
Frontiers in Immunology | www.frontiersin.

Edited by:
Fabrice Cognasse,

Groupe Sur L’immunité Des
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Studying innate immunity in humans is crucial for understanding its role in the
pathophysiology of systemic inflammation, particularly in the complex setting of sepsis.
Therefore, we standardized a step-by-step process from the venipuncture to the transfer
in a human model system, while closely monitoring the inflammatory response for up to
three hours. We designed an animal-free, human whole blood sepsis model using a
commercially available, simple to use, tubing system. First, we analyzed routine clinical
parameters, including cell count and blood gas analysis. Second, we demonstrated that
extracellular activation markers (e.g., CD11b and CD62l) as well as intracellular metabolic
(intracellular pH) and functional (generation of radical oxygen species) features remained
stable after incubation in the whole blood model. Third, we mimicked systemic
inflammation during early sepsis by exposure of whole blood to pathogen-associated
molecular patterns. Stimulation with lipopolysaccharide revealed the capability of the
model system to evoke a sepsis-like inflammatory phenotype of innate immunity.
In summary, the presented model serves as a convenient, economic, and reliable
platform to study innate immunity in human whole blood, which may yield clinically
important insights.

Keywords: inflammation, neutrophil granulocytes, lipopolysaccharide (LPS), blood physiology, sepsis, ex vivo
whole blood model, principles of the 3Rs
INTRODUCTION

Innate immunity plays a vital role as the vanguard against numerous harmful carriers of
damage- and pathogen associated molecular patterns (DAMPs and PAMPs, respectively). An
appropriate inflammatory response efficiently clears pathogens and initiates subsequent healing
processes. However, an excessive and dysregulated inflammation is a matter of both increasing
interest and concern, particularly during trauma (1) and sepsis (2). A recent study estimated the
annual global incidence of sepsis at approximately 50 million (3). Moreover, the latest consensus
org October 2020 | Volume 11 | Article 5719921
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definition of sepsis underscored the importance of appropriate
regulated (innate) immunity in the successful clearance of
pathogens (2).

To study the complex innate immune response to PAMP
exposure, various small or large, simple or complex animal
models are used (4–6). However, ethical considerations,
including the aspect of replacement within the 3R-principles
(7), possible limitations in translation into real-world patients (4,
5), and the expense of personal and material resources, may limit
the validity and attractiveness of animal-based models. In
addition, whole blood samples or tissue specimens of patients
suffering from sepsis can only be obtained at the cost of
additional burden and risk to the patients. Moreover, the
samples originate from different etiological, microbiological,
and genetic backgrounds, and thus cannot be standardized
precisely. For example, the exact exposure time and the
amount of pathogens within the blood during sepsis cannot be
determined with certainty. Therefore, as another alternative,
injection of immune-stimulants, including lipopolysaccharide
(LPS), has been performed and investigated in healthy human
volunteers (8–10). On the one hand, this approach provides the
intriguing opportunity to study the immunological response
directly in human organisms. On the other hand, obvious
ethical considerations limit the possibilities of this method, for
example, constraining the severity of the induced inflammation
or being restricted to young and healthy individuals (9).
However, because excessive inflammation during sepsis remains
a major clinical and scientific challenge, there is an unabated
research need to elucidate the underlying immunological
pathomechanisms, for example, by utilizing human whole blood
in a standardized and reliable manner.

Exposure of blood to DAMPs, PAMPs, and/or defined
pathogens outside the human body surmounts several limitations
indicated above. Notwithstanding, there are some cellular and
humoral components in the blood that become rapidly activated
when losing their contact with intact endothelium, which under
homeostatic conditions acts as an anti-inflammatory, anti-
adhesive, and anti-coagulatory regulator. In particular, platelets
and serine cascades are controlled by an intact endothelium (11).
To address the issue of “hemoincompatibility” of artificial
materials, whole blood is frequently completely anticoagulated,
for example, either by heparin-based anticoagulants or cation-
chelators, including citrate, both of which can alter the ability
of humoral and cellular immunity to adequately respond
to stimulation.

