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Chronic viral infections cause deterioration of our immune system. However, since
persistent infections rarely can be eliminated, the reinvigoration capacity of an
exhausted immune system has remained largely elusive. Chronic hepatitis C virus (HCV)
infection can since some years be effectively cured with novel direct acting antiviral agents.
Thus, it is now possible to study reversal of immunity in patients that are cured from a long-
lasting chronic infection. We here highlight recent developments in the analysis of various
immune cell populations during and after clearance of HCV infection. Surprisingly,
whereas reinvigoration of certain immune traits clearly can be seen, many features of
immune exhaustion persist over time after viral elimination. Thus, a long-term chronic insult
might result in irreversible damage to our immune system. This will be important to
consider in therapeutic vaccination efforts against chronic infection and in the
development of immunotherapy based strategies against cancer.

Keywords: hepatitis C, chronic infection, direct acting antivirals, soluble inflammatory mediators, natural killer cell,
MAIT cell, T cell
INTRODUCTION

Chronic viral infections have a profound impact on the immune system. In humans, it is well
established that patients with chronic hepatitis viruses and/or HIV infection have an impaired
adaptive immunity with dysfunctional CD4+ and CD8+ T cells contributing to the inability to clear
the infection (1, 2). In addition, the natural killer (NK) cell repertoire and function are altered in
patients with prolonged viremia from different chronic infections (3–5). Similarly, the mucosal-
associated invariant T (MAIT) cell compartment is severely diminished with impaired function in
many chronic infections (6), whereas atypical memory B cell accumulates (7). However, the capacity
for immune system reinvigoration after elimination of a chronic pathogen remains less well
understood. Here, we first review insights related to immune system restoration in chronic
infections where virus can be suppressed but not cleared. After that we focus on new results into
Abbreviations: CMV, cytomegalovirus; DAA, direct acting antiviral; EBV, Epstein bar virus; ICAM-1, intercellular cell
adhesion molecule-1; gdT cells, gamma-delta T cells; MAIT, mucosal-associated invariant T cells; NA, nucleos(t)ide analog;
NK cells, natural killer cells; VCAM-1, vascular cell adhesion molecule.
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the possible reversal of immunity after clearance of chronic
hepatitis C virus (HCV) infection. This latter research has been
possible to perform because of recent paradigm-shifting
development in treatment possibilities for chronic hepatitis C,
where the vast majority of patients now can clear their
chronic infection.
EVIDENCE FOR REVERSAL OF IMMUNITY
AFTER SUPPRESSION, BUT NOT
CLEARANCE, OF A CHRONIC VIRAL
INFECTION IN HUMANS

It has been debated over the years to what extent the profound
immune alterations observed in persistent infections could be
reversed upon control or elimination of the underlying infection.
This has been addressed to some extent in patients with chronic
hepatitis B virus (HBV), hepatitis delta (HDV) or HIV infections
receiving treatment. HBV replication can be controlled by potent
nucleoside or nucleotide analogous (NA) but the infection is not
cleared (8). Of note, suppression of viral replication with
undetectable HBV viral load did not lead to major functional
restoration of HBV-specific T cells (9). HBV-specific immunity
only improved in the few patients that managed to clear infection
after long-term antiviral therapy (functional cure, HBsAg
seroconversion) (10). Although some earlier studies have shown
transient restoration of HBV-specific T cells, this short-lived nature
of immune restitution represents a favorable condition for virus
reactivation (11, 12). Similarly, no full restoration of HIV-specific T
cell responses was observed even after the virus had been suppressed
for several years with antiviral treatment (13). With respect to NK
cells, they are activated and functionally altered in hepatitis B and D
virus infection (14, 15). The NK cell phenotype seems to be altered
by viral suppression with NA (16), but functional consequences
remain unclear. However, the phenotype of NK cells did predict
long-term control of hepatitis B after stopping antiviral therapy (17).
In chronic HIV infection, the NK cell population is dysregulated in
several ways including in their capacity to interact with dendritic
cells (18) and with the appearance of dysfunctional CD56neg NK
cells (19). However, upon antiviral treatment, some of these
alterations are reversed, although it takes two years or longer for
them to be normalized (20). Similar to NK cells, also MAIT cells are
affected by both chronic HBV and hepatitis D virus infections as
well as by HIV with severely reduced numbers in circulation and
diminished responsiveness to bacterial challenge or innate cytokine
stimulation (21–23). Whereas partial reversal of NK cell immunity
was observed upon suppression of HBV, HDV, or HIV infections,
no such reversal has been described for MAIT (21–23). However,
common for chronic HBV, HDV, and HIV infections is that
antiviral treatment only suppresses viral replication and rarely
(HBV, HDV) or never (HIV) leads to actual clearance of
infection. Thus, although evidence for partial reversal of
immunity exists in studies of these infections, the full
reinvigoration capacity of the immune system is not possible to
gauge since the infections de facto are not eliminated.
Frontiers in Immunology | www.frontiersin.org 2
THE UNIQUE MODEL OF CHRONIC HCV
TO STUDY REVERSAL OF IMMUNITY

