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Corona virus disease 2019 (COVID-19) has caused a global outbreak and severely posed
threat to people’s health and social stability. Mounting evidence suggests that
immunopathological changes, including diminished lymphocytes and elevated
cytokines, are important drivers of disease progression and death in coronavirus
infections. Cytokine storm not only limits further spread of virus in the body but also
induces secondary tissue damage through the secretion of large amounts of active
mediators and inflammatory factors. It has been determined that cytokine storm is a major
cause of deaths in COVID-19; therefore, in order to reverse the deterioration of severe and
critically ill patients from this disease, the cytokine storm has become a key therapeutic
target. Although specific mechanisms of the occurrences of cytokine storms in COVID-19
have not been fully illuminated, hyper-activated innate immune responses, and
dysregulation of ACE2 (angiotensin converting enzyme 2) expression and its
downstream pathways might provide possibilities. Tailored immunoregulatory therapies
have been applied to counteract cytokine storms, such as inhibition of cytokines,
corticosteroids, blood purification therapy, and mesenchymal stem cell therapy. This
review will summarize advances in the research of cytokine storms induced by COVID-19,
as well as potential intervention strategies to control cytokine storms.
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INTRODUCTION

Pathogenic human coronavirus infections, such as severe acute respiratory syndrome (SARS) and
Middle East respiratory syndrome (MERS), could cause fatal lower respiratory tract infections and
extra-pulmonary manifestations (1–3). The Coronavirus Disease 2019 (COVID-19), first reported
in Wuhan, China, has raised acute and grave global concern since December 2019 (4, 5). On March
11, 2020, the world health organization (WHO) officially declared a global pandemic status for
COVID-19, which is a great threat to people’s health and social stability. In the early stages of
COVID-19, severe acute respiratory infection symptoms occurred, and some patients rapidly
developed acute respiratory distress syndrome (ARDS), acute respiratory failure, and other serious
complications (6, 7). There is considerable evidence to show that immunopathological changes,
including diminished lymphocytes and elevated cytokines, are important drivers of disease
progression and death of COVID-19 patients, especially those who are critically ill (8). Early
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detection and control of cytokine storms may effectively prevent
disease progression and reduce the mortality rate. This review
will summarize research progress on cytokine storms occurring
in COVID-19 as well as potential intervention strategies.

Cytokine Storm and Cytokine
Release Syndrome
The cytokine storm, previously reported in rheumatoid arthritis
and graft-versus-host disease (GVHD), has been used to describe
the overactive immune responses that can be triggered by a
variety of factors, such as virus infection, autoimmune disease,
and immunotherapies (8–10). Under the normal physiological
state, the levels of pro-inflammatory cytokines and anti-
inflammatory cytokines in the body are kept in relative
balance, which can be broken by abnormal activation of a
variety of immune cells (such as dendritic cells, macrophages,
and lymphocytes) during viral infections. These abnormally
activated immune cells could release large amounts of
cytokines, among which the pro-inflammatory cytokines could
promote more immune cells in a positive feedback loop. The
formation of cytokine storm leads to “suicide attack” that not
only contributes the elimination of pathogenic microorganisms
but also causes tissue toxicities affecting a wide variety of organs
(Table 1) (9). The cytokine release syndrome (CRS), a kind of
systemic inflammation syndrome caused by cytokine storm, was
previously observed in patients infected with SARS-CoV and
MERS-CoV, as well as in leukemia patients receiving engineered
T cell therapy (8, 9, 11, 12). Mild cases are characterized by fever,
fatigue, headache, rash, arthralgia, and myalgia. Patients with
more severe symptoms usually present with high fever, headache,
fatigue, diffuse intravascular coagulation (DIC), shock, multiple
organ failure (MOF), or even death (9, 11). Common laboratory
abnormalities include cytopenia, elevated creatinine and liver
enzymes, high levels of C-reactive protein (CRP), and deranged
coagulation parameters (9, 11). Lee et al. reported a modified
grading system for the severity of CRS regardless of the inciting
agent, which defined mild, moderate, severe, life-threatening
symptoms, and even death. This grading system is also used to
guide clinical decisions in CRS (11). Vigilant supportive care is
recommended for every grade; immunosuppression should be
used in all patients with grade 3 or 4 CRS and instituted earlier in
patients with extensive comorbidities or the elderly (11).
Frontiers in Immunology | www.frontiersin.org 2
Cytokine Storm Induced in Viral Infection
The virus can promote the activation of immune cells (such as T
cells, B cells, macrophages, dendritic cells, neutrophils,
monocytes) and resident tissue cells, resulting in the
production of large amounts of inflammatory cytokines (13,
14). During the flu virus infection, innate immune responses get
started through the cascade amplification reactions of interferon
stimulated gene expression, and type | interferon (IFN) is mainly
produced by monocytes, macrophages and dendritic cells (15).
Serum levels of interleukin 8 (IL-8), IP-10 (interferon-induced
protein 10), MCP-1 (monocyte chemoattractant protein-1),
MIP-1 (macrophage inflammatory protein-1), MIG (monokine
induced by IFN-g) and CXCL-9 (CXC chemokine ligand-9) were
abnormally elevated in H5N1 influenza virus infection, while IL-
8, IL-9, IL-17, IL-6, IL-15, TNF-a (tumor necrosis factor-a), IL-
10 were increased in H1N1 influenza virus infection (16–18).
Earlier researches demonstrated that serum levels of
proinflammatory factors IFN-g, IL1b, IL-6, IL-12, IL-18, IP-10,
MCP-1, and CCL2 (CC chemokine ligand-2), CXCL-10 and IL-8
are positively correlated with lung inflammation and extensive
lung tissue injury in SARS patients (19–21). Whereas, the levels
of serum pro-inflammatory cytokines IL-6, IFN-g, TNF-a, IL-15,
IL-17, and chemokines IL-8, CXCL-10, and CCL5 were
significantly increased in severe MERS patients (22, 23).
Among numerous molecules that increase in virally-mediated
cytokine storms, IL-6, IFN-g, IL-1b, IL-8, IL-10, and TNF-a are
of crucial importance (9, 24, 25). The occurrence of cytokine
storm has been reported to be one of the main causes of death in
patients with SARS-CoV, MERS-CoV, and influenza virus
infections (8, 26). Similarly, cytokine storm is also a common
feature of severe cases in COVID-19, and elevated levels of serum
IL-6 and CRP correlate with respiratory failure, ARDS, MOF and
adverse clinical outcomes (27, 28).

