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Immunological adaptations in pregnancy allow maternal tolerance of the semi-allogeneic

fetus but also increase maternal susceptibility to infection. At implantation, the

endometrial stroma, glands, arteries and immune cells undergo anatomical and

functional transformation to create the decidua, the specialized secretory endometrium

of pregnancy. The maternal decidua and the invading fetal trophoblast constitute a

dynamic junction that facilitates a complex immunological dialogue between the two. The

decidual and peripheral immune systems together assume a pivotal role in regulating the

critical balance between tolerance and defense against infection. Throughout pregnancy,

this equilibrium is repeatedly subjected to microbial challenge. Acute viral infection in

pregnancy is associated with a wide spectrum of adverse consequences for both

mother and fetus. Vertical transmission from mother to fetus can cause developmental

anomalies, growth restriction, preterm birth and stillbirth, while the mother is predisposed

to heightened morbidity and maternal death. A rapid, effective response to invasive

pathogens is therefore essential in order to avoid overwhelming maternal infection and

consequent fetal compromise. This sentinel response is mediated by the innate immune

system: a heritable, highly evolutionarily conserved system comprising physical barriers,

antimicrobial peptides (AMP) and a variety of immune cells—principally neutrophils,

macrophages, dendritic cells, and natural killer cells—which express pattern-receptors

that detect invariant molecular signatures unique to pathogenic micro-organisms.

Recognition of these signatures during acute infection triggers signaling cascades that

enhance antimicrobial properties such as phagocytosis, secretion of pro-inflammatory

cytokines and activation of the complement system. As well as coordinating the initial

immune response, macrophages and dendritic cells present microbial antigens to

lymphocytes, initiating and influencing the development of specific, long-lasting adaptive

immunity. Despite extensive progress in unraveling the immunological adaptations

of pregnancy, pregnant women remain particularly susceptible to certain acute viral

infections and continue to experience mortality rates equivalent to those observed in

pandemics several decades ago. Here, we focus specifically on the pregnancy-induced

vulnerabilities in innate immunity that contribute to the disproportionately high maternal
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mortality observed in the following acute viral infections: Lassa fever, Ebola virus disease

(EVD), dengue fever, hepatitis E, influenza, and novel coronavirus infections.

Keywords: pregnancy, innate antiviral immunity, Lassa virus, Ebola virus, dengue virus, hepatitis E, influenza virus,

emerging coronavirus

INTRODUCTION

Pregnancy creates a unique immunological paradox: the
maternal immune system must undergo complex adaptations
to permit tolerance of the semi-allogeneic fetus while
simultaneously maintaining robust defenses against invasive
pathogens. Initial theories of maternal-fetal tolerance proposed
that a temporary state of maternal immunosuppression was
vital to allow successful implantation and development of a
pregnancy (1–3). With the advent of technologies including
microscopy, advanced cytometry and single-cell sequencing,
these models have been superseded by new data that suggest a
tightly regulated balance between inflammatory and tolerogenic
states during the “immune chronology” of normal pregnancy
(4–8). Longitudinal studies of peripheral, decidual, and amniotic
fluid cytokine profiles and immune cell subsets demonstrate that
a pro-inflammatory environment predominates during early
trophoblast invasion and at parturition, while the second and
third trimesters require an anti-inflammatory bias to facilitate
fetal growth (5, 8–11). The balance between innate and adaptive
immunity shifts in favor of innate mechanisms, particularly
in the first trimester; as pregnancy progresses, silencing of
chemokine genes inhibits accumulation of effector T cells in
the decidua, peripheral B cells are depleted and pregnancy-
specific hormones skew B cell polarization toward a tolerogenic
IL-10-producing phenotype (12–14).

These changes are orchestrated by the sentinel innate immune
cells of the maternal decidua—neutrophils, macrophages,
dendritic cells, and natural killer cells—and their molecular
interactions with invading fetal trophoblast at the maternal-
fetal interface. Activation of decidual innate immunity is
crucial in the establishment of a pregnancy-specific immune
environment: it recruits additional populations of leukocytes
to the decidua, educates adaptive cells to refine appropriate
effector and memory responses, and modulates the phenotype
and functions of peripheral immune cells (15–18). Dysregulation
of this complex bi-directional relationship has been implicated
in several obstetric and perinatal complications, including
recurrent miscarriage, pre-eclampsia, fetal growth restriction,
chorioamnionitis, and preterm birth (19–26).

The corollary of this capacity for immunological tolerance
is an increased susceptibility to infection (27–29). The innate
cells that mediate maternal-fetal crosstalk and induction of
tolerance also constitute the frontier of defense against infection
through a wide repertoire of effector mechanisms (30–32).
Chief amongst these are the expression of pattern-recognition
receptors that detect pathogen-specific molecular signatures and
soluble mediators such as the complement system. The World
Health Organization estimates that sepsis accounts for 10.7%
of maternal deaths globally (33) and there is evidence of a

particular vulnerability to acute viral infection. For example,
pregnant women suffered disproportionately high mortality rates
in the influenza pandemics of 1918, 1957, and 2009 (34–36),
and hepatitis E, typically a mild and self-limiting illness, has a
26% case-fatality rate in pregnant women (28). These disparities
are likely to arise from a combination of immunological,
hormonal, and physiological adaptations that are specific to
pregnancy (37–39).