To prevent stimulation after venipuncture ex vivo, a variety
of models have been previously proposed of whole blood being
supplemented with an anticoagulant and/or being encased in a
specially coated system. Human whole blood models of coated
circuits or whole blood cultures in combination with defined
anticoagulation, for example, heparin or hirudin, have been
widely used and characterized in recent years (12–18). In
general, these models address a specific focus and produced
the respective specific answers. For example, they were used to
elucidate the interaction of whole blood stimulated with various
bacteria, revealing the significance of the complement factors 3a
Frontiers in Immunology | www.frontiersin.org 2
and 5a (C3a, C5a) as well as CD14 for the crosstalk of pathogens
and leukocytes (12–15).

However, to our knowledge, the description of hitherto
existing models focused on the characterization of humoral
immunity and other protease systems such as the coagulation
cascade, without elucidating the impact of exposition to an ex
vivo circuit to general (patho-)physiological and metabolic
responses in association with cellular innate immunity. For
example, global blood parameters (e.g. pH and glucose
concentration) have frequently not been reported, making it
difficult to interpret the presented data and to transfer them into
the physiological in vivo context of the human body (12–14, 16,
18–21). There is also a concomitant research gap with regards to
a comprehensive study of blood physiology ex vivo while
synchronically assessing important immunological functions
and activation markers.

Here, we 1) standardized the handling of an easy-to-use
whole blood model, 2) determined a myriad of global blood
parameters with a comprehensive focus on extra- and
intracellular parameters of innate immunity, and 3) mimicked
septic conditions and subsequent systemic inflammation in
blood in an animal-free research setup by stimulation with LPS.
METHODS

Blood Sampling
Healthy human volunteers of both genders aged 21–30 years
served as blood donors. All experiments were conducted in
accordance with the declaration of Helsinki (22). Following
ethical approval (number 459/18, Local Independent Ethics
Committee of the University of Ulm) and written informed
consent, blood was drawn by peripheral venipuncture in
accordance with the guidelines of the World Health
Organization (23). In detail, blood stasis was limited to a
maximum of 30 s before puncture and the first 2–3 ml were
immediately discarded. The blood was collected in neutral
monovettes (Sarstedt, Nürnbrecht, Germany), which had been
supplemented with heparin (B. Braun Melsungen AG,
Melsungen, Germany) and either LPS (Sigma Aldrich,
Steinheim, Germany) or phosphate-buffered saline (PBS++, as
control), respectively. In total, 9 ml blood was collected per tube,
with a final concentration of 0.5 IU/ml of heparin and when
present, 100 ng/ml of LPS.

Whole Blood Model
Immediately after sampling, the blood was transferred carefully
using 10 ml tips (Eppendorf, Hamburg, Germany) into the
following described system. The whole blood model consisted
of a heparin coated tubing system (Cortiva, #M999413C,
Medtronic, Meerbusch, Germany), being cut into approximately
33 cm long pieces. Both ends of the tube were added to a circuit
using a similarly coated connector (Cortiva, #CB4629, Medtronic),
leaving an air bubble of approximately 1.5 ml inside the system.
The loops were attached to a spinning wheel (Snijders Labs,
Tilburg, Netherlands) rotating at 5 rpm, causing the air bubble
October 2020 | Volume 11 | Article 571992
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to generate a continuous circulation of the blood. As described
previously, the combination of heparin-coating and continuous
circulation mediated by a small air bubble allows incubating whole
blood with a low-dose of heparin (24). Another option would be
the application of higher doses of heparin, however, this interferes
with important immunological systems such as the complement
system (24) or the leukocytes (25). The authors actively decided
against to use a mechanic pump, as this causes mechanical stress,
that among other consequences results in hemolysis and platelet
activation (26).