Pathophysiology of Cytokine Storm
Both damage-associated molecular patterns (DAMPs) and
pathogen-associated molecular patterns (PAMPs) are produced
upon viral infection, which can activate antiviral responses in
neighboring cells as well as recruit innate and adaptive immune
cells, such as macrophages, natural killer (NK) cells, and gamma-
delta T (gd T) cells (Figure 1) (24, 29–33). Downstream
production of interferons promotes intracellular antiviral
TABLE 1 | Clinical signs and laboratory findings about cytokine storms.

Organ Clinical signs and laboratory findings

Constitutional Fever, rigors, headache, malaise, fatigue, anorexia, myalgias, nausea, vomiting
Pulmonary Tachypnea, hypoxemia
Hematologic Anemia, thrombocytopenia, neutropenia, febrile neutropenia, lymphopenia, B-cell aplasia, hypofibrinogenemia, bleeding, elevated D-dimer, prolonged

prothrombin time, prolonged activated partial prothrombin time, disseminated intravascular coagulation
Gastrointestinal Nausea, diarrhea, emesis
Cardiovascular Tachycardia, widened pulse pressure, hypotension, arrhythmias, QT prolongation, increased cardiac output (early), potentially diminished cardiac

output (late)
Renal Acute kidney injury, hyponatremia, hypokalemia, hypophosphatemia, tumor lysis syndrome, azotemia
Hepatic Transaminitis, hyperbilirubinemia
Neurologic Headache, mental status changes, confusion, delirium, word finding difficulty or frank aphasia, hallucinations, tremor, dymetria, altered gait, seizures
Skin Rash, edema
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defenses in neighboring epithelial cells which may limit viral
dissemination, while the release of IL-6 and IL-1b from other
immune cells promotes recruitment of neutrophils and T cells
(29). Subsequently, the activation of T cells or lysis of immune cells
induces secretion of IFN-g and TNF-a, leading to the activation of
immune cells and endothelial cells with further release of pro-
inflammatory cytokines in a positive feedback loop manner (9).
Although these inflammatory cytokines promote T follicular
helper (Tfh) cell differentiation, B cell germinal center formation
and antibody production, as well as Th1 (T helper 1) cell
differentiation and cytotoxic CD8+ T cell generation to help
viral removal, tissue damage caused by them cannot be ignored
(34, 35). Activated neutrophils release leukotrienes and reactive
oxygen species (ROS) that induce local pneumocyte and
endothelial injury, directly leading to acute lung injury (29).
Inflammatory mediators promote neutrophil release of nuclear
deoxyribonucleic acid (DNA) to form neutrophil extracellular
traps (NETs) which can snare pathogens as well as contribute to
thrombi formation (33). This process, termed immuno-
thrombosis, can also amplify the production of cytokines and is
exemplified by links of thrombin with inflammasome activation
and production of IL-1 (36). As vascular endothelial cells would be
exposed to circulating cytokines and other immune mediators,
coagulation disorders (such as capillary leak syndrome, thrombus
Frontiers in Immunology | www.frontiersin.org 3
formation, and even DIC) can also be caused by endothelial cell
dysfunction in cytokine storms, indicating the crosstalk between
hemostasis and cytokines (24, 33). High levels of circulating
inflammatory cytokines can cause cell death as well as tissue
damage, whereas their promotion of macrophages activation can
lead to erythro-phagocytosis and anemia (24, 33). The successive
occurrences of acute lung injury, abnormal alterations in vascular
hemostasis, and cytokine-mediated tissue damage can eventually
result in MOF (24, 33, 37).