Viral infection in pregnancy carries four distinct risks:

1. Adverse pregnancy outcomes: acute viral infection is
consistently associated with a broad spectrum of obstetric
complications [reviewed in (40–42)]

2. Acute severe maternal disease with consequent morbidity
and/or mortality

3. Vertical transmission to the fetus (during pregnancy),
resulting in congenital infection that can cause intrauterine
death or permanent disability

4. Perinatal transmission to the fetus (during delivery), which
can cause severe neonatal disease.

Although congenital infection is a major public health concern,
this article will not cover viruses that cause fetal damage through
vertical or horizontal transmission as these have been recently
and comprehensively reviewed (42, 43). Instead, we focus on
the following six viruses listed in Table 1 that cause acute severe
maternal disease, reviewing the innate immune mechanisms
and viral evasion strategies that contribute to their effects
in pregnancy.

DECIDUAL INNATE IMMUNITY IN
PREGNANCY: AT THE FRONTIER OF
MATERNAL-FETAL TOLERANCE AND
INFECTION

Pregnancy is a unique immunological state. Alterations in
systemic maternal immunity and cellular dialogue at the
maternal-fetal interface combine to maintain tolerance of
the fetal allograft while simultaneously preserving the ability
to respond to infection. Shortly after conception, rising
progesterone levels trigger decidualization, the transformation
of the endometrium into a specialized tissue that promotes
implantation of the blastocyst (62). Intensive study of the
cellular composition of the decidua over recent years has
identified diverse immune cell populations, including natural
killer (NK) cells, macrophages, dendritic cells (DC) and T cells
(63–65) (Figure 1). Interactions between these decidual immune
cells and the invading fetal extravillous trophoblast exert a
critical influence on subsequent placentation, fetal growth and
pregnancy outcome (23, 25, 67–69).
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TABLE 1 | RNA viruses that cause severe disease in pregnancy.

Virus Family Genome Global burden of disease Overall case-fatality rate (CFR) Case-fatality rate (CFR)

in pregnancy

Lassa virus Arenaviridae ssRNA >500,000 cases annually, endemic in

West Africa (44)

1% (44) 33.7% (29)

Ebola virus Filoviridae ssRNA >28,000 cases during the

2013–2016 epidemic in West Africa

(44)

45–90% (44) 84.3% (45)

Dengue virus Flaviviridae ssRNA 390 million cases annually (46) 1.1% (47) 3% (48)

Hepatitis E virus Hepeviridae ssRNA 20 million cases annually (49) 0.2–4% (42) 26% (28)

Pandemic influenza Orthomyxoviridae ssRNA 1918: >500 million cases

1957: 2 million cases

2009: 1.6 million cases

1918: 2.5% (50)

1957: 0.1%

2009: 2.5% (27)

1918: 27–50% (34, 51)

1957: 30–50%*

2009: 1.7–11%

(27, 36, 52–54)

Novel coronavirus

infections:

- SARS-CoV

- MERS-CoV

- SARS-CoV-2

Coronaviridae ssRNA SARS: 8,437 cases 2002–03

MERS: 2,494 cases 2012–13

COVID-19: >21 million

cases 2019–20

SARS: 11% (55)

MERS: 34% (55)

COVID-19: 1.3–4.2% (56)

SARS: 30–40% (57, 58)

MERS: 54% (59)

COVID-19: 1.2% (60)

SARS-CoV, severe acute respiratory syndrome coronavirus; MERS-CoV, Middle East respiratory syndrome coronavirus; COVID-19, syndrome resulting from acute infection with novel
coronavirus SARS-CoV-2; ssRNA, single-stranded ribonucleic acid.
*Maternal mortality in the 1957 “Asian” influenza pandemic is not well described, but half the women of reproductive age (15–44 years) who died were pregnant and the disease became
the leading cause of maternal death in Minnesota (35, 61).

The unique non-classical human leukocyte antigen (HLA)
class I molecule HLA-G is exclusively expressed on extravillous
trophoblast (EVT) (70, 71). Invading EVT comes into direct
contact withmaternal cells when it infiltrates through the decidua
into the myometrium, remodeling maternal spiral arteries into
dilated low-resistance channels that maximize blood flow to the
developing feto-placental unit (42).

The EVT is capable of both immune evasion and induction
of tolerance due to its unique HLA expression profile,
consisting of only the class I molecules HLA-C, HLA-E, and
HLA-G. Trophoblast HLA-G undergoes high-affinity binding
with leukocyte immunoglobulin-like receptor B1 (LILRB1),
an inhibitory receptor widely expressed on decidual antigen-
presenting cells. This interaction modulates decidual DC
signaling, suppresses production of pro-inflammatory cytokines
and inhibits proliferation of maternal T cells. HLA-G therefore
provides a critical tolerogenic signal at the maternal-fetal
interface (72–74).

The role of decidual innate immune cells in defense against
infection is an emerging and rapidly evolving field. Current
knowledge is summarized in a recent review by Yockey et al.
(75) and relevant aspects of the decidual innate immune response
to viral infection will be discussed in detail below. Despite
significant advances, our understanding of the recalibration
of the innate-adaptive equilibrium in pregnancy remains
incomplete. This is due to the practical and ethical difficulties of
obtaining decidual tissue samples and the uncertain correlation
between peripheral and decidual immune cell activity (6, 25, 76).
Renewed focus on the role of the maternal innate immune
system in the apparent conflict between fetal tolerance and robust
defense against intracellular pathogens will provide further
insights into how these two priorities interact in pregnancy. For
the purposes of this review, the term “tolerance” refers to the

pregnancy-specific state of tolerance of the semi-allogeneic fetus,
rather than to the specific T cell phenomenon.