The system was incubated for 0 (depicted as “0−” indicating
no contact with the tubing system), 10, 60, or 180 min as
indicated in an incubator at 37°C without additional CO2.
Following the incubation period, the tubing loops were cut
open. Initially, 95 µl blood were directly drawn into dry-heparin
anticoagulated glass capillary tubes (Radiometer GmbH,
Krefeld, Germany). Subsequently, 1 ml of the blood was
transferred into a heparin anticoagulated tube (Sarstedt) for
the analysis of phagocytotic activity and radical generation. The
remaining blood was transferred into citrate anticoagulated
monovettes (Sarstedt) for the analysis of all other parameters.
Sodium, potassium, ionized calcium, lactate, glucose, and
blood pH were determined using a standard blood gas
analyzer (ABL 800 Flex, Radiometer GmbH). To calculate the
difference in the amount of lactate generated or the
consumption of glucose, the respective value after 60 min
with or without incubation with LPS was subtracted from the
corresponding baseline (0−). Differential blood count
and global coagulation parameters (activated partial
thromboplastin time, aPTT, and international normal ratio
(INR)) were determined using a standard hematology
(Sysmex CN 2000, Sysmex, Kobe, Japan) and coagulation
(BCS XP, Siemens, Marburg, Germany) analyzer, respectively,
each according to the manufacturer’s standard protocol.
Flow Cytometry
For antibody staining, 10 µl citrate anticoagulated blood were
added to 40 µl PBS++ adjusted to pH 7.3 and stimulated with 100
ng/ml C5a (Complement Technology, Tyler, Texas, USA) or PBS
as control for 15 min in a water bath at 37°C. Subsequently, the
cells were stained as indicated with anti-CD11b (APC, dilution
1:82 #101212, BioLegend, San Diego, California, USA), anti-
CD14 (APC-Cy7, dilution 1:200 #301820, BioLegend), anti-CD62l
(PE, dilution 1:33 #304806, BioLegend), anti-CD88 (APC, dilution
1:250 #344310, BioLegend), or corresponding isotype controls (all
from BioLegend), respectively, for 15 min at room temperature.
All markers were assessed by monoclonal mouse anti-human
antibodies. Cellular viability was analyzed by identifying necrotic
cells with the Zombie Violet Fixable Viability Kit (dilution 1:4000,
#423114, BioLegend) and apoptotic cells using Apotracker Green
(final concentration 200 nM, #427402, BioLegend).

The generation of radical oxygen species (ROS) was
determined by staining 40 µl heparin anticoagulated blood with
0.29 mM (100 µg/ml) dihydrorhodamine 123 (DHR, Santa Cruz
Biotechnology, Dallas, Texas, USA). Phagocytosis was analyzed
using fluorescent microspheres (Fluoresbrite™ Carboxylate YG
Frontiers in Immunology | www.frontiersin.org 3
0.75 Microspheres, Polysciences, Inc., Warrington, Pennsylvania,
USA). The microspheres were dissolved 1:20 in PBS++ followed by
a washing procedure (3× at 1000 g for 5 min). Of this microsphere
solution, 10 µl was added onto 100 µl heparin anticoagulated
whole blood. Whole blood stained with either DHR or incubated
with microspheres was incubated for 20 and 30 min, respectively,
at 37°C in the dark. In all experiments, after stimulation and
staining of whole blood, the erythrocytes were lysed and the
leukocytes fixed by filling up the sample volume to 1 ml with 1×
BD FACS lysing solution™ (BD Biosciences, San Jose, California,
USA) for 30 min at room temperature in the dark. Following
centrifugation of the samples for 5 min at 340 g, the specimens
were resuspended in 100 µl PBS + 0.1% bovine serum albumin and
stored at 4°C until further analysis (normally within 1 h).

For the analysis of living granulocytes and plasma, citrate
anticoagulated whole blood was centrifuged for 10 min at 400 g
at room temperature. The supernatant plasma was carefully
removed from the hematocrit and stored at −80°C until further
use for enzyme-linked immunosorbent assay (ELISA) analysis.
The remaining blood cells were subjected to dextran
sedimentation followed by hypotonic lysis of the erythrocytes.
Forward scatter (FSC) area was used as a surrogate for cellular
shape (27). The intracellular pH was determined using the
fluorescent dye SNARF (Thermo Fisher Scientific, Waltheim,
Massachusetts, USA) with nigericin-based calibration curves as
described previously (28).