As discussed above, cytokine storm not only limits further
spread of virus but also induces secondary tissue damage through
the secretion of large amounts of active mediators and
inflammatory factors (Figure 1) (24, 29–33, 35, 38, 39). Thus,
it can be seen that inhibition of this self-amplifying inflammatory
cascade may not only control tissue damage, but also impair viral
clearance. Unlike that in viral infection, the occurrence of
cytokine storm in CAR-T therapy is secondary to T cell-
mediated killing of tumor cells, and inhibition of this self-
amplifying inflammatory cascade has no influence on
therapeutic efficacy (9, 29). Nevertheless, it has been proved
that antiviral immune responses and tissue toxicity could be at
least partially uncoupled; therefore, inhibition of select arms of
innate immune responses could limit tissue toxicity while not
greatly suppressing ongoing antiviral immunity (29).
FIGURE 1 | Mechanisms and hazards of cytokine storms induced in COVID-19 and potential therapeutic targets. Viral infection can induce antiviral responses in
neighboring cells as well as recruit innate and adaptive immune cells, such as macrophages, dendritic cells, T cells, B cells and NK cells, leading to self-amplifying
inflammatory cascade in a positive feedback loop manner. Cytokine storm not only limits further spread of virus in the body but also induces secondary tissue
damage through the secretion of a large number of active mediators and inflammatory factors. The successive occurrences of acute lung injury, abnormal alterations
in vascular hemostasis, and cytokine-mediated tissue damage can eventually result in MOF. Potential therapeutic targets to control cytokines storms in COVID-19
are as follows: IL-6/IL-6R blocker; JAK inhibitor; IL-1 blocker; IFN-g inhibitor; TNF-a inhibitor; colchicine; corticosteroids; blood purification therapy; stem cell therapy.
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Clinical, Pathological, and Serological
Manifestations in COVID-19
The incubation period of COVID-19 patients ranged from 1 to
14 days, and mostly from 3 to 7 days (8, 40). Common symptoms
at onset of illness were fever, dry cough, myalgia, fatigue,
dyspnea, and anorexia; however, a few patients presented
initially with atypical symptoms, such as diarrhea and nausea
(6, 40). Most patients had good results with treatment, while the
elderly patients and those with chronic diseases usually had poor
prognoses. Although most patients with COVID-19 had mild
and moderate symptoms, severe and critically ill patients
progressed rapidly to acute respiratory failure, ARDS,
metabolic acidosis, coagulopathy, septic shock, and MOF (7,
40–42). The autopsy report in the journal The Lancet Respiratory
Medicine showed typical ARDS-like lung injury with lymphocyte
infiltration, liver injury with moderate micro-vesicular steatosis,
mild lobular and portal activity (43). COVID-19 patients usually
revealed significantly reduced lymphocyte counts and increased
inflammatory factors, especially those with severe illnesses (6, 40,
44). Wang et al. reported that the neutrophil count and D-dimer
continued to increase in non-survivors, whereas lymphocyte
counts continued to decrease until death occurred (40).
Neutrophilia may be related to cytokine storms induced by
virus invasion, and coagulation activation may be related to
sustained inflammatory responses (40).

Cytokine Storm Is a Key Determiner
in the Fate of COVID-19
Huang et al. observed that patients in intensive care unit (ICU)
showed higher levels of plasma inflammatory cytokines IL-2, IL-
7, IL-10, G-CSF (granulocyte colony-stimulating factor), IFN-g
and MCP and TNF-a than non-ICU patients (6), indicating the
positive correlation between the cytokine storm and the severity
of illness. These cytokines suggested not only Th1 responses but
also Th2 responses in COVID-19, which differed from SARS-
CoV infections (6). After being infected with the SARS-CoV-2,
CD4+ T cells were activated and differentiated into Th1 cells to
secrete pro-inflammatory cytokines, such as IL-6, IFN-g, and
GM-CSF (granulocyte-macrophage colony stimulating factor)
(6, 45). GM-CSF could activate mononuclear cells to promote
further release of IL-6 and other pro-inflammatory cytokines,
leading to the generation of cytokine storms (45). Therefore, IL-6
and GM-CSF released by T lymphocytes and mononuclear cells
may be the key link of cytokine storm in COVID-19 (45).
Moreover, the activation of monocytes may suggest that the
cytokine storm in COVID-19 is closely related to the destruction
of the balance between innate and adaptive immunity.

Recent studies also showed that the level of IL-6 in severe cases
was significantly higher than that in mild and moderate cases, but
the levels of CD4+ T cells, CD8+ T cells and NK cells were
decreased, indicating the immunosuppression in severe COVID-
19 patients (44). Although peripheral CD4+ T cells and CD8+ T
cells were significantly reduced, the number of Th17 cells increased
and CD8+ T cells were highly cytotoxic, which further suggested
that cytokine stormsmay aggravate tissue damage (43).Meanwhile,
T lymphocyte cells were excessively activated during the cytokine
Frontiers in Immunology | www.frontiersin.org 4
storm inCOVID-19 patients, whichmay be accompanied by severe
immunedysfunctions (43). The cytokine stormcandirectlydamage
the pulmonary capillary mucosa, promote alveolar edema, and
further induce the diffusion of inflammatory cytokines, thus
resulting in the damage of alveolar structure and pulmonary
ventilation dysfunction (25, 46). In addition, the cytokine storm is
associated with the sequence and severity of organ dysfunction in
multiple organ dysfunction syndrome (MODS) (37). Therefore, the
cytokine storm may be an important factor that affects the fate of
patients with COVID-19 pneumonia.
POSSIBLE MECHANISMS OF CYTOKINE
STORM IN COVID-19