SYSTEMIC INNATE IMMUNITY IN
PREGNANCY

Systemically, there is a global upregulation of innate immune
cells and effector mechanisms in normal pregnancy (6, 77).
Complement activity increases compared to the non-pregnant
state (78, 79) and there is a substantial rise in circulating
phagocytes and type I interferon (IFN)-producing plasmacytoid
DC with advancing gestational age (9, 80). Longitudinal
studies of serial blood samples from pregnant women show
specific enhancement of innate pathways that mediate antiviral
immunity: for example, IFN-α-induced STAT1 signaling, a
critical response to viral challenge, increases throughout
gestation in NK cells, monocytes and myeloid DC (6, 81).
This state must be finely calibrated: excessive activation can be
associated with tissue damage during response to acute viral
infection (9, 77, 82, 83) and adverse obstetric outcomes [such
as complement overactivity in antiphospholipid syndrome (84,
85)], while an attenuated immune response could predispose to
overwhelming infection.Whethermaternal susceptibility to RNA
viral infections is due to over- or under-activity of the innate
immune system is not yet clear; it is likely that some effector
mechanisms are upregulated while others are suppressed. Data
specific to individual viruses will be discussed below.

Of all the viruses discussed in this review, influenza has
received the most scientific attention with regards to its
propensity for pregnancy, but precise mechanisms underlying
this vulnerability remain uncertain. While some animal models
(86, 87) and a few ex vivo human studies (82, 83) have
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FIGURE 1 | Architecture and immunological repertoire of the maternal-fetal interface. Immune cells shown reflect approximate abundances of different populations in

the first and second trimesters of pregnancy. Natural killer cells predominate in early pregnancy, but disappear from mid-gestation onwards (62, 66).

determined specific innate immune correlates of the increased
severity of influenza in pregnancy, much less is known about
the other viruses included in this article. This review will
synthesize available knowledge on the nature, magnitude, and
timing of innate immune responses to viral infection in
pregnancy and how these interact with decidual, hormonal and
physiological influences.

MOLECULAR MECHANISMS OF INNATE
IMMUNITY TO VIRUSES

Human antiviral immunity is a two-step process. Non-specific
innate mechanisms are activated immediately, predominate
during the first 5–7 days of infection, and are then superseded
by T and B cell-mediated antigen-specific adaptive responses.
Rapid-onset innate responses may be sufficient to eliminate the
virus, but if not, they limit replication during the critical temporal
gap between onset of viral challenge and development of adaptive
virus-specific cytotoxic lymphocytes, reducing the likelihood of
disseminated disease (88).

The innate antiviral response is activated when pattern-
recognition receptors (PRRs) detect pathogen-associated
molecular patterns (PAMPs), particularly viral nucleic acids.
Toll-like receptors (TLRs) and RIG-I-like receptors (RLRs),
which are expressed on innate cell membranes and throughout
the intracellular compartment, are the primary viral sentinels
(89). This PRR-PAMP interaction triggers activation of latent

transcription factors that upregulate a vast repertoire of antiviral
effector proteins: type I interferons, other pro-inflammatory
cytokines such as TNF and IL-1β, chemokines and the
antimicrobial peptides (e.g., defensins, cathelicidins, surfactant
proteins) (88, 90, 91).

The Interferon Response
Interferons, which are classified according to their cell surface
receptors, are grouped into three types. Type I (including IFN-
α and IFN-β) and type II (IFN-γ) are produced by virtually
all cells, while the more recently discovered type III (IFN-λ) is
produced by epithelial and dendritic cells (92). The production of
type I IFNs is the hallmark of effective antiviral immunity. Once
secreted by virally infected cells, they act in a paracrine manner
to induce IFN-stimulated gene (ISG) expression in neighboring
cells, creating an antiviral state in the surrounding environment
(shown in Figure 2). IFN binding to the type I IFN receptor,
IFNAR, leads to receptor endocytosis and activation of the
receptor-associated tyrosine kinases Janus kinase I (JAK-1) and
tyrosine kinase 2 (TYK2). These in turn activate transcription
factors STAT1 and STAT2, which associate with interferon
regulatory factor 9 (IRF9). IRF9 is translocated to the nucleus and
triggers IFN-stimulated response elements (IRSEs) to upregulate
expression of ISG, the definitive effectors of the antiviral response
(91–93). Type III IFN can also induce ISG but their effects
appear to be limited to sites of epithelial damage at anatomical
barriers, exerting a localized antiviral response that is superseded
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FIGURE 2 | Type I interferon signaling via the IFNAR receptor induces phosphorylation and activation of the JAK-1 and TYK2 tyrosine kinases, which interact with

IRF9 to upregulate interferon-stimulated genes and induce an antiviral state in the surrounding cellular microenvironment. IFN, interferon; IFNAR, interferon α/β

receptor; IRF9, interferon regulatory factor 9; ISG, interferon-stimulated genes; ISRE, interferon-stimulated response elements; JAK-1, Janus-associated kinase I;

STAT1/2, signal transducer and activator of transcription 1/2; TYK2, tyrosine kinase 2. P denotes phosphorylation.

by potent systemic type I IFNs if the infection is not successfully
contained (94).

