ECFP-STXBP2-R190C was
due to a significant overexpression of the mutant form, we
compared the expression level of ECFP constructs with the
endogenous STXBP2 protein by WB (Figure 4B). Results show
that all ECFP-STXBP2 constructs were expressed at similar levels
and were ∼30% less than the endogenous STXBP2 protein.
Evaluation of the CD107a degranulation showed that ECFP-
STXBP2-R190C–transfected cells also have a reduced number
of CD107a-positive cells compared with the -WT, -P477L, and
mock-transfected (Figures 4C,D). Altogether, these results show

that R190C mutation interferes with STXBP2 function and
that the forced expression of STXBP2-R190C variant in normal
CD8+ cells, which express endogenous STXBP2-WT, affects its
degranulation and killing activity. Therefore, these results suggest
that STXBP2-R190C might act in a dominant-negative fashion.

STXBP2-R190C–Expressing CD8 Cells Fail
to Induce Apoptosis in Target Cells
Patient’s CD8+ cells expressing STXBP2-R190C displayed a
severe defect, which is CD107a degranulation, which did not fully
correspond with the partial reduction of their cytotoxic activity
(20–30%) when measured using an end-point colorimetric LDH-
release assays. To further investigate about the low correlation
between both assays, we analyzed the capacity of the CD8+ cells
to induce target-cell apoptosis by using a more sensitive and
specific kinetic assay that monitors the activation of caspases-
3 and−7 in single target cells over time. To this end, target
cells loaded with a membrane-permeable NucView-488 caspase
3/7 substrate were incubated in the presence or absence of
CD8+ cells. Upon caspase 3/7 activation in target cells, the
substrate is cleaved and becomes fluorescent, and the number
of positive green fluorescent cells was monitored over time by
using an automatic cell imager as described in Materials and
Methods. Results showed that patient, mother, sibling 2, and
sibling 3 CD8+ cells exhibit a significant reduction in both speed
and extent to induce caspase 3/7 activation (∼50%, Figure 5)
when compared with activity of the father, sibling 1, sibling
4, and corresponding age-matched H.C. Therefore, our results
demonstrate that CD8+ cells from individual carrying STXBP2-
R190C mutation display a profound defect in their ability to
degranulate and to induce target-cell apoptosis.

DISCUSSION

Here we characterized the functional and biological relevance of
a maternally inherited heterozygous variant STXBP2 (c.568C>T;
p.Arg190Cys) found in a patient manifesting with neonatal
HLH and compounded with G6PD deficiency. Consistent with
HLH diagnostic, our results showed that the degranulation
ability of CD8+ and NK cells of the patient was significantly
reduced. Interestingly, CD8+ and NK cells of the mother, sibling
2, and sibling 3, who also carry the STXBP2-R190C variant,
also displayed impaired degranulation. We found that STXBP2,
STX11, RAB27a, and Munc13-4 protein expression levels in the
patient PBMCs were comparable to those of H.C. cells. Moreover,
we found that endogenous STX11 coimmunoprecipitated to
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FIGURE 3 | The R190C mutation does not affect the subcellular localization of STX11. CTLs from an H.C. individual were cotransfected with EYFP-STX11 and either

ECFP-STXBP2-WT or ECFP-SXBP2-R190C; cells were incubated in the presence or absence of anti-CD3 coated P815 cells at a 1:1 ratio for 15min at 37◦C on

polylysine-coated coverslips. Cells were fixed, mounted and imaged. Bars equal 2µm. Pearson colocalization coefficient between ECFP-STXBP2-WT or R190C and

EYFP-STX11. Values represent the mean ± SD; n = 15 cells.

the same extent with STXBP2 in patient cells than H.C.
Therefore, mutation R190C does not interfere with protein
stability neither with the interaction with STX11. This phenotype
closely resembled that observed in cells from f-HLH patient
expressing STXBP2-R65Q (14) rather than in other patients
having mutations that resulted in decreased STXBP2 and STX11
protein levels such as P477L (9) and G541S (16).