Hyperactivated Innate Immune Responses
During the process of antiviral immune responses, innate and
adaptive immune responses interact with each other and
cooperate closely to produce immune protection (47). There is a
time limit for adaptive immune responses, which usually gets
initiated 4 to 7 days after infection. Unlike adaptive immune
responses, innate immune responses occur immediately after
infection and are fully involved in virus clearance. However, the
innate immunity is relatively weak in virus clearance, and adaptive
immunity is the key factor in complete elimination of the virus (47).
If thebodydoesnot generate effective adaptive antiviral responses in
time to clear the virus, the innate immune responses will be
strengthened, which cannot eliminate the virus effectively and
even lead to systematic inflammation responses with
uncontrolled release of inflammatory cytokines (48, 49). The
latest studies have shown that the average age of severe and
critically ill patients is higher than that of mild cases (66-years old
vs. 51-years old), and severe cases are more likely to have other
chronic diseases (72.2% vs. 37.3%) (40, 50). As for the elderly
patients and those with chronic diseases, it takes a longer period of
time to generate effective adaptive immune responses due to the
deterioration of immune functions. These patients only rely on
strengthening the innate antiviral immune responses in the early
stages of infection, leading toahigher risk of cytokine storms, earlier
onset of severe illness, and a higher mortality rate. Although the
kinetics of the responses to SARS-CoV-2 fit with models of the
induction of conventional antiviral immunity, it is still unclear
whether immunehyperactivity is due to ongoing viral replicationor
immune dysregulation (33). Pyroptosis is a highly inflammatory
and caspase-1-dependent form of programmed cell death that
occurs most frequently upon infection with intracellular
pathogens and is a part of the antimicrobial responses, which
may also play a role in COVID-19 pathogenesis (51, 52). Rapid
viral replication that causes increased pyroptosis may lead to a
massive release of inflammatory mediators (51). Taken together,
viral escape to avoid anti-viral immunity, together with genetic or
acquired defects in host defense, may impair viral clearance,
resulting in inappropriate immune activation and consequently
causing cytokine storms (52). In a word, the exaggerated activation
of innate immunitymay be an important factor in the formation of
cytokine storms in COVID-19 (29).
November 2020 | Volume 11 | Article 570993
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Dysregulation of ACE2 and Its
Downstream Pathway
Angiotensin converting enzyme 2 (ACE2) primarily catalyzes the
breakdown of angiotensin II (AngII) to maintain the
homeostasis of renin-angiotensin-aldosterone system (RAAS)
as a pivotal counter-regulator, which is crucial for the
physiology and pathology of most human organs (53, 54).
Significant to COVID-19, ACE2 has been established as the
functional host receptor for SARS-CoV-2, and many factors have
proved to be associated with both altered ACE2 expression and
disease severity and progression, including age, sex, ethnicity,
medication, and several co-morbidities (such as cardiovascular
disease, metabolic syndrome, and lung cancer) (53–57). Recent
studies have also revealed potential roles of ACE2 in regulating
immune responses rather than merely being a viral-binding
receptor in COVID-19 (53–55, 58–61). Chen’s team found the
expression axis “mir-125b-5p-ACE2-IL-6” existed in lung
adenocarcinoma, in which mir-125b-5p inhibited the
expression of IL-6 through promoting the up-regulation of
ACE2 (58). Once bound by SARS-CoV-2, the ACE2 expression
(including mRNA level and enzyme activity) on the surface of
host cells were significantly decreased, and then IL-6 in the toll-
like receptor signaling pathway might influence the immune
system as the downstream effector (53, 54, 58). Therefore, the
dysregulation of ACE2 induced by SARS-CoV-2 infection may
further cause cytokine storms and pneumonia, and targeting to
the upstream regulator mir-125b-5p may provide a new way for
the control of COVID-19 (58, 60). More interestingly, the spike
protein of SARS-CoV has been previously demonstrated to
downregulate ACE2 expression, thus resulting in over-
production of AngII (the downstream of ACE2) by the related
enzyme ACE (62, 63). Similarly, it could be hypothesized that
SARS-CoV-2 may downregulate ACE2 receptors and thereby
leading to an over-production of AngII, which may be another
possible explanation of cytokine storm in COVID-19 (59, 61).
ACE2 molecules on the cell surface are occupied by SARS-CoV-
2, and then AngII increases due to a reduction of ACE2-
mediated degradation (59, 61). SARS-CoV-2 itself activates
nuclear factor kappa B (NF-kB) via pattern recognition
receptors (PPRs), and the accumulated AngII in turn induces
the activation of the IL-6 amplifier through enhanced activation
of NF-kB pathway and IL-6-STAT3 (signal transducers and
activators of transcription family 3) axis (61). IL-6 is a key
factor in this positive feedback loop, ultimately leading to the
release of cytokines out of control (64). More importantly, IL-6 is
a major functional marker of cellular senescence, and the age-
dependent enhancement of the IL-6 amplifier may correspond to
the age-dependent increase of COVID-19 mortality (61, 64).
CONTROLLING CYTOKINE STORM IS
VITAL IN COVID-19

Lessons should be learned from the outbreak of SARS-CoV and
MERS-CoV to accumulate valuable experience and insights on
Frontiers in Immunology | www.frontiersin.org 5
how to effectively treat COVID-19 pneumonia patients. There
are three progressive stages upon SARS-CoV-2 infection: early
infection, pulmonary phase, and hyper-inflammation phase (65).
Targeted treatments are urgently needed to prevent the
occurrence of cytokine storms, and the early infection stage
with no or mild symptoms is the key period for active treatment
to control further deterioration (65). Antiviral drugs that inhibit
virus transmission and destroy virus replication can reduce
direct cell damage caused by COVID-19, and appropriate
combinations with immunoregulatory therapies that inhibit
hyper-activated inflammatory responses can resist cytokine
storms triggered by the virus (Figure 1 and Table 2) (72, 73).
Multiple clinical trials have been initiated to investigate potential
interventions to control cytokine storms in patients with
COVID-19, mainly including direct inhibition of cytokines and
immunomodulatory therapies (Figure 1 and Table 2).