Cellular Interactions With RNA Viruses
RNA viruses, the focus of this review, are detected by a variety
of PRRs. Plasmacytoid dendritic cells (pDC) detect viruses via
endosomal TLR7-9 and are responsible for the first wave of type
I IFN production, releasing large quantities through the MyD88-
IRF7 pathway [reviewed in (95)]. In contrast, macrophages and
conventional dendritic cells (cDC) sense viral challenge through
RLRs, specifically the cytoplasmic helicases RIG-I and MDA-
5. These receptors signal via mitochondrial antiviral-signaling
protein (MAVS) and IRF3/7, culminating in a second wave of
type I IFN production (91, 95) (Figure 3). The emerging role of
NK cells in antiviral immunity and pregnancy, recently reviewed
in this journal (66), has provoked controversy and is discussed in
more detail below.

Viral Interactions With Programmed Cell
Death Pathways
Since viruses depend on host cells for replication, programmed
cell death pathways—including apoptosis, necroptosis, and
pyroptosis—are a crucial component of antiviral defense. In
apoptosis, infected cells undergo an orderly caspase-mediated
degradation and are rapidly cleared by surrounding phagocytes
(96). This highly regulated disassembly minimizes the release
of damage-associated molecular patterns (DAMPs) that could
trigger harmful auto-inflammatory responses, but also fails to
induce robust antiviral immunity (97).

Necroptosis and pyroptosis differ from apoptosis in that
they are powerfully immunogenic. They induce lytic cell death,
triggering release of DAMPs and pro-inflammatory cytokines,
as detailed in a recent review (98). Although these mechanisms

have been implicated in a wide range of autoimmune disorders
[reviewed in (99)], they are also a key component of
antiviral immunity.

Necroptosis is a caspase-independent process that can be
triggered through several different mechanisms, including TNF
signaling and TLR detection of viral molecular signatures.
These pathways converge on receptor-interacting protein kinase-
3 (RIPK3), which phosphorylates and activates the pseudokinase
mixed lineage kinase domain-like protein (MLKL). Activated
MLKL undergoes conformational changes that expose its pore-
forming 4-helical bundle domain, leading to rapid cell lysis
(97, 100).

Pyroptosis, a swift and powerfully pro-inflammatory form of
programmed cell death, results from activation of the cytosolic
NLRP3 inflammasome in virally infected cells. Its caspase-1
effector domain cleaves and activates gasdermin-D, triggering
lethal pore formation in the host cell membrane and efflux of
pro-inflammatory cytokines (101, 102).

Complement Antiviral Responses
The complement system is another crucial component of
antiviral defense. It bridges the innate-adaptive divide through
its diverse roles: opsonization and lytic destruction of pathogens,
clearance of apoptotic cells and immune complexes, phagocyte
chemotaxis and mast cell activation. A highly conserved
cascade of over 50 circulating and membrane-bound protein
components, it can be activated through three separate pathways:
classical, alternative, and lectin. All converge on the formation
of C3 convertases, which cleave C3 into active fragments C3a
and C3b. Deposition of C3b on cell or pathogen surfaces
triggers formation of the C5 convertase, which splits C5 into
C5a and C5b, catalyzing the formation of the membrane attack
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FIGURE 3 | The molecular mechanisms of the TLR- and RLR-mediated innate response to RNA virus infection. CpG DNA, cytosine-guanine oligodeoxynucleotides;

dsDNA, double-stranded deoxyribonucleic acid; IFN-α, interferon-α; IFN-β, interferon-β; IkB, inhibitor of NFkB; IRF3, interferon regulatory factor 3; IRF7, interferon

regulatory factor 7; MAVS, mitochondrial antiviral-signaling protein; MDA5, melanoma differentiation-associated protein 5; MyD88, myeloid differentiation primary

response 88; NFkB, nuclear factor kappa-light-chain-enhancer of activated B cells; RIG-I, retinoic acid-inducible gene I; RLR, RIG-I-like receptor; ssRNA,

single-stranded ribonucleic acid; TLR, Toll-like receptor; TRIF, TLR-domain-containing adapter-inducting interferon-β.

complex (MAC) that penetrates viral membranes to induce lytic
destruction (26, 103–105).

Regulation of the Antiviral Response
The pro-inflammatory antiviral response is tightly calibrated:
inadequate responses lead to overwhelming infection, while
excessive activity causes host tissue damage and is associated
with autoimmune disease. A variety of inbuilt negative feedback
post-translational modification systems orchestrate spatial and
temporal regulation of the antiviral response. For example,
ubiquitin-specific peptidase 18 (USP18, also known as ISG43)

displaces JAK1 from IFNAR to block type I IFN signaling and
also deconjugates ISG15 (one of the most potent inhibitors of
viral replication) from its target proteins (91, 106–108).

Such mechanisms are not always sufficient to prevent
dysregulation of type I IFN activation, which has been
implicated in several auto-inflammatory conditions including
systemic lupus erythematosus (91, 109), a disease which
shows excessive complement deposition. Similarly, excessive
complement activation contributes to acute lung injury in mouse
and human studies of influenza and novel coronaviruses, through
over-production of the anaphylatoxins C3a and C5a (110–112).
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The following sections examine the individual cellular
components and effector mechanisms of the innate antiviral
response that undergo significant adaptations in pregnancy.