For all flow cytometry experiments, neutrophils and monocytes
were gated based on their forward and sideward scatter (SSC) area
properties. Doublets were removed by plotting forward scatter area
versus height. Spillover between fluorescence channels was
corrected by a compensation matrix. For all antigens, appropriate
isotype controls (see figures) and single-staining controls were
performed (data not shown). For all experiments, a minimum of
300 monocytes and 1000 neutrophils were recorded using a FACS
Canto II (BD Biosciences).
Determination of Platelet-Neutrophil-
Complexes
Platelet-neutrophil-complexes (PNC) were analyzed by light
microscopy (29). In brief, 100 µl citrate anticoagulated blood
was diluted with 100 µl PBS++. Blood smears were stained with
the “Hemacolor® Rapid staining of blood smear - staining set for
microscopy” (Merck KGaA, Darmstadt, Germany). A minimum
of 50 neutrophils per specimen were analyzed by two
independent and blinded individuals. Each neutrophil with at
least one thrombocyte in direct proximity was counted as a PNC.
ELISA
Determination of plasma levels of C3a, matrix metallopeptidase
9 (MMP9), interleukin 6 (Il6), and interleukin 8 (Il8) was
conducted by standard ELISA as indicated by the manufacturer
(MMP9: R&D Systems, Minneapolis, Minnesota, USA; Il6: BD
Biosciences; Il8: R&D Systems; C3a: Quidel Corporation, San
Diego, California, USA).
October 2020 | Volume 11 | Article 571992
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Data Analysis and Statistics
All data is presented as median with error bars indicating the
interquartile range (IQR). When informative (e.g. to assess
donor heterogeneity in cellular immunity), additional scatter
plots are presented as overlay. The sampling strategy consisted of
an initial experiment series with n = 3 for all time points (0−,
10 min, 60 min, 180 min, 60 min with LPS, 180 min with LPS)
focusing on blood gas analysis, whole blood count, and humoral
inflammation. Because blood glucose, pH, and lactate level
became unphysiological beyond 1 h and previous literature
indicated that the neutrophil phenotype as measured by
CD11b/CD62l expression reached its final alteration after
exposure to LPS for 1 h (30), cellular immunity was analyzed
for this time point from at least five independent specimen. Data
analysis was performed with licensed versions of Microsoft Excel
2019 (Microsoft, Redmond, Washington, USA) and GraphPad
Prism 8 (GraphPad Software Inc, San Diego, California, USA). In
statistical testing, data was considering as paired and non-
normally distributed: For comparison of two groups, a
Wilcoxon matched-pairs signed rank test was conducted
(Figures 4, 5, comparison of control vs. C5a within the
respective condition). Multiple-group comparison was
performed by the Friedman test for paired data (Figures 4–6A,
B, comparison of 0− vs. Ctrl vs. LPS) or Kruskal-Wallis test for
unpaired data (Figures 6C, D, comparison of 0− vs. Ctrl vs. LPS),
respectively, followed by Dunns’ multiple comparison test. A p-
value <0.05 was considered to be significant and marked by * or **,
indicating <0.05 or 0.01, respectively.
Frontiers in Immunology | www.frontiersin.org 4
RESULTS

Stability of Global Physiological
Parameters in the Ex Vivo Whole Blood
Model During the First Hour
In the present whole blood model, the leukocyte and erythrocyte
cell counts remained stable for up to 3 h after circulation in
comparison to baseline values (directly after venipuncture,
Figures 1A, B). In accordance, the amount of necrotic and/or
apoptotic cells for neutrophils, monocytes, and lymphocytes was
determined to be <2% (n = 3, data not shown). Furthermore, the
activity of hemostasis and the coagulation system was monitored:
platelet count (Figure 1C) and the formation of PNCs (Figure
1D) indicated no initiation of cellular coagulation. As expected,
after the addition of 0.5 IU heparin/ml and incubation for
60 min, humoral coagulation was inhibited as indication by an
INR of 2.1 (1.8; 2.3, n = 4) and an aPTT of >180 s in all four
analyzed samples (data not shown). No visible clot formation
was detected in any of the analyzed specimens.

Electrolyte concentrations including sodium, potassium,
and ionized calcium were stable throughout the 3-h period
of interest (Figures 2A–C). Because the potassium levels did
not increase and the red blood cell count and hemoglobin did
not decrease, no considerable hemolysis had occurred in
the system.

Regarding metabolic changes, there was an expected glucose
consumption over time. The glucose concentration (Figure 2D)
decreased within the first hour of incubation with a median of –
A B

DC

FIGURE 1 | Cell counts of leukocytes (A), erythrocytes (B), platelets (C), and platelet-neutrophil complexes (PNC) (D) before and after contact of blood with the
tubing system. Cell counts and PNC formation remained stable during the first 3 h after exposure of whole blood in the ex vivo model. LPS (100 ng/ml) was used as
a potent PAMP stimulus. n = 3. Results are presented as median with error bars indicating the interquartile range.
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A B

D E F

G IH

C

FIGURE 2 | Sodium (A), potassium (B), ionized calcium (C), glucose (D), lactate (E), pH (F), oxygen partial pressure (pO2) (G), carbon dioxide partial pressure
(pCO2) (H), and acid-base balance (I) before and after exposure of whole blood to the circuit system. Plasma parameters remain widely stable during the first 60 min
but show deviations after 3 h. LPS (100 ng/ml) served as PAMP exposure. n = 3 for 10 min and 180 min, n = 10 for all other time points. Results are presented as
median with error bars indicating interquartile range.
A B