Inhibition of Cytokines
Blocking of IL-6/IL-6R
One meta-analysis of mean IL-6 concentrations demonstrated
2.9-fold higher levels in patients with complicated COVID-19
compared with those with non-complicated disease (74), and
another meta-analysis also reported the relation between IL-6
levels and severe condition (75), indicating that IL-6 was a good
indicator of poor prognosis in COVID-19 (74). At present,
blockers of IL-6/IL-6R have been preliminarily applied in a
series of ongoing clinical trials of COVID-19 and further
multi-center clinical trials are being carried out (Table 2).
Tocilizumab (a kind of IL-6 receptor blocker, IL-6R), first
approved for rheumatic conditions, can effectively reverse
iatrogenic cytokine storms which are caused by CAR-T
therapy in patients with hematological malignancies (11, 76).
One clinical trial from China (ChiCTR2000029765) reported
that tocilizumab made rapid improvements in fever control and
respiratory functions in 21 severe patients with COVID-19, and
all participants including two seriously ill patients recovered and
were discharged from the hospital (77, 78). Roumier et al.
reported their experience regarding tocilizumab in 30 COVID-
19 patients, suggesting that tocilizumab significantly reduced
mechanical ventilation requirements (odd ratio, OR=0.42) and
risk of subsequent ICU admissions (OR=0.17) (79). Toniati’s
group published a single center study of 100 COVID-19 patients
in Italy and also demonstrated that the response to tocilizumab
was rapid, sustained, and associated with significant clinical
improvements (80). A systematic review and meta-analysis of
observational studies found decreased mortality in COVID-19
patients treated with tocilizumab (81). In addition, IL-6 blockade
with tocilizumab does not impair the viral specific antibody
responses despite of a delayed viral clearance driven by a higher
initial viral load, indicating the safety of tocilizumab in patients
with COVID-19 (82). Sarilumab is another kind of IL-6R blocker
that is being investigated in SARS-CoV-2 infection (83, 84),
which may reflect a possible clinical benefit regarding early
intervention with IL-6-modulatory therapies for COVID-19
(85). Although not yet approved by Food and Drug
Administration (FDA), clazakizumab (a monoclonal antibody
November 2020 | Volume 11 | Article 570993
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TABLE 2 | Ongoing clinical trials of strategies to control cytokine storms in COVID-19.

Trial identifier Participants Trial design Therapy Mechanism Adverse effects

ChiCTR2000029765 Adult (18–85 years),
moderate/severe/
critically ill patients

A multicenter,
randomized
controlled trial

Tocilizumab
vs. Standard
medical care

IL-6 receptor blocker Infections; skin rash; anemia;
neutropenia; lymphopenia; liver
enzyme elevations etc.

ChiCTR2000030796 Diagnosed cases A retrospective
study

Tocilizumab

ChiCTR2000030894 Adult (18 Years to 65
Years), moderate/
severe patients

A multicenter,
randomized,
controlled trial

Tocilizumab
combined with
Favipiravir
vs. Standard
medical care

NCT04332913 Adult, severe/critically
ill patients

A prospective,
observational
study

Tocilizumab

NCT04322773 Adult, severe/critically
ill patients

An open-Label,
multicenter
sequential, cluster
randomized trial

Tocilizumab
vs. Sarilumab vs.
Standard medical
care

NCT04317092 Adult, severe/critically
ill patients

A multicenter,
single-arm, open-
label, phase 2
study

Tocilizumab

NCT04320615 Adult, severe/critically
ill patients

A randomized,
double-blind,
placebo-controlled,
multicenter, phase
3 trial

Tocilizumab
vs. Placebo

NCT04306705 Adult, severe/critically
ill patients

A retrospective
study

Tocilizumab
vs. Standard
medical care vs.
Continuous renal
replacement
therapy

NCT04315480 Adult, severe/critically
ill patients

A phase 2 Simon’s
optimal two-stages
trial

Tocilizumab

NCT04335071 Adult, severe/critically
ill patients

A multicenter,
double-blind,
randomized
controlled phase II
trial

Tocilizumab
vs. Placebo

NCT04324073 Adult, moderate/
severe/critically ill
patients

A multiple, open-
label, randomized
controlled trial

Sarilumab
vs. Standard
medical care

NCT04315298 Adult, severe/critically
ill patients

An adaptive phase
2/3, randomized,
double-blind,
placebo-controlled
Study

Sarilumab
vs. Placebo

NCT04327388 Adult, severe/critically
ill patients

An adaptive phase
3, randomized,
double-blind,
placebo-controlled
trial

Sarilumab
vs. Placebo

NCT04341870 Adult (18–80 years),
moderate/severe/
critically ill patients

a multicenter
open-label 1:1
randomized
controlled trial

Sarilumab
vs. Azithromycin vs.
Hydroxychloroquine

NCT04348500 Adult patients with
pulmonary involvement
who have not yet
required mechanical
ventilation and/or
ECMO

A single center,
randomized,
double-blind,
placebo-controlled,
exploratory phase
II study

Clazakizumab
vs. Placebo

IL- 6 monoclonal antibody

(Continued)
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TABLE 2 | Continued

Trial identifier Participants Trial design Therapy Mechanism Adverse effects

NCT04322188 (66) Adult, severe/critically
ill patients

A single-center
observational
cohort study

Siltuximab
vs. Standard
medical care

NCT04329650 Adult, severe/critically
ill patients

A phase 2,
randomized, open-
label study

Siltuximab
vs.
methylprednisolone

NCT04318366 (67) Adult, moderate to
severe patients

A retrospective
cohort study

Anakinra
vs. Standard
medical care

IL-1 receptor antagonist blocking IL-1a
and IL-1b

Infections; skin rash; anemia;
neutropenia; lymphopenia; liver
enzyme elevations etc.