PREGNANCY-INDUCED MODIFICATION
OF ANTIVIRAL IMMUNITY

Antimicrobial Peptides
Antimicrobial peptides (AMP) are small molecules that
create a microbicidal shield at mucosal surfaces with
high pathogen exposure, such as the small intestine, the
renal epithelium, and the chorionic membranes. They are
secreted by leukocytes and disrupt pathogen membrane
integrity, leading to lytic destruction. Three classes of AMP
that contribute to antiviral immunity exhibit differential
expression in pregnancy: defensins, cathelicidins, and
surfactant proteins.

Human defensins are categorized into three families
(α, β , and θ). Alpha-defensins are found in neutrophil
granules and Paneth cells while beta-defensins are
expressed in epithelial cells, including those of the female
reproductive tract, and are upregulated by cytokine
secretion in response to pathogen-mediated epithelial injury
(113, 114).

During pregnancy, the AMPs human-beta-defensin-1 (HBD-
1) and HBD-3 are elevated in the amniotic fluid of women
who develop preterm labor with coexistent infection (115, 116).
HBD1-3 are also expressed in the trophoblast and decidua,
suggesting a critical physiological role for defensins in innate
immune defenses at the maternal-fetal interface; they also
participate in innate-adaptive crosstalk through chemotaxis,
recruiting T cells and immature DC (117).

Like defensins, cathelicidins are small AMP secreted by innate
cells and mucosal barriers. The sole human cathelicidin, LL-37, is
vitamin D-inducible and promotes wound healing, angiogenesis
and clearance of cell debris; it can also regulate macrophage
and DC responses to pro-inflammatory stimuli (118). LL-
37 expression in first-trimester cervicovaginal secretions is
significantly higher in women with bacterial vaginosis and
incubation of endocervical epithelial cells with LL-37 in vitro
induces a pro-inflammatory milieu with enhanced secretion of
IL-8 (119). Circulating serum LL-37 is also elevated during
pregnancy: LL-37 levels rose consistently in serial samples from
Ugandan pregnant women, peaking in the third trimester (120).
These studies suggest a role for LL-37 in decidual and systemic
pregnancy-specific innate immune defenses.

AMP have been implicated in the innate response to influenza
A virus (IAV). LL-37 neutralizes IAV in mouse models by
directly damaging viral membranes, whereas surfactant protein-
D (SP-D) works by triggering viral aggregation and inhibiting
haemagglutinin activity (121–124). In human monocytes, LL-
37 and SP-D readily block replication of seasonal IAV, but both
had strikingly impaired inhibitory activity against the pandemic
H1N1 strain, whereas antiviral activity of a related AMP, H-
ficolin, was unchanged (125, 126). The significance of this strain-
specific discrepancy in AMP-mediated anti-influenza immunity
in pregnancy requires further clarification.

Toll-Like Receptors
The placenta expresses the full repertoire of human TLRs (TLR1-
10) (127). Of these, TLR3, TLR7, TLR8, and TLR9 contribute to
antiviral immunity: TLR3 binds to double-stranded viral RNA;
TLR7 and 8 detect single-stranded RNA viruses; and TLR9,
which recognizes unmethylated cytosine-guanine (CpG) motifs
in bacterial genomes, can also respond to herpesvirus infection.
Antiviral PRR signaling mostly converges on the canonical
MyD88 pathway, stimulating activation of NFκB and production
of pro-inflammatory cytokines (128, 129). The exceptions are
TLR3 and RIG-I, which signal through an alternative MyD88-
independent pathway that uses an adapter protein, TRIF, to
generate large amounts of IFN-β (130).

TLR expression at the maternal-fetal interface exhibits both
temporal and tissue-specific fluctuations in expression levels and
functionality (131–134). This suggests a potential contribution
to the observed differences in severity of fetal and maternal
viral infections in different trimesters (42, 44, 48, 66, 135). In
human trophoblast, TLR3 is highly abundant in the first trimester
and forms a defensive barrier along the cytotrophoblast with
TLR2 and TLR4 (136). TLR3 has dual roles at the placental
interface, inhibiting viral replication to protect the developing
fetus from vertical transmission but also promoting tolerance
through release of indoleamine 2,3-dioxygenase (IDO) (137–
139). In the decidua, Duriez and colleagues have demonstrated
differential expression of the four antiviral TLRs in decidual
macrophages and NK cells, with each cell type producing a
distinct cytokine signature in response to TLR7/8 ligation (140).
These TLR-mediated responses to viral challenge are at the
frontier of the critical balance between tolerance and immunity,
which ultimately dictates whether or not a pregnancy will be
successful (141).

Complement
In pregnancy, complement activity is increased systemically but
suppressed at the maternal-fetal interface (26, 142). While some
complement components contribute to normal placentation
[C1q, for example, promotes adequate EVT invasion and
remodeling of maternal spiral arteries (143, 144)], the majority
must be inhibited to ensure successful pregnancy. Synergistic
action of regulatory molecules at the placenta impairs formation
of the classical and alternative C3 convertases, preventing
downstream activation of the C5 convertase and the MAC (104).
Failure to suppress these pathways is associated with a wide range
of adverse obstetric outcomes, including recurrent miscarriage,
fetal growth restriction, preterm birth and pre-eclampsia (26,
104, 145).

The complement system mediates neutralizing antiviral
immunity through multiple effector mechanisms, including:

1. MAC-induced pore formation in viral envelopes, leading to
lytic destruction;

2. MAC-independent virolysis through deposition of
complement components on non-enveloped viruses or
direct binding to MBL;

3. Opsonization of virions: this induces aggregation, decreasing
the total infectious burden for the host, and may be followed
by phagocytosis (103, 146, 147).
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FIGURE 4 | The complement system and its subversion by dengue and influenza A viruses. C1-INH, C1-inhibitor; C4-bp, C4-binding protein; CRP, C-reactive protein;

IgA/IgM, immunoglobulin A/M; M1, influenza virus matrix protein 1; MASP, MBL-associated serine protease; MBL, mannose-binding lectin; NS1, non-structural

protein 1.

However, the diversity of methods for complement-mediated
viral attack is mirrored and in some cases surpassed by viral
evasion mechanisms, which vary widely according to species
and virion structure. For example, Dengue virus non-structural
protein 1 is extruded from infected cells and recruits terminal
complement inhibitors C4b-binding protein and vitronectin
to the cell surface, inhibiting MAC assembly (148, 149); the
influenza virus matrix protein 1 inhibits C1q-mediated activation
of the classical pathway (150) (Figure 4). These mechanisms have
not been characterized in pregnancy and a complete discussion
of complement subversion by viruses is beyond the scope of this
article, but further detail is available in a recent review (103).

Cellular Innate Immunity
Various cellular mechanisms are exploited by viral infection, a
number of which are altered during pregnancy.

Innate Lymphoid Cells
Innate lymphoid cells (ILC), which account for up to 70% of
all leukocytes present in first-trimester decidua (62), originate
from the common lymphoid progenitor and bridge the innate-
adaptive divide. Like other innate cells, they mount rapid

responses to infection, lack antigen-specific receptors, and do
not exhibit conventional clonal expansion; like T cells, they can
modulate adaptive immune responses through production of
specific cytokines and regulation of B cell and DC activity. On
this basis, ILC have been described as “innate counterparts” of
T cells (151). Their abundance at the maternal-fetal interface
suggests pivotal roles in both innate immune defense and
normal placental development (152). Table 2 summarizes the
classification and functions of decidual ILC:

Given the recent discovery of ILC, data on their antiviral
properties are still accumulating. In the liver, rapid ILC1-
mediated IFN-γ production is essential for early suppression of
cytomegalovirus (CMV) viremia (156); in the lungs, production
of amphiregulin by ILC2 is critical for restoration of epithelial
integrity and lung function following influenza infection, while
excessive remodeling can predispose to allergy (157, 158).
In pregnancy, investigations have focused on NK cells, both
peripheral and decidual.

Peripheral Blood Natural Killer Cells
The majority (90%) of peripheral blood NK (pbNK) cells exhibit
a predominantly cytotoxic CD56dim CD16+ phenotype, while
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TABLE 2 | The roles of decidual innate lymphoid cell subsets in pregnancy (152–155).

Subset name Phenotype Greatest abundance Key effectors Roles in the decidua

ILC1 dNK cells CD56bright CD16−

KIR++/− CD9+

Tbet+ Eomes+

Early pregnancy Perforin

Granzyme B

Granulysin

Cytokines

Tolerance

Trophoblast invasion

Tissue remodeling

Antiviral immunity

Non-cytotoxic ILC1 CD56−CD127−

CD117−Tbet+

Eomes-

Early pregnancy IFN-γ Defense against intracellular bacteria and parasitic

infection

Allergy

ILC2 CD56−CD127+

CD161+Tbet−
Late pregnancy IL-4, IL-5, IL-13,

IL-22

Tolerance

Tissue repair

Homeostasis

ILC3 NCR+ CD127+CD117+NCR+ Early pregnancy IL-8, IL-22,

GM-CSF

Tissue remodeling

Neutrophil recruitment and activation

NCR− CD127+CD117+NCR− Early pregnancy IL-17A, TNFα Renewal of NCR+ population through ILC3 plasticity

LTi-like Defined by RORγt

expression

Early pregnancy IL-17A, TNFα Tissue remodeling

Recruitment of other immune cells

dNK cells, decidual natural killer cells; Eomes, eomesodermin; GM-CSF, granulocyte-macrophage colony-stimulating factor; IFN, interferon; IL-, interleukin-; ILC, innate lymphoid cells;
KIR, killer-cell immunoglobulin-like receptors; LTi, lymphoid tissue inducer, NCR, natural cytotoxic receptor; RORγt, RAR-related orphan gamma receptor; T-bet, T-box expressed in T
cells; TNF, tumor necrosis factor.

the remaining 10% constitute the main cytokine-producing
CD56bright CD16− subset (25). Although not antigen-specific,
NK cells can utilize the Fc-receptor CD16 to target cells for
destruction. Aside from CD16, NK cells integrate signals from
an array of germline-encoded activating and inhibitory receptors.
Inhibitory signals transmitted through interaction with the
ubiquitously expressed HLA class I and the non-classical HLA-E
dominate in the healthy human. This balance can be shifted in the
case of diseases such as cancer, in which HLA-I and HLA-E may
be downregulated, and instead ligands for activating receptors
can be induced on transformed cells (e.g., NKG2D ligands) (159).

NK cell receptors can distinguish between “self ” and “non-
self ” through detection of HLA class I and related molecules:
their absence can be sensed and triggers degranulation and
release of cytotoxic components. Through the same mechanism,
viruses, which downregulate HLA-I expression in the cells they
infect, become more susceptible to NK-mediated cytotoxicity
(76). In a recent study, Le Gars et al. used mass cytometry to
compare the responses of isolated pbNK cells from pregnant
and non-pregnant women to ex vivo challenge with IAV. In the
pregnant cohort, production of IFN-γ by both pbNK subsets was
significantly upregulated, as was their capacity to kill influenza-
infected monocytes (83). Although robust NK cell activity is
usually important for viral clearance, this pregnancy-specific NK
enhancement may actually be detrimental: IL-15-deplete mice,
who cannot mount NK-mediated responses to influenza, show
significantly improved survival compared to controls (160).

Decidual Natural Killer Cells
Decidual NK (dNK) cells are a unique population of CD56bright

CD16− KIR++/− cells that expand in the peri-implantation
window and remain highly abundant until the end of the second
trimester, after which their numbers gradually diminish (66).
Despite some phenotypic overlap with pbNK, dNK exhibit a
unique set of surface markers and are functionally distinct:

their cytotoxic capacity toward allogeneic “non-self ” cells,
namely the trophoblast with which they are in direct contact,
is completely abrogated (62). The lack of dNK cytotoxicity
was initially attributed to an attenuation of cytotoxic granule
components. However, this has proved wrong: paradoxically,
dNK in fact possess equivalent or higher levels of granzyme
B, perforin, and granulysin than pbNK (30, 62). The issue is
one of translocation: dNK fail to polarize cytotoxic granules
to the immunological synapse with target non-self-cells (161).
Similarly, it was presumed that these non-cytotoxic dNK would
lack the ability to kill virally infected cells. This was disproved
when Siewiera et al. demonstrated that dNK isolated from
first-trimester decidua rapidly developed into cytotoxic effectors
on exposure to CMV-infected autologous decidual fibroblasts,
efficiently mobilizing cytolytic apparatus to the immunological
synapse and infiltrating CMV+ trophoblastic tissue in culture
(31). Importantly, this cytotoxic effect was lost when experiments
were repeated with CMV-positive primary EVT, which dNKwere
unable to kill (162). Whether a similar pattern occurs with other
viruses currently remains unproven, and observations specific to
CMV should not be extrapolated to other infections.

These findings have led to renewed interest in NK-mediated
antiviral immunity and the capacity of viruses to subvert
molecular mechanisms of NK activity. In the case of CMV, viral
infection can exert unique selective pressures on the pbNK cell
compartment, influencing KIR acquisition and triggering clonal
expansion of CD57+ populations expressing specific repertoires
of the C-type lectin NKG2C (163, 164). However, it is important
to emphasize that currently these data refer only to CMV and
equivalent effects with other viruses have not been demonstrated.
Similarly, expansions of this kind have not been observed among
uterine NK cells and it remains uncertain whether the pbNK
cell pool (where such proliferation may exist) influences the
endometrial or decidual NK cell composition (164). Whether
this imprint on NK cells induces long-term immunological
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memory against repeated viral challenge has proved controversial
in humans, where peripheral and lymphoid tissue-resident NK
appear to develop memory, as demonstrated in studies of
CMV (165), hantavirus (166), and varicella-zoster virus (167).
However, an equivalent effect in the uterus remains to be clarified.
Overall, the precise role of dNK in antiviral immunity remains
controversial and largely unknown.

Neutrophils
Pregnancy induces a physiological neutrophilia both systemically
and at the decidua. In pregnant women, neutrophils account for
up to 95% of peripheral blood leukocytes, compared to 50–70%
outside pregnancy (80, 168). This reflects a state of enhanced
innate immune vigilance against infection: neutrophils, the most
abundant of all human phagocytes, are recruited to sites of
infection or injury by chemokines such as complement C5a
and form the first line of defense against microbial challenge.
Engulfed micro-organisms are internalized in phagolysosomes
and destroyed using a wide range of effector mechanisms
including release of serine proteases (e.g., neutrophil elastase,
cathepsin G) and production of reactive oxygen species (141,
169). Pathogens that evade phagocytosis can be controlled by
the release of neutrophil extracellular traps (NET), large reticular
structures containing cytotoxic granule proteins and AMP that
sequester and neutralize microbes (170). While the role of
NET in defense against bacterial and fungal infections is well-
established, their contribution to antiviral immunity has been
more difficult to ascertain (171, 172). NET formation may
actually be detrimental in viral infections (173), with recent data
showing that high levels of NET production exacerbate acute
lung injury in influenza (174, 175) and can worsen prognosis in
dengue virus infection (176).

The origins of this pregnancy-specific neutrophilia
are incompletely understood but are likely to include
progesterone-induced upregulation of granulocyte-macrophage
colony-stimulating factor (GM-CSF) (177, 178). Mass cytometry
analysis of circulating neutrophils in pregnancy by Aghaeepour
et al. revealed not only increased abundance but also a
hyper-activated state, with progressively enhanced sensitivity
to pro-inflammatory stimuli including IL-6 and TNFa (6).
However, the same group have also demonstrated a linear
increase in “immature-like neutrophil signatures” (denoted by
CD10 and CD15 expression) with advancing gestational age,
which they suggest could contribute to the increased mortality
observed in acute influenza and hepatitis E infections during late
pregnancy (179).

Chemokine synthesis in the decidua leads to an influx
of innate immune cells. Contact with invading trophoblast
during implantation stimulates production of neutrophil chemo-
attractants IL-8, CXCL1, and CXCL2 by decidual stromal cells, a
process potentiated by the addition of progesterone in vitro (180,
181). However, the existence of a decidual neutrophil population
remains controversial. Although one study from 2014 identified
neutrophils in second-trimester decidua (182), this has not
proved reproducible in subsequent single-cell reconstructions of
the maternal-fetal interface (183, 184).

Macrophages
Monocytes are myeloid leukocytes that are released from
the bone marrow, mature in the peripheral circulation
and infiltrate into tissues, where they can differentiate into
specialized populations of macrophages or myeloid DC. As
with neutrophils, the monocyte-macrophage lineage expands
both systemically and in the uterus during pregnancy (24, 185):
macrophages account for up to 25% of the decidual leukocyte
population and are outnumbered only by NK cells (80, 141).
Macrophages have long been recognized as key phagocytic
immune sentinels at mucosal surfaces. At the maternal-fetal
interface their roles include antigen presentation to adaptive
immune cells, promotion of tolerance through clearance of
apoptotic trophoblast debris, secretion of pro-angiogenic
factors and direct participation in spiral artery remodeling
through the phagocytosis of maternal vascular smooth muscle
cells (24).

The diverse functions of macrophages arise from their
capacity for polarization into two antagonistic phenotypes,
M1 (pro-inflammatory) and M2 (anti-inflammatory) (186). In
normal pregnancy, the M1/M2 equilibrium is in constant flux,
with M1 predominating during early trophoblast invasion, a shift
toward tolerogenic M2 in the second and third trimesters, and a
reversion to M1 at the onset of parturition (24). Differential TLR
activity in decidual macrophages may contribute to protection
of both mother and fetus against infection: stimulation of
decidual macrophages with TLR2-4 and 7/8 agonists restricts
viral replication and leads to overproduction of IL-10, an anti-
inflammatory cytokine that suppresses trophoblast TLR signaling
(140, 187).

Pregnancy-specific adaptations in the M1/M2 balance have
also been implicated in the response to systemic viral
infection. A study comparing the response of peripheral blood
monocytes from pregnant and non-pregnant women to in vitro
challenge with IAV found that the pro-inflammatory response
was exaggerated in pregnant women, although trimester-
specific effects were not reported (82). In a mouse model
of pandemic H1N1 IAV in pregnancy, mice infected in
mid-gestation exhibited higher clinical severity scores and
a strong phenotypic shift toward the M2 phenotype in
alveolar macrophages obtained from broncho-alveolar lavage
samples, compared to those from non-pregnant matched
females (87).

Dendritic Cells
Like macrophages, DC are critical for innate-adaptive crosstalk.
DC can be broadly divided into two subsets:

1. Myeloid DC (mDC, CD14−CD11c+), which exist in an
immature state in the spleen and lymph nodes and canmigrate
into various tissues where they are associated with Th1-type
pro-inflammatory responses

2. Plasmacytoid DC (pDC, CD123+CD11c−), which reside in
non-lymphoid tissues and induce Th2-type responses and
proliferation of Tregs (25).

Circulating mDC from pregnant women demonstrate a skewed
cytokine response to inflammatory stimuli, with increased
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production of IL-10, programmed death-ligand 1 and CD200,
favoring Th2 and Treg polarization over Th1 (6, 188). DC of
myeloid origin are recruited into the decidua from a variety of
progenitor populations. Decidual DC (dDC) account for <2%
of decidual leukocytes, are a highly proliferative and relatively
immature population, and are phenotypically distinct from
peripheral DC: they display a universal reduction in expression
of T cell costimulatory molecules and thus fail to induce specific
T cell responses in vitro (189). dDC help to prevent fetal rejection
by promoting tolerogenic responses to endocytosed trophoblast
antigens, recruit NK cells through production of IL-15 and
potentiate decidual angiogenesis via close dialogue with decidual
stromal cells (141).

The integral role of pDC in the innate antiviral response
to RNA viruses, which centers on their unrivaled capacity
for type I IFN production (95), may be further upregulated
in pregnancy. In a study comparing pDC isolated from
pregnant and non-pregnant women, pDC from pregnant
women were more abundant at baseline and demonstrated
increased chemokine production (including IFN-inducible
protein 10 and CCL4) in response to IAV challenge.
The authors note that excessive chemokine release is
associated with higher disease severity and mortality
from influenza A in vivo (190, 191) and suggest that the
exaggerated pDC response they observed could contribute
to the disproportionately high fatality rates of influenza in
pregnancy (82).

Decidual Stromal Cells
Trophoblast invasion induces dramatic remodeling of the
uterine mucosa, transforming the glands, arteries and stroma
of the late-secretory-phase endometrium in a progesterone-
dependent process known as decidualization (62, 164, 192). The
specialized decidual stromal cells (DSC) generated as a result
are fundamental for the establishment and homeostasis of the
decidual immune system. In particular, DSC are in constant
dialogue with dNK and exert critical regulatory influence over
their various functions. Progesterone-induced IL-15 production
by DSC is essential for the early expansion of dNK (193) and
potentiates their cytotoxic degranulation in response to virally
infected cells (194). Conversely, DSC-derived IL-33 inhibits dNK
perforin and granzyme A synthesis, reduces their cytotoxic
capacity and shifts their cytokine effector profile toward the
immunosuppressive IL