In contrast to chronic HBV or HIV, chronic HCV infection can
now be efficiently cured by antiviral therapies. Thus, chronic HCV
infection represents a unique model to study host–pathogen
interaction in humans and to investigate the effects of clearance
of a persistent long-term infection on the immune system. As a
background, infection with HCV becomes chronic in 50–90% of
adults where it manifests as chronic liver disease including
development of cirrhosis, liver failure, and hepatocellular
carcinoma (24). Treatment of hepatitis C virus underwent
fundamental changes in late 2013. Before then, antiviral therapy
was based on administration of pegylated interferon alfa in
combination with ribavirin curing approximately half of the
patients but with severe side effects (25–27). In November 2013,
the first interferon-free treatment option was approved for the
treatment of chronic hepatitis C. Since thenmany additional direct
acting antivirals (DAAs) became available. These DAAs are either
targeting the HCV protease, the HCV NS5A protein which is
involved in HCV replication and packaging of virions, or the HCV
polymerase. Importantly, these regimens have basically no side
effects and response rates have been shown to exceed 97%, not
only in clinical trials, but also in real world treatment settings, and
successful treatment leads to regression of clinical symptoms and
complications of liver disease (28, 29).

Thus, with this remarkable development, it is now possible, for
the first time, to study immune system function in well-controlled
large cohorts of patients that become cured from a chronic
infection. This is of both basic immunological and clinical
relevance. In more detail, new basic knowledge on the inherent
capacity of immune system reinvigorated after a prolonged chronic
insult will be important for exposure to other heterologous
pathogens, development of immune mediated diseases, immune
control of malignancies, and also for vaccine design. Furthermore,
and in the HCV context, the previously infected patients may
become re-exposed to HCV, and it is currently unclear if those
patients need to be re-treated or if they have a chance to
spontaneously control HCV due to restored antiviral immunity.
Indeed, successfully treated chronic hepatitis C patients still have a
risk to develop hepatocellular carcinoma (30). In this setting, HCV
clearance may interfere with immune surveillance of malignant
cells, and thus a better insight into the effects of rapid HCV
removal on innate and adaptive immunity is of interest.

In the sections below, we discuss recent insights that have
been gained in the last couple of years with respect to immune
restoration following removal of chronic hepatitis C. In addition,
we summarized various recent studies on immune cells and their
fate after HCV clearance in Table 1.
HCV CLEARANCE AND EFFECT ON
SYSTEMIC PRO-INFLAMMATION

Chronic HCV causes a distinct inflammatory milieu by inducing
IFN stimulated genes (ISGs) which impacts clinical manifestations
October 2020 | Volume 11 | Article 571166
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TABLE 1 | Summary of different immune cell populations and their fate after antiviral therapy.

Authors Type of patient No. of
patients

Treatment(follow
up-EOT)Weeks

Main alterations observed upon HCV clearance

Soluble immune mediators
Carlin et al. (31) CHC (cirrhotic and

non- cirrhotic)
131 SOF/RBV

(16 or 20)
Four inflammatory markers were measured, IP-10, MCP-1, MIP-1b, and
IL-18, and all decline during therapy but display different dynamics after
therapy. MIP-1b and IP-10 displayed significant difference based on
treatment outcome.

Hengst et al. (32) CHC (cirrhotic
& NASH)

53 SOF/RBV
(36)

IP-10, IL-12 p40, IFN alpha 2a, IL-18, and TRAIL were upregulated in
comparison to NASH and healthy controls. The changes in SIM were not
fully reversible upon clearance of viral infection.

Debes et al. (33) CHC & NASH 13 SOF/NS5A/PI
(+/−RBV)
96

Normalization of innate immunity after viral clearance.

Gorin et al. (34) CHC & AC 28 SOF+PI+3D
+NS5A/NA
(+/−RBV)
(36 or 48)

Rapid restoration of plasma cytokine milieu observed. Macrophage
activation marker s CD163 remained elevated. In addition elevated levels
for CSCL10 and sCD14 were observed whereas CCL5 and IL-4 remained
suppressed.

T cells
CD8 Martin et al. (35) CHC 51 NA+PI +/−RBV

(24)
Specific phenotypic changes were observed on CD8 T cell but expression
of CD127 and PD-1 on global CD8 T cells were not altered by therapy.
Specific restoration of CD8 T cell proliferation.

Weiland et al. (36) CHC 24 NS5A SOF/3D +/−
RBV
(8–12)

HCV-specific CD8T cells were analyzed that displayed T cell exhaustion
and memory like characteristic both before and after therapy. Only CD127
+/PD1+ subset maintained after clearance. The subset characterized by
high expression of transcription factor TCF1.

Aregay et al. (37) CHC 40 SOF/PI/3D/NS5A
+/−RBV
(24)

Surface expression of co-regulatory receptors on exhausted HCV-specific
CD8 T cells remained unaltered. Mitochondrial dysfunction of exhausted
HCV-specific CD8 T cells was not restored. HCV-specific CD8 T cells
remained functionally impaired after clearance.

CD4 Smits et al. (38) CHC 248 SOF/PI/3D/NS5A
+/−RBV (24)

HCV-specific CD4 T cells skewed towards a follicular T helper cell
phenotype maintained after clearance.

Tregs Langhans et al. (39) CHC 14 SOF+PI/NS5A
(54)

Increased frequency and activation status of Tregs that do not normalize
even after long term follow-up.

gd T
cells

Ravens et al. (40) CHC & non
cirrhotic

23 SOF+NS5A
(48)

NGS and flow cytometeric sorting was performed to monitor the
peripheral gd TCR repertoire and their clonal distribution. Overall clonality
and complexity of TCR gd was comparable to healthy. The gd T cell
compartment and their associated TCR repertoires were highly stable at a
long term follow up.

Ghosh et al. (41) CHC 24 SOF+NS5A/PI
(12)

Peripheral Vg9Vd2 gd T cells showed phenotypic and functional alterations
despite cure. CD38 expression in SVR group was not different from
healthy but declined at the EOT but relapsers had higher CD38+
frequencies.

MAIT
cells

Hengst et al. (42) CHC 26 SOF+ RBV
(72)

MAIT cells present in lower frequencies, circulating MAITs display altered
phenotype, impaired in MR1 dependent function. Function and cell
frequency not restored after elimination of virus, no correlation with clinical
parameters and liver disease.

Spaan et al. (43) CHC 22 PI/NS5A (24)
SOF/NS5A+/−RBV
(24)

MAIT cell frequencies decreased in all cohorts. No association between
the frequency of MAIT cells and ALT level, HCV RNA, and liver fibrosis
score. Patients with differential fibrosis stage showed similar MAIT
frequencies.

Bolte et al. (44) CHC 42 SOF+NS5A
(24)

Paired liver biopsies and blood samples were studied. MAIT cell frequency
was lower in blood and liver compared to healthy. Liver MAIT cells
displayed higher activation and cytotoxicity than MAITs from blood.
Impaired MR1 dependent cell function.

Cannizzo et al. (45) HCV/HIV co-
infected, IFN non
responders, cART
treated

5 NS5A/PI/SOF/3D
+/− RBV
(24)

At baseline diminished total CD3 and CD8 MAITs compared to healthy
and no recovery. Longitudinally. MAIT subsets showed higher CD69, PD-
1, and granzyme expression but no difference in CD39 and Il-18R and
perforin expression.

Natural killer (NK)
Serti et al. (46) CHC 13 NS5A/PI

(24)
Post therapy decrease in NK cell activation and a normalization of NK cell
cytotoxic effector functions to healthy. Paired liver biopsies showed similar
normalization trend.

Spaan et al. (47) CHC 12 NS5A/PI
(12)

NK cell frequencies altered to levels comparable to healthy. NK cell
functions (IFNg and perforin) not modulated.

(Continued)
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ofHCV infection and even tumor development. Upon chronicHCV
infection, hepatocytes are triggered to produce type I and III IFNs
which induce production of ISGs with antiviral activity (5). Despite
this induction of the interferon system, the majority of patients
establish chronic infection. In patients with chronic hepatitis C, a
variety of systemic pro-inflammatory cytokines and chemokines are
elevated (32, 34). In addition, the systemic inflammatory repertoire
is different inHCV-infected patients compared to patientswith non-
alcoholic steatohepatitis (NASH) a non-viral chronic disease (32).
This elevation affects different pro-inflammatory cytokines,
chemokines, and growth factors including CXCL10 (IP-10), IL-12,
IFN-a, IL-18, and TRAIL (32, 34). An obvious question is if these
changes are driven byHCV infection or just secondary to underlying
liver inflammation and/or liver disease. Indeed, elevated levels of
VCAM-1 and ICAM-1 have been shown to be associated with the
degree of liver fibrosis (32). In long-term follow-up studies after
clearance of infection with DAA treatment, many of the pro-
inflammatory cytokines and chemokines returned to normal levels
albeit a residual signature with elevated levels of IFN-a and TRAIL
persisted months after viral clearance (32, 34). Overall, persistent
HCV infection is associated with profound alterations in levels of
soluble inflammatory mediators which are related with liver disease
progression, treatment outcome and viral presence. Importantly,
these changes were not fully reversible upon viral clearance (Table 1,
Figure 1).
PARTIAL REINVIGORATION OF CD4+ AND
CD8+ T CELLS UPON VIRAL CLEARANCE

Initial studies investigating HCV-specific T cells in patients
receiving DAA therapies suggested a partial restoration of
effector functions, in particular of antigen-specific T cell
proliferation (35). Still , the level of restoration was
heterogeneous, and not all patients normalized T cell function.
These findings were supported by other studies showing that
Frontiers in Immunology | www.frontiersin.org 4
suppression of HCV replication led to a decline in T cell
exhaustion marker expression and an increase in HCV-specific
IFNg responses after treatment (53–55). However, HCV-specific
CD8+ T cells with phenotypic features of exhaustion and
memory potential can survive in an antigen-independent
manner, both during and after DAA therapy and HCV
clearance (36). This survival might be mediated by expression
of the transcription factor TCF-1 (36). However, a restoration of
HCV-specific CD8+ T cell exhausted surface phenotype does
not, per se, translate to full functional reinvigoration. Indeed, our
group recently reported that the mitochondrial and metabolic
dysfunction of virus-specific CD8+ T cells persisted despite viral
clearance (37). However, other data suggests that mitochondrial
function may partially improve in some patients (but not in all
patients) during antiviral therapy (56).

With respect to CD4+ T cells, antiviral treatment of HCV led
to a shift from a Th1 to a follicular helper T cell (Tfh) signature
within HCV-specific cells (38). Similar to HCV-specific CD8+ T
cells, Tfh cells are likely persisting in an antigen-independent
manner (38). Moreover, regulatory T cells are usually found in
higher numbers in chronic hepatitis C and, surprisingly, these
increased Treg frequencies with an activated phenotype persisted
also during and after DAA therapy of HCV infection (39)
(Table 1).

In addition, it has been recently shown that the transcription
factor TOX is crucial during appearance and maintenance of
exhausted T cells in mice (57–59). Of note, in humans, it is
clearly shown that HCV-specific CD8T cells remain TOX
positive after DAA mediated elimination indicating a chronic
scar (59). Whereas TOX was suggested to be a master regulator
of exhausted T cells in mice, other recent work in humans has
shown that, except for being expressed on exhausted T cells, also
effector memory T cells express this transcription factor (60).
Finally, the effect of HCV therapy on T cells specific to other
antigens such as CMV and EBV (61) as well as on T cells
recognizing tumor antigens (62) has been studied. Here,
molecules indicating activation of T cells decreased in
TABLE 1 | Continued

Authors Type of patient No. of
patients

Treatment(follow
up-EOT)Weeks

Main alterations observed upon HCV clearance

Strunz et al. (48) CHC 35 SOF/+ RBV
(96)

NK cells from patients with chronic HCV maintained their functional
capacity. Chronic infection reduced NK cell diversity and this reduction
persisted long after viral clearance.

Wang et al. (49) CHC 26 SOF/NS5A
(24 or 36)

Significant decline in CD56bright NK cell frequencies that normalize after
EOT but no difference in CD56dim NK cells observed. Expression levels of
NKG2A, NKp30, and CD94 were high at baseline but recovered to levels
those of healthy after EOT.

Jiang et al. (50) CHC 13 SOF/NS5A
(24 or 36)

Expression of functional markers were downregulated after treatment but
the potential activity of NK cells gets upregulated. Amongst the NK
markers, NKp46 normalized at EOT.

Golden-Mason et al.
(51)

Prospective cohort 22 LDV/SOF
(24)

Transient activation followed by dampening of NK cell activity to pre-
treatment levels

Mele et al. (52) CHC 59 DAA
(24)

Restoration of normal adaptive NK phenotype (activation markers
normalized) and restored ADCC ability.
CHC, chronic hepatitis C; NASH, non-alcoholic steatohepatitis; AC, alcoholic cirrhotic; SOF, sofosbovir; RBV, ribavirin; PI, Protease inhibitor; NA, nucleot(s)ide analogs; 3D-Ombitasvir/
Paritaprevir/Ritonavir + Dasabuvir; EOT, end of treatment; NK, natural killer cells; MAIT, mucosal associated invariant T cells; TCF1, transcription factor; cART, combination antiretroviral therapy.
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expression levels over time, but no major functional changes
were observed in the majority of cases. Table 1 summarizes the
effect of DAAs on T cells.

Overall, studies investigating T cell responses suggest that
viral clearance and lack of ongoing antigen stimulation lead to a
down-regulation of T cell activation and exhaustion markers but
antigen-specific dysfunction is not restored—even when patients
are followed for up to a year after HCV elimination. Antigen-
independent survival of distinct subsets of virus-specific CD4+
and CD8+ T cells has been reported, and these populations
constitute potential targets for immunotherapy to prevent HCV
re-infection (36). Long lived T cell memory is often observed
during spontaneous resolution of acute hepatitis C infection both
in humans and chimpanzees. These memory CD4 and CD8 T
cells appear important for rapid control of secondary infection.
In a recent study the data suggested that CD8T cell memory was
Frontiers in Immunology | www.frontiersin.org 5
rather narrow after successful treatment with DAA, and the
authors suggested that vaccination maybe one option to induce
the broader memory response which may provide protective
immunity (63).
UNCONVENTIONAL T CELLS IN
CLEARANCE OF CHRONIC HCV

Compared to conventional CD4 or CD8 T cells, unconventional
T cells, such as gd T cells and MAIT cells are typically rapid
effector cells that respond within hours towards foreign antigens
and/or other innate signals exhibiting important functions
during viral infection (6, 64, 65). In chronic hepatitis C, gd T
cells are less efficient in producing cytokines and exhibit an
activated phenotype (41, 66). Whereas the activated phenotype
A

B

C

FIGURE 1 | Schematic illustration of immune cell function before and after elimination of chronic HCV infection. (A) Examples of possible immune exhaustion as a
consequence of chronic HCV infection. (B) Time course for studying the impact of HCV clearance on immune cells. (C) Modulation of immunity after viral clearance
with the degree of change ranging from (+/−) to (+++).
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vanished upon DAA-mediated HCV clearance, the dysfunction
remained (41). This dysfunction was not due to a skewing in the
T cell receptor repertoire as it was shown to be unaltered in
patients with chronic hepatitis C and further remained stable
after elimination of HCV (40). This is distinct compared to
chronic HIV infection where the repertoire is heavily altered
because of the infection but slowly returns to normal after
prolonged antiviral treatment (67).

Compared to gd T cells, MAIT cells have been more
extensively studied in the context of chronic HCV infection.
MAIT cells are highly enriched in the human liver and they
efficiently respond to innate cytokines such as IL-12, IL-18, and
IFN-a suggesting that they exhibit an important role in the
antiviral immunity against HCV (68, 69). However, in chronic
hepatitis C, MAIT cell numbers are reduced both in liver and
peripheral blood (42–45). In fact, of all alterations in peripheral
blood immune cell subsets in chronic hepatitis C, loss of MAIT
cells was shown to be the major phenotype (42). Loss of MAIT
cells in chronic hepatitis C appears to both be a consequence of
the infection, per se, but also to the underlying liver disease as
patients with liver cirrhosis tend to have reduced numbers of
MAIT cells (70, 71). Loss of MAIT cells was accompanied with
MAIT cell activation with increased expression of CD69, HLA-
DR, PD-1, and granzyme B (42). Despite having an activated
phenotype, MAIT cell function, in response to bacterial
challenge but not innate cytokine stimulation, was hampered
in chronic hepatitis C (42, 44) (Table 1). This phenotype of
MAIT cells observed in chronic hepatitis C is similar to what has
been described for infections with HBV, HDV, and HIV (21–23).
Upon treatment and viral clearance, circulating MAIT cell
numbers remain suppressed for years (42) whereas a certain
restoration of intrahepatic MAIT cells following viral clearance
have been noted (44). However, MAIT cell activation and
dysfunction remained (42, 44), albeit with some reversal of the
activated signature noted in one study (44). The inability for
MAIT cells to become reinvigorated upon pathogen removal
appears to be shared among chronic infections as similar
findings have been reported for chronic HBV, HDV, and HIV
infections (21–23). The long-term consequences of having this
“gap” in the immune system are currently unknown. However, it
is interesting to note that patients with chronic viral hepatitis
infections progressing to end-stage liver disease have an
increased risk for bacterial infections (72). This might partly be
due to a dysfunctional MAIT cell compartment (71). Future
research should focus on identifying the signals needed for
restoring the MAIT cell compartment. Some insight into this
came from a recent study showing that in vivo IL-7
administration significantly expanded the human MAIT cell
compartment (73).
IMPACT OF CHRONIC HCV AND
CLEARANCE THEREOF ON NK CELLS

Similar to MAIT cells, also NK cells are highly enriched in the
human liver (74) and thus have been extensively studied in the
Frontiers in Immunology | www.frontiersin.org 6
context of chronic HCV infection (5, 75). Both genetic and cellular
studies have revealed an important role for NK cells in the control
of HCV infection (5, 75–77). However, in chronic hepatitis C, NK
cell phenotype and function are compromised at multiple levels
(15, 78, 79). Upon antiviral treatment and rapid clearance of HCV,
several groups have in recent years assessed whether the
compromised NK cell compartment recovers (Table 1 and
Figure 1). Interestingly, when measuring single parameters of
NK cell “health”, both phenotype and function seem to partly, or
fully, normalize upon viral clearance. This includes reversal of an
aberrant phenotype with normalized expression of activation and
inhibitory receptors such as NKp30, NKp46, TRAIL, and NKG2A
(46, 47, 49, 50, 80). This reversal in NK cell phenotype happened
within months after viral clearance and was also associated with
restored NK cell function (46, 49, 50, 81). The signal responsible
for this restoration currently remains unknown. Future work
should determine whether this is an active reinvigoration via
certain signaling pathways or rather the removal of the virus
and possibly the ensuing resolution of inflammation that leads to a
seemingly restored NK cell compartment.

Diversity is an essential feature of our immune system. While
this term has been mostly associated with adaptive immune
responses, recent work has also shown that NK cells represent a
highly diverse population of immune cells (82, 83). A recent study
performed a high-dimensional analysis of NK cells in chronic
HCV and treatment thereof (48). It revealed that chronic HCV
infection increased inter-individual, but decreased intra-
individual, NK cell diversity. This occurred independent of
underlying CMV infection, a potent influencer of NK cell
repertoire formation and NK cell diversity (84, 85) but could
partly be linked to the degree of underlying liver disease (48).
Intriguingly, the altered NK cell diversity appeared irreversible
since it persisted for at least two years after clearance of chronic
HCV. Thus, distinct from single measurements of NK cell
function, that appears to normalize upon clearance of a chronic
pathogen (46, 47, 49, 50, 51, 80) global affection on the NK cell
compartment still remain for years (52). The impact of altered NK
cell diversity on an individual’s immunological health in the longer
perspective should now be the focus in future studies.
IMPORTANT UNANSWERED QUESTIONS

Despite a plethora of recent studies investigating the capacity of the
immune system to reset after removal of chronic hepatitis C,
several important questions remain. More detailed studies on
exhausted HCV-specific CD4+ and CD8+ T cells in chronic
HCV are warranted since there might be a degree of
heterogeneity with subpopulations of exhausted HCV-specific
cells becoming fully reinvigorated after DAA-mediated clearance
of the virus. Additionally, various other environmental and host
factors may influence the evolution of HCV-specific T cells before,
during, and after antiviral therapy including stage of liver disease,
sex, and age. These factors may also explain differences between
different cohorts. Furthermore, several additional arms of the
immune system still remain to be studied in the context of DAA
October 2020 | Volume 11 | Article 571166
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treatment of hepatitis C patients including myeloid immune cells
and HCV-specific B cells. Out of necessity, most of the above
described work have focused on immune cells in peripheral blood.
However, researchers should in the future also strive towards
finding means to access and interrogate the intrahepatic immune
environment in relation to rapid clearance of chronic HCV (44,
86). Additionally, studies on the epigenetic imprint of immune cells
after successful treatment are also warranted. The growing
understanding of epigenetic gene regulation as it relates to both
the stability and malleability of T cell memory may offer the
potential to selectively modify T cell memory in disease by
targeting epigenetic mechanisms (87). Underlying this are
alterations at the chromatin level that regulate constitutive and
inducible gene expression including histone modification and
DNA methylation (88). Some studies have demonstrated that
HCV infection modifies the position of histone modifications,
thereby inducing an epigenetic signature that persists following the
cure with DAAs and these changes can be reverted by specific
drugs. This may further provide an opportunity for prevention of
HCC progression (87, 89). It is well accepted that HCV cure does
not eliminate the short term risk to develop hepatocellular
carcinoma. Moreover, there has been concern that HCC
recurrence rates may even be higher in patients who had
received curative first line therapies for HCC and who
subsequently received DAA therapy against chronic hepatitis C.
In a recent paper from our group we showed that HCC surveillance
may indeed be affected by DAA therapy of chronic HCV infection
and identified that IL-12 could be a key player in the regulation of
HCC-specific CD8+T cell responses (62). Finally, although some of
the published studies have longitudinally characterized patients for
up to almost 2.5 years after viral clearance (48), with the large
number of chronic hepatitis C patients now be cured, longitudinal
studies aiming at following patient cohorts for at least 5, or even 10
years, are now feasible and will provide an even better estimate of
our immune systems inherent capacity to recover.
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CONCLUSIONS

In this brief review, we highlight recent development in the
analysis of various immune cell populations during and after
clearance of chronic HCV infection. This represents the first
human model where a pathogen successfully can be eliminated
after years of chronic infection allowing us to determine long-
term consequences of immunity following resolution of this
insult. Although there has been evidence on antigen-
independent survival mechanisms, including a role for TCF-1,
of HCV-specific T cells which could represent targets for
immune interventions. However, surprisingly many imprints
of chronic HCV infection on distinct immune compartments
persist for years despite antigen elimination.
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