NCT04330638 Adult, severe/critically
ill patients

A prospective,
randomized,
factorial design,
interventional
Study

Anakinra
vs. Tocilizumab vs.
Siltuximab vs.
Usual Care

NCT04341584 Adult, severe/critically
ill patients

A multiple
randomized
controlled trial

Anakinra
vs. Standard
medical care

NCT04339712 Adult, severe/critically
ill patients

A non-randomized,
open-label trial

Anakinra
vs. Tocilizumab

NCT04365153 (68) Adult, severe/critically
ill patients with cardiac
injury

A double-blind,
randomized
controlled trial

Canakinumab
vs. Placebo

IL-1b monoclonal antibody

NCT04348448 (69) Adult (18–100 years),
severe/critically ill
patients

A prospective,
observational
study

Canakinumab

ChiCTR2000030089 Adult, severe/critically
ill patients

A randomized,
open-label,
controlled trial

Adalimumab
vs. Standard
medical care

TNF-a inhibitor Infections; fever; anemia,
neutropenia, lymphopenia etc.

NCT04324021 (70) Adult (30–79 years),
severe/critically ill
patients

An open label,
controlled, parallel
group, 3-arm,
multicenter study

Emapalumab
vs. Anakinra vs.
Standard medical
care

IFN-g inhibitor Serious infections; skin rash;
fever; anemia; coagulopathy etc.

NCT04358614 Adult, moderate
patients

A phase 2/3, open
label, clinical trial

Baricitinib
vs. Standard
medical care

JAK1/JAK2 inhibitor Infections; malignancy;
thrombosis: DVT, PE; bleeding;
myelofibrosis; anemia,
neutropenia, lymphopenia,
thrombocytosis, liver enzyme
elevations etc.

NCT04321993 Adult, severe/critically
ill patients

An open label,
non-randomized,
parallel group
study

Baricitinib
vs. Standard
medical care

NCT04320277 Adult (18–85 years),
mild/moderate patients

An open label,
non-randomized,
crossover
assignment study

Baricitinib
vs. Standard
medical care

NCT04346147 Adult, non-severe
patients

A prospective,
phase II,
randomized, open-
label, parallel
group study

Baricitinib
vs.
Hidroxicloroquine
vs. Lopinavir/
ritonavir vs. Imatinib

NCT04340232 Adult (18–89 years),
without invasive
oxygen
supplementation

A single arm, open
label study

Baricitinib

NCT04321993 Adult, severe/critically
ill patients

A parallel, open-
label, non-
randomized
intervention trial

Baricitinib
vs. Standard
medical care

NCT04348695 Adult, severe patients A randomized,
open label, phase
II trial

Ruxolitinib plus
simvastatin vs.
Standard medical
care

NCT04331665 12 Years and older,
require supplemental
oxygen

A single arm open-
label clinical study

Ruxolitinib

(Continued)
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TABLE 2 | Continued

Trial identifier Participants Trial design Therapy Mechanism Adverse effects

NCT04337359 6–90 years, severe/
critically ill patients

A single arm open-
label, intermediate-
size population

Ruxolitinib

NCT04338958 Adult, severe/critically
ill patients

A single arm, non-
randomized open
phase II trial

Ruxolitinib

NCT04348071 Adult (18–89 years),
requires supportive
care

An adaptive phase
2/3 clinical trial

Ruxolitinib
vs. Standard
medical care

NCT04332042 Adult (18–65 years),
hospital admission
from less than 24 h

A prospective,
single cohort, open
study

Tofacitinib JAK1/JAK3 inhibitor

NCT04322682 40 Years and older,
possess at least one
high-risk criteria

A randomized,
double-blind,
placebo-controlled,
multi-center study

Colchicine
vs. Placebo oral
tablet

Inhibition of pyrin and NLRP3
inflammasome activation

Diarrhea; pancytopenia
nausea; abdominal pain etc.

NCT04322565 Adult (18–100 years),
severe patients

A prospective,
phase II,
randomized, open-
label, Parallel
Group Study

Colchicine
vs. Standard of
care

NCT04328480 Adult, severe/critically
ill patients

A simple pragmatic
randomized open
controlled trial

Colchicine
vs. Local standard
of care

NCT04326790 (71) Adult, severe/critically
ill patients

An open label,
randomized,
parallel group
study

Colchicine
vs. Standard of
care

NCT04350320 Adult, admitted in the
hospital in the previous
48 hours, with clinical
status 3, 4, or 5 of
WHO classification.

A phase III,
prospective,
pragmatic,
randomized,
controlled and
open-label trial

Colchicine
vs. Standard of
care

ChiCTR2000029386 Adult, severe/critically
ill patients

A prospective,
phase II,
randomized, open-
label, Parallel
Group Study

Methylprednisolone
vs. Standard of
care

Promote the inhibition of HAT and
recruitment of HDAC2 activity to
downregulate inflammatory genes

Serious Infections: pneumonia,
herpes zoster, urinary tract
infection; fever; allergy;
thrombosis; abnormal blood
glucose and pressure;
arrhythmia etc.ChiCTR2000029656 Adult, severe/critically

ill patients
A randomized,
open-label study

Methylprednisolone
vs. Standard of
care

NCT04263402 Adult, severe/critically
ill patients

An open,
prospective/
retrospective,
randomized
controlled Cohort
Study

Methylprednisolone
vs. Standard of
care

ChiCTR2000030503 Adult, severe/critically
ill patients in ICU

A prospective
cohort stud

Blood purification
therapy

Remove elevated inflammatory mediators
and cytokines

Allergies; fever, thrombosis;
hypotension; thrombocytosis;
bleeding; air embolism etc.