To better understand how this mutation might interfere
with cytolytic function, we investigated whether any of
the predicted functions of STXBP2 were affected by the
R190C mutation, including its role as a chaperone or as an
activator of membrane fusion. STX11 is one of the main
binding partners of STXBP2 in immune cells (9, 10, 16,
22, 23) and platelets (30, 31). However, additional SNARE
proteins have also been described to interact with STXBP2 in
other cell types (32–34). To evaluate the putative chaperone
function of STXBP2, we tested the subcellular distribution
of EYFP-STX11 in control CTLs cotransfected with either
ECFP-STXBP2-WT or ECFP-STXBP2R190C. These experiments
strongly suggest that R190C mutation has no significant
effect on the chaperone function of STXBP2 and correlates

with our immunoprecipitation experiments, which showed a
normal interaction between STXBP2 R190C and STX11. To
evaluate the effect of R190C mutation on membrane fusion,
we transfected ECFP-STXBP2-R190C, ECFP-STXBP2-P477L,
or ECFP-STXBP2-WT in normal CD8+ cells. The expression
of ECFP-STXBP2-R190C, but not of ECFP-STXBP2-P477L or
ECFP-STXBP2-WT, was sufficient to reduce the cytotoxicity
and degranulation activity. Because ECFP-STXBP2-R190C does
not seem to be overexpressed compared with the endogenous
STXBP2-WT, our results suggest that ECFP-STXBP2-R190C can
outcompete STXBP2-WT and might act in dominant-negative
fashion as it was previously described for other f-HLH variants
(14, 35).

Interestingly, upon further review of STXBP2 mutations
identified in other institutions, we found that this mutation is not
unique to our patient, siblings, and his mother. This variant was
previously reported in a 14-year-old HLH patient also carrying
a heterozygous mutation in STX11 (c.9C>A; p.Asp3Glu) (15).
Moreover, arginine 190 is located in a structurally conserved
region of domain 2 of STXBP proteins (Figure 6A). This
region may play an important role in membrane fusion because
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FIGURE 4 | Expression of Munc18-2R190C in control CTLs reduces cytolytic activity. (A) CD8+ T cells from H.C. donors were electroporated with

ECFP-Munc18-2R190C, ECFP-Munc18-2P477L ECFP-Munc18-2WT, or mock-transfected. Two days posttransfection, the cytotoxic activity against anti–CD3-coated

(Continued)
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FIGURE 4 | P815 cells was tested at the indicated effector:target cell ratios. (B) Western blots of transfected cells developed with either anti-STXBP2 antibody (top

panel) or anti-actin (lower panel). Arrow points at the transfected ECFP-STXBP2 protein; asterisk marks the position of endogenous STXBP2. (C) CD107a

degranulation assay for ECFP-expressing cells. Transfected cells were incubated in the presence or absence of CD3-coated P815 cells for 4 h at 37◦C. Cells were

stained using anti–CD107a-PE, anti–CD8-FITC, and anti–CD3-PerCP antibodies and analyzed by flow cytometry. Plots are representative of two independent

experiments. (D) Graph showing the percentage of cells that increased CD107a staining upon stimulation. Plots are mean ± SD of at least three independent

experiments. Statistical analysis was done by one-way ANOVA **p < 0.01, *p < 0.05.

FIGURE 5 | Killing activity of the patient CD8+ cells evaluated with the early-Tox caspase-3/7 assay. Target and effectors cells were incubated separately with a

membrane-permeable NucView-488 caspase 3/7 substrate during 30min. CD8+ cells from patient (red), mother (green), father (blue), and age-matched H.C. (infants:

black; adults: purple) were activated with OKT3 15-min previous incubation with the substrate ends. Effectors and target cells were combined in 10–1 ratio in a black

flat-bottom 96-well-plate. The green fluorescence signal was measured in each cell for 225min with an interval of 5min in a fluorescence cell imager ImageXpress

Pico. The percentage of specific cell death was quantified as the percentage of cells that became positive for green fluorescence over time. H.C. range was

established for both adults (pink shade) and infants (gray shade) from at least three to five different samples. Plots are mean ± SD of at least three independent

experiments. Statistical analysis was done by one-way ANOVA **p < 0.01.

mutations in neighboring residues, I232 and V487, also have
been associated with f-HLH. Because the interaction between
STX11/STXBP2 is not affected and it does not seem to directly
involve this region, these data may reveal a novel binding mode
of the STX11/STXBP2 complex with other factors, e.g., the
surface of lipid bilayer or Munc13-4 protein, which is critical
for membrane fusion to occur (Figure 6B). Consistent with this,
in vitro studies using neuronal homolog proteins showed that
MUN domains of Munc13-1 can interact with STX1/STXBP1
and induce a conformational change, allowing STXBP1 to serve
as a scaffold protein and recruit VAMP2 through an interaction
with STXBP1 domain 3a and thus promoting membrane
fusion (36–39). Similarly, previous studies using yeast homolog
proteins have shown that VPS33 (Sec/Munc) protein serves
as scaffolding for SNARE-complex formation using domain
1 to interact with Vam3 (STX homolog) and domain 3a to
interact with Nyv1 (VAMP homolog) (40). Nonetheless, how
domain 2 of STXBPs contribute to these interactions remains to
be investigated.