DC

FIGURE 3 | Assessment of humoral inflammatory activity during contact of whole blood with the tubing system by determining the plasma concentrations of Il6 (A),
Il8 (B), C3a (C), and MMP9 (D). Incubation with LPS 100 ng/ml reflected the presence of PAMPs. n = 3 for 10 min and 180 min, n = 10 for all other time points.
Results are presented as median with error bars indicating the interquartile range.
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16% (–12%; –17%, n = 10), with a glucose consumption rate of
0.80 mmol/L/h (0.60; 0.92, n = 10). The lactate (Figure 2E)
concentration almost doubled (+94%, 88%; 126%) within the
first hour, accounting for a generation rate of lactate of 1.4
mmol/L/h (1.1; 1.6, n = 10). The pH (Figure 2F) and acid-base
balance (Figure 2I) changed accordingly. Partial pressure of
oxygen (pO2, Figure 2G) increased slightly within the first
10 min, while partial pressure of carbon dioxide (pCO2, Figure
2H) remained stable. Both parameters indicated that the tubing
system was airtight when connected firmly.

Contact With the Tubing System Does Not
Trigger an Inflammatory Response
To assess inflammatory processes induced in the present model
system, key inflammatory markers were determined (Figure 3).
Of note, the plasma Il8, MMP9, and C3a concentrations
remained in a stable range during the monitored incubation
period of 3 h. In parallel, Il6 levels were mostly not detectable.
Despite the complement system has not been broadly evaluated,
it was unlikely that massive C5a generation occurred. It is
established, that neutrophils respond on exposure to C5a with
downregulation of CD88 ((31), Figure 5B). However, in the
present model system, neutrophil CD88 expression was not
Frontiers in Immunology | www.frontiersin.org 6
significantly altered within the first hour of incubation,
indicating excessive complement activity to be unlikely.

Preservation of the Immune and Metabolic
Response in the Ex Vivo Situation During
the First Hour
Monitoring of the activation of monocytes and neutrophils was
performed by simultaneously analyzing the expression patterns of
CD11b, CD88, CD621, and CD14 as well-establishedmarkers of the
innate immune response after LPS exposure and/or during sepsis.
Figures 4, 5 summarize the findings for the incubation period of
1 h, showing no significant alterations after contact within the whole
blood model. Additionally, the cellular response pattern of
monocytes and neutrophils to in vitro stimulation with C5a either
directly after venipuncture or during a defined period in the whole
blood model was multi-parametrically evaluated. For all activation
markers, there was no relevant change in the cellular response of
monocytes or neutrophils before or after incubation in the whole
blood model after subsequent in vitro stimulation with C5a.

In addition to the reported extracellular parameters,
neutrophils were analyzed regarding the cellular physiology
and functionality. As presented in Figures 6A, B, the
intracellular pH and the cellular size of neutrophils were not
A B

DC

FIGURE 4 | Profiling of activation markers CD11b (A), CD88 (B), CD62l (C), CD14 (D) of monocytes directly after venipuncture (0) and after 60 min of incubation in
the whole blood model with or without LPS (100 ng/ml). Following phlebotomy or after the given stimulation period ex vivo, monocytes were stimulated with C5a
(100 ng/ml) in vitro for 15 min. n = 9, results are presented as scatter plot and median with error bars indicating interquartile range. * = p <0.05, ** = p <0.01.
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changed after contact with the whole blood model, apart from a
slight intracellular acidification being in accordance with the
changes noted in the extracellular pH. Moreover, vital key
functions of neutrophil granulocytes remained intact: ROS
generation (Figure 6C) and phagocytotic activity (Figure 6D)
remained largely stable when comparing neutrophils before and
after exposure to the whole blood model, besides a small shift in
intracellular pH and FSC.

Stimulation With LPS Causes Sepsis-Like
Changes of the Immunologic Phenotype
Ex Vivo
LPS (100 ng/ml) was used as a well-described and potent
activator of innate immunity, demonstrating that the whole
blood model is fully capable of generating a proinflammatory
immunologic phenotype. Incubation of the whole blood system
with LPS for 1 h activated the cellular metabolism. Glucose
utilization was significantly enhanced by 24% (15%; 49%; Ctrl:
−13 mM/h; −16; −11; vs. LPS −17 mM/h; −20; −15; p < 0.01, n =
10). Similarly, lactate generation was significantly increased by
27% (22%; 33%; Ctrl: +1.3 mM/h; 1.1; 1.6; vs. LPS: +1.7 mM/h;
1.5; 1.9; p < 0.01, n = 10). Otherwise, global parameters of
Frontiers in Immunology | www.frontiersin.org 7
differential blood count and blood gas analysis remained widely
unchanged. As a subsequent step, we compared the C3a, Il6, Il8,
and MMP9 levels after stimulation of the whole blood ex vivo
with LPS. LPS induced a tremendous increase in Il6 and MMP9,
while Il8 and C3a were slightly increased (Figure 3).
Interestingly, LPS-induced generation of MMP9 attained a
maximum level within the first hour with a concentration that
was 10–20-fold increased after 1 and 3 h of stimulation in
comparison with the control specimens (data not shown). By
contrast, LPS-induced generation of Il6 continued to increase
beyond 1 h, resulting in a greatly higher level after 3 h (1 h: 45 pg/
ml; 31; 75, vs. 3 h: 2523 pg/ml; 2271;2889, data not shown, n = 10
and n = 3, respectively).

On the cellular site, monocytes and neutrophils responded to
LPS exposure with an increase in the expression rates of CD11 and
CD14, while CD62l was markedly decreased. The expression of
CD88 was increased in monocytes and decreased in neutrophils
after exposure to LPS (Figures 4, 5). Furthermore, the cellular
response pattern to additional stimulation in vitro with C5a was
significantly impaired. In addition to extracellular activation
markers, LPS incubation in the whole blood model altered
intracellular parameters of neutrophils, increasing both
A B

DC

FIGURE 5 | Profiling of the activation markers CD11b (A), CD88 (B), CD62l (C), CD14 (D) of neutrophil granulocytes directly after venipuncture (0) and after 60 min
of incubation in the whole blood model with or without LPS (100 ng/ml). Following phlebotomy or after the given stimulation period ex vivo, neutrophils were
stimulated with C5a (100 ng/ml) in vitro for 15 min. n = 9, results are presented as scatter plot and median with error bars indicating the interquartile range. * = p
<0.05, ** = p <0.01.
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intracellular pH and size (Figures 6A, B). Moreover, the activity of
neutrophils regarding ROS production and phagocytosis was
significantly enhanced (Figures 6C, D).
DISCUSSION

Blood Physiology and Inflammation
in Context
In extracorporeal circulation, the blood system is subjected to
various alterations because the interaction with other organ
systems is interrupted while in parallel the continuous contact
and interaction with the intact endothelium is lost. Furthermore,
the ex vivo blood is exposed to artificial surfaces, resulting in
activation of thromboinflammation (32). In the current model,
the coagulation cascade was inhibited on the material surface and in
the blood by a steady level of heparin, however, without
administering an extensive amount. Of note, the platelet count
and PNC formation remained stable (while still inducible by LPS),
indicating no relevant activation of cellular coagulation.
Nonetheless, one must consider, that heparins of both high and
low molecular weight have been shown to directly interact with
immune cells, for example, by increasing myeloperoxidase activity
Frontiers in Immunology | www.frontiersin.org 8
(25), although, a much lower concentration of heparin (0.5 IU/ml)
was used in the presentmodel. It is also noteworthy, that none of the
activation markers assessed in this model were significantly elevated
after 1 h (Figure 7). Regarding metabolic changes of blood
physiology, alterations in blood pH, glucose levels, and lactate
were noted in the current model. While acidification and lactate
levels were tolerable within the first hour, they cannot be considered
physiological after 3 h. In a similar manner, blood became
hypoglycemic. Cellular innate immunity (particularly neutrophils)
mainly relies on anaerobic glycolysis for its metabolism (33, 34).
Furthermore, cellular effector functions, including phagocytosis,
require anaerobic glycolysis (35). Also, hypoglycemia has been
shown to aggravate the response to inflammatory stimuli,
including LPS (36). In parallel, (lactate) acidosis modulates many
activities of the immune system, for example, reducing the
phagocytotic capability of neutrophils while increasing their
production of MMP9 (37).

Increased Il6 and MMP9 levels are well described in
inflammation and during sepsis (38, 39). The Il6 levels after
1 h of stimulation with LPS had almost attained the threshold
level of septic patients (39, 40). In this regard, it is, however,
likely that Il6 during sepsis in realiter can be present longer and
attain higher concentrations, because normally more than 1 h
elapses until the patient appears in the clinic with the diagnosis of
sepsis. By contrast, the MMP9 levels in the model system were far
above the concentrations described in sepsis (38) as early as 1 h
after incubation. It is tempting to speculate that the potent
interactions of MMP9 with the glycocalyx of the endothelium,
particularly during systemic inflammations that result in
degradation of the glycocalyx, which was of course absent in
the current ex vivo simulation, may induce higher MMP9 levels
ex vivo in comparison with the in vivo situation.

Overall, changes in cellular innate immunity closely
resembled the described phenotype alterations in modeled
systemic inflammation. For example, in two independent in
vivo models of LPS administration in either rats or mice,
neutrophil CD62l and CD11b expression appeared similar to
the patterns found after LPS exposure in the ex vivo whole blood
model (30, 41, 42). Reduced CD62l expression was also observed
in neutrophils from patients with sepsis and endotoxin-
challenged human volunteers (8, 43). Varying CD11b
expression profiles of neutrophils have been reported in
clinical sepsis (43, 44). These potential differences in CD11b
expression (and the differences noted above regarding MMP9
and Il6) may either reflect some limitations of sepsis simulation
by isolated LPS stimulation and/or the restricted observation
period in the present model. However, the present results
regarding the LPS-induced changes of neutrophil expression of
CD11b, CD62l, and CD88 are perfectly in line with other whole
blood models (45). Additionally, the reduced CD88 expression
on leukocytes after simulation of inflammation in the whole
blood model is corroborated by data from severely injured, sick,
and septic patients (46–49).

In addition, LPS stimulation in the present model resulted in
a similar shift of intracellular parameters in comparison with in
vivo findings in recent literature. For example, an alkalization of
A B

DC

FIGURE 6 | Characterization of intracellular pH (A), size (B), generation of
reactive oxygen species (C), and phagocytotic activity (D) of neutrophils after
venipuncture (0−, n = 5 – 7) and after incubation in the whole blood model for
1 h with LPS 100 ng/ml or without further stimulation (Ctrl, both n = 7),
results are presented as scatter plot and median with error bars indicating the
interquartile range. * = p <0.05, ** = p <0.01.
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neutrophils has been reported in septic shock patients (28).
Likewise, a rise in size of granulocytes has been described in a
murine model of cecum ligation and puncture-induced sepsis
(27) and patients after trauma-induced inflammation (50).

Whole Blood Models in Context
Addressing the complex pathophysiology of systemic
inflammation and blood stream infections requires models that
can sufficiently portray the various cross-talk mechanisms
between the blood cells, the endothelium, the humoral agents
of immunity and hemostasis as well as blood physiology in terms
of thermoregulation, acid-base-homeostasis, and blood-gas
characteristics. Therefore, a plethora of different approaches
and protocols were developed to allow the ex vivo investigation
of the complex and highly sensitive organ “blood”. In this
Frontiers in Immunology | www.frontiersin.org 9
context, the term “whole blood” mostly represents an approach
whereby blood, which has been somehow anticoagulated, retains
the functionality of most if not, in principle, all its cellular and
humoral components. Some protocols apply anticoagulated
blood for studies which require an intact immune system,
including simulating blood-stream infections (16), analyzing
vaccine safety (17), and investigating leukocyte trafficking (51).
These models usually add heparin or a hirudin-derived
anticoagulant to mainly preserve the complement system as an
important calcium-dependent humoral component of innate
immunity. By contrast, citrate or Ethylenediaminetetraacetic
acid addition interferes with the complement system (32).

Blood models designed to investigate the coagulation cascade,
particularly cellular hemostasis, normally use citrated blood
including a protocol to resubstitute calcium in a stoichiometric
FIGURE 7 | Graphical abstract of the ex vivo whole blood model and the LPS-induced simulation of sepsis. Black symbols represent changes after 1 h of contact
with the tubing system, orange indicates a concomitant stimulation with LPS (100 ng/ml). pO2 and pCO2, partial pressure of oxygen and carbon dioxide,
respectively; Hb, hemoglobin; Hct, hematocrit; PNC, platelet-neutrophil-complexes; pHi, intracellular pH; C3a and C5a, complement factor 3a and 5a, respectively;
MAC, membrane attack complex (sC5b-9); aPTT & INR, activated partial thromboplastin time and international normalized ratio, respectively; Il, Interleukin; MMP9,
matrix metallopeptidase 9; ROS, reactive oxygen species; Phago, phagocytosis; CRC, cellular response capacity (to subsequent additional stimulation with C5a.
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manner; however, attempts have been undertaken with hirudin-
based models (52). Other groups established a closed in-vivo-like
setup by combining defined cell layers or cell culture-based
organoids with whole blood (53, 54).
Ex Vivo Incubation of Human Whole
Blood—Advantages and Limitations
The presented animal-free ex vivo whole blood model has
various advantages: First, it is effortlessly transferable, widely
accessible, and convenient to set up, because all the components
are commercially available and can be delivered under sterile
conditions. Moreover, the materials do not require any special
treatment, for example, coating by the user, thus improving
standardization and reducing the risk of any contamination.
Second, particularly within the first hour, whole blood incubated
in the circuit system remains stable regarding both blood
physiology and cellular innate immunity. Third, the model
allows incubation of several milliliters of blood, enabling the
collection of a sufficient amount of specimen for endpoint analysis.
The application of an ex vivo stimulation in general allows
inclusion of older, frailer individuals, because they are generally
underrepresented in inflammatory studies, especially in in vivo
LPS challenges (9). Fourth, mimicking the inflammatory stimulus
of sepsis with LPS resulted in an immunologic phenotype in
accordance with preexisting literature. Last and most importantly,
such a reliable model may help support disseminating the
3R-principles of animal research (7) by offering a valid reduction
and/or replacement strategy for the investigation of blood-borne
and blood-transferred inflammatory and infectious responses.

There are also some limitations of the model. One restriction is
the requirement of anticoagulation to reduce the activation of the
blood while drawing and transferring it as well as presumably
because of the shedding of at least some of the heparin coating
into the system. Other whole blood models use different
anticoagulants other than heparin, for example, hirudin, which
inhibits the coagulation cascade further downstream than
heparin. However, because of to the costs of hirudin-based
drugs (e.g. lepirudin), and to adhere to the same substance as
used for the coating of the tubing, we decided to apply a minimal
dose of heparin systemically in the present model. Furthermore,
the circulation of the continuously rotating air bubble only
partially imitates the circulation forces in the human body
without imitating the heterogeneous changes in pO2, CO2, or
flow kinetics in the arterial and venous phases of circulation.
Therefore, the changes in pO2 and the stability of CO2 are because
of gas exchange with the remaining air bubble in the system,
maintaining stable blood gas levels and being comparable to the
venous environment. Another limitation is that the simulation of
systemic inflammation occurs outside the human body, thereby
excluding the blood-organ crosstalk, particularly the interactions
with the endothelium, bone marrow, liver, and spleen. However,
the current ex vivo setting allows the examination of
inflammatory processes uniquely occurring in the blood itself.
Finally, the timeframe for analyzing “physiologic” blood ex vivo is
limited, because, for example, blood glucose is depleted and
Frontiers in Immunology | www.frontiersin.org 10
metabolic byproducts like lactate are not cleared. However,
LPS-induced changes in the phenotype of neutrophils is a
rather fast process, that starts within minutes and reached its
ceiling as measured by CD62l and CD11b expression on
neutrophils within 1 h (30). Future development might
overcome these issues, for example, by supplementing glucose
during the experimental course, by connecting the system to a
pulsatile pump allowing the circulation of the blood through
various organoids such as liver or kidney cells. In addition,
although the model in its current setup is easy to perform, a
desirable automatization process of the blood handling would be
rather complex to achieve.

Overall, based on the data obtained from the synchronous
monitoring of a comprehensive arsenal of physiological,
metabolic, and immunologic blood parameters in an animal-
free environment, we propose an ex vivo whole blood model of
sepsis as a valuable addition to in vivo and clinical studies.
Further studies need to validate the advantages of this model
system in other inflammatory conditions and with blood from
patients, for example, to test immunomodulatory treatments in
blood from patients with systemic inflammation, cancer, or other
diseases without putting patients at risk. Also, this model can be
used as a screening tool, which may help to further reduce and/or
replace animal experiments.
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