ChiCTR2000029606 Adult, critically ill
patients

An open,
randomized
controlled trial

Menstrual Blood-
derived Stem Cells

Inhibit abnormal activation of T cells and
macrophages and induce their
differentiation into regulatory T cells and
anti-inflammatory macrophages; obstruct
the secretion of pro-inflammatory
cytokines.

Allergies; fever; arrhythmia etc.

ChiCTR2000031139 Adult (18–80 years),
severe/critically ill
patients

An open label,
single arm study

Embryonic MSCs

ChiCTR2000030088 Adult (18–80 years),
severe/critically ill
patients

An open label,
randomized,
parallel group
study

Wharton’s Jelly
MSCs

NCT04269525 An open label,
single arm study

Umbilical cord-
derived MSCs

(Continued)
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against human IL-6) may be helpful in inhibiting the cytokine
storms, and related clinical trials are underway worldwide
(86). It is also reported that patients with rapidly progressing
COVID-19 respiratory failure requiring ventilatory support may
benefit from treatment with siltuximab (IL-6 monoclonal
antibody) because of reduced mortality and cytokine-driven
hyperinflammation (NCT04322188) (66).

Blocking of IL-1 Family
There are three important cytokines of IL-1 family in cytokine
storms: IL-1b, IL-18, and IL-33, among which the block of IL-1b
to counteract the cytokine storms is of great concern (9, 29).
Anakinra, a kind of IL-1 receptor antagonist that blocks activity
of both IL-1a and IL-1b, has been approved by the FDA and the
EDA (European Drug Administration) for the treatment of
rheumatoid arthritis, systemic-onset juvenile idiopathic
arthritis, and familial Mediterranean fever (67, 87, 88).
Anakinra can also be used in the treatment of cytokine storms
caused by infection, significantly improving the survival rate of
severe sepsis (89). Compared with other cytokine blockers,
anakinra has shorter half-life; thus, it is safer and more suitable
for severe and critically ill patients. A retrospective cohort study
(NCT04324021) reported that high doses of intravenous
anakinra inhibit systemic inflammation and were associated
with progressive improvement in respiratory function in
severe patients with COVID-19 (70). Other clinical trials
are also under way to evaluate the use of anakinra in COVID-
19 (NCT04330638, NCT04341584, NCT04339712 etc.).
Canakinumab, a monoclonal antibody selectively targeting IL-
1b, is also being investigated in the treatment for COVID-19. It
was proved that canakinumab was safe, well tolerated, and
associated with a rapid reduction in the systemic inflammatory
response and an improvement in cardiac and respiratory
function (68, 69). Nevertheless, strengthened evidence for the
application of anakinra and canakinumab in COVID-19 are
required in further random controlled trials.
Frontiers in Immunology | www.frontiersin.org 9
Other Blockers
There is no clinical evidence nor any registered clinical trials
assessing the possibility of IL-18 blockers and IL-33 blockers in
COVID-19. TNF-a and IFN-g are also key inflammatory
cytokines and attractive targets in the control of cytokine
storms (6, 90, 91), and clinical trials are ongoing to test these
blockers in COVID-19 (ChiCTR2000030089, NCT04324021)
(70, 92). JAK/STAT (janus kinase/signal transducers and
activators of transcription) signal transduction pathway, a
common downstream signaling pathway of various cytokines,
can block multiple targeted cytokines at the same time if
inhibited (93, 94). However, its possible side effects cannot
be ignored, such as increased risk for pulmonary embolism
(PE), liver enzyme elevations, hematological abnormalities
and suppression of antiviral immunity (94–96). Several
representative JAK inhibitors, such as tofacitinib, baricitinib,
and ruxolitinib, are currently being investigated to determine
whether they can be applied to the treatment of COVID-19
(NCT04332042, NCT04348695, NCT04321993, NCT04348695,
etc.) (94). Baricitinib and ruxolitinib are selective inhibitors
of JAK1/JAK2 which is responsible for multiple cellular
signals including the proinflammatory IL-6 and works as
immunomodulator decreasing the cytotoxic T lymphocytes
and increasing the regulatory T cells (97, 98). A phase 2/3
clinical trial (NCT04358614) showed that all clinical
characteristics and respiratory function parameters significantly
improved in the baricitinib-treated group compared to the
baseline, and no serious infections, cardiovascular and
hematologic adverse effects occurred after treatment (29).
Although tofacitinib is a selective inhibitor of JAK1/JAK3, it is
suggested that for patients not on tofacitinib that this be initiated,
but rather for those already on it that it can potentially be
continued during a pandemic (99). Colchicine can inhibit the
inflammasome activation of pyrin and NLRP3 (NLR Family
Pyrin Domain Containing 3), and are also currently under way to
be evaluated in the treatment of COVID-19 (71, 100, 101). A
TABLE 2 | Continued

Trial identifier Participants Trial design Therapy Mechanism Adverse effects

Adult (18–80 years),
severe/critically ill
patients

NCT04252118 Adult (18–70 years),
severe/critically ill
patients

An open label,
non-randomized,
parallel group
study

MSCs
vs. Standard of
care

NCT04288102 Adult (18–75 years),
severe/critically ill
patients

A phase II,
multicenter,
randomized,
double-blind,
placebo-controlled
Trial

MSCs
vs. Standard of
care

NCT04276987 Adult (18–75 years),
severe/critically ill
patients

An open label,
single arm, pilot
clinical study

Allogenic adipose
MSCs

NCT04273646 Adult (18–65 years),
severe/critically ill
patients

An open label,
randomized,
parallel group
study

Umbilical cord-
derived MSCs
vs. Standard of
care
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single-center cohort study showed that patients treated with
colchicine had a better survival rate as compared with standard
care at 21 days of follow-up, and the adverse effects were similar
for two groups, which may support the rationale of use of
colchicine for the treatment of COVID-19 (100). Another
randomized clinical trial of 105 COVID-19 patients also
suggested that low-dose of colchicine combined anti-
inflammatory action with a favorable safety profile (71).
Moreover, it is also recommended as a therapeutic option in
patients who have contraindications to other drugs or in the
context of shortage/unavailability of anti-viral drugs (such as in
underdeveloped countries) due to high availability (101).
Corticosteroids
Corticosteroids, a type of steroid hormones, exhibit anti-
inflammatory activity via binding to the cytoplasmic
corticosteroid receptor, which leads to inhibitions of HAT
(histone acetyltransferase) and recruitment of HDAC2 (histone
deacetylases 2) activity to downregulate inflammatory genes
(102). Thus, corticosteroids have been widely used to control
cytokine storms. Data from a limited-size trial showed that the
early use of low or medium doses of methylprednisolone had a
positive effect for patients with severe COVID-19 (103). A single-
blind, randomized, controlled trial in Iran (trial identifier:
IRCT20200404046947N1) suggested that methylprednisolone
pulse could be an efficient therapeutic agent for hospitalized
severe COVID-19 patients at the pulmonary phase (104).
Although there was no significant difference in mortality,
patients receiving methylprednisolone treatment seemed to be
with a faster improvement of oxygen saturation, decrease in CRP
and IL-6 level, and less demand for invasive ventilation (104,
105). However, adverse effects (including serious infection and
edema etc.) were also observed in several patients after the
methylprednisolone treatment (103–105). In addition, there are
heated debates as to whether corticosteroid therapy will delay
viral clearance in COVID-19 (106, 107). Therefore, the pros and
cons should be carefully weighed before using glucocorticoids in
the treatment of COVID-19 patients. It is very important for
clinicians to master the time and dose of corticosteroids for the
treatment of severe patients, especially before the infection
occurs. In addition, great caution should be exercised for
patients who already have hypoxemia for various reasons or
those who take glucocorticoids regularly due to other
chronic diseases.

Blood Purification Therapy
It has been demonstrated that the blood purification system,
such as plasma exchange, adsorption, perfusion, blood/plasma
filtration, can remove inflammatory factors and then reduce
tissue damage of hyper-activated inflammatory responses
(108). Li et al. demonstrated that the artificial liver blood
purification system could rapidly remove inflammatory
mediators, block cytokine storms, favor the balance of
fluid, electrolytes and acid-base, and thus improve treatment
efficacy in critical illnesses (109, 110). Ma et al. reported that
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three COVID-19 patients who received blood purification
therapy were tolerable and effective in limited experiences
(111). Successful recovery of a severe patient was also
presented in one case report (112). Yang’s group developed a
blood purification protocol for patients with severe COVID-19
based on previous experience in SARS and MERS, including four
major steps: (i) to assess whether patients with severe COVID-19
require blood purification; (ii) to prescribe a blood purification
treatment for patients with COVID-19; (iii) to monitor and
adjust parameters of blood purification; (iv) to evaluate the
timing of discontinuation of blood purification (113). Last but
not least, possible adverse effects in blood purification therapy
(such as allergies, thrombocytosis, bleeding, air embolism etc.)
should be timely identified and controlled to ensure safe and
effective treatment (109–113).
Stem Cell Therapy
As an important member of the stem cell family, mesenchymal
stem cells (MSCs) not only have potentials for self-renewal and
multidirectional differentiation but also have strong anti-
inflammatory and immune regulatory functions (114–117). In
addition, MSCs inhibit abnormal activation of T lymphocyte
cells and macrophages and induce their differentiation into
regulatory T cells and anti-inflammatory macrophages (117).
MSCs also obstruct the secretion of pro-inflammatory cytokines,
thereby reducing the occurrence of cytokine storms (114, 115,
117, 118). Currently, over thirty clinical trials about intravenous
administration of MSCs in COVID-19 patients have been
officially registered (www.clinicaltrials.gov), but most of them
are under the recruitment phase. Recently, Zhao et al. reported
the results of seven severe and critically ill patients with COVID-
19 receiving MSCs transplantation therapy, which showed
improved prognosis and effective avoidance of cytokine storms
with no obvious side effects (119). Furthermore, other stem cell
therapies have been initiated in clinical trials, such as human
menstrual blood-derived stem cells (ChiCTR2000029606) and
embryonic stem cells (ChiCTR2000031139).
CONCLUDING REMARKS

COVID-19 has been listed as an international public health
emergency by WHO and the treatment of severe and critically ill
patients is the burning issue in current prevention and control.
As cytokine storm is one of the most common causes of
mortality in COVID-19, therapeutic approaches to manage
cytokine storm may provide a novel avenue to decrease the
COVID-19 associated morbidity and mortality. Hyperactivated
innate immune responses, dysregulation of ACE2 expression and
its downstream pathway may be possible mechanisms. In the
treatment of COVID-19, high levels of attention must be paid to
the identification of the occurrence cytokine storm. Tailored
immunoregulatory therapies to control and resist the progress of
cytokine storms in early stages of COVID-19 can greatly improve
prognosis and reduce mortality rates. Although several therapies
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used to control cytokine storm have entered the stage of clinical
trials for the treatment of COVID-19, the limited source and
potential adverse effects have delayed widespread application in
clinical treatment. Moreover, the best timing of anti-cytokine
storm therapies remains to be explored, as well as novel
therapeutic methods which are more effective and tolerated.
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