In addition to the STXBP2 (c.568C>T; Arg190Cys) mutation,
the patient also carries a mutation associated with G6PD

deficiency. He met 6 of the 8 clinical criteria for HLH:
splenomegaly, fever, hypertriglyceridemia, hemophagocytosis,
extremely elevated ferritin, and elevated soluble IL-2 receptor
(1). Liver dysfunction findings and the abnormal CD107a
degranulation assay further supported the neonatal HLH
diagnosis. Clinically, he responded to the HLH therapy according
to HLH-2004 with resolution of the HSM, liver dysfunction,
and declining ferritin. The association of HLH with significant
involvement of liver dysfunction is often observed (41). However,
the contribution of G6PD deficiency to HLH is uncertain; only
two cases have been reported; parvovirus-B19–induced HLH
in a 12-year-old with G6PD deficiency (42) and a 54-year-old
with HLH and G6PD deficiency (43). In both cases, genetic
workup was not reported. There was only mild hemolysis at the
time of HLH diagnosis; however, G6PD deficiency could have
aggravated the hyperbilirubinemia at birth. Interestingly, only
after initiating CsA he developed significant anemia that required
pRBC transfusions. This may have been CsA related eryptosis—
the suicidal death of erythrocytes (44). Therefore, the extent by
which G6PD deficiency has contributed to HLH in our patient
still remains unclear.
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FIGURE 6 | Schematic representation of the role of STXBP2 domain 2 on membrane fusion. (A) Crystal structure of Munc18-2 (PDB:4CCA) showing the different

domains of STXBP2 based on STXBP1 crystal structure (45): domain 1 (blue) comprises residues 4–134, domain 2 (green) residues 135–245 and from 477–590,

domain 3a (pale red) residues 246–361, and domain 3b (red) residues 362–476. (B) STXBP2 stabilizes STX11 in a closed conformation using domain 1 and 3a; upon

the vesicle approximates, the immunological synapse membrane Munc13-4 may facilitate the transition of STX11 to an open conformation, allowing its interaction

with domain 1 of STXBP2; VAMP can interact domain 3a of STXBP2, while domain 2 of STXBP2 stabilizes Munc13-4 in the complex.

Intriguingly, despite the severely impaired cytolytic function
of CD8 and NK cells of the patient, sibling 2, sibling 3, mother,
and a previously described patient (15), only our patient and

the reported case in the literature clinically developed HLH.
Our data suggest that the STXBP2-R190C variant has a high
biological impact with a low clinical penetrance. Consistently,
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there are 91 presumptive healthy individuals in gnomAD v2.1.1
(https://gnomad.broadinstitute.org/variant/19-7706729-C-T?
dataset=gnomad_r2_1) carrying the STXBP2-R190C variant.
However, the cytolytic activity of these individuals still remains
to be investigated. Usually, not all the individuals carrying a
heterozygous mutation in the known HLH-associated gene
clinically develop HLH. The wide spectrum of clinical symptoms
and laboratory tests in these individuals, as it is in those
carrying the variant STXBP2-R190C, could be due to differences
in the penetrance of the allele in different individual, other
unknown genetic modifiers, environmental factors, and/or to
the exposure to the right challenge (e.g., specific virus) that
could trigger the HLH. With our current genetic analysis,
we could not completely rule out the possibility that another
still unidentified gene variant might have compounded the
effect of STXBP2-R190C in our patient and contributed for
triggering HLH. For example, a yet unidentified variant inherited
from the father, which caused a reduction of ∼50% of the
cytolytic function compared with normal controls (Figure 5),
might have triggered the HLH manifestation by a digenic
combined pathogenicity.

Taken together, these evidences further support the
notion that mutation STXBP2-R190C similar to other
heterozygous mutations in molecules involved in granule
exocytosis can impact on CD8 and NK cell cytotoxic
functions and might have a synergistic effect with
other gene variants that ultimately could lead to HLH
manifestation (12, 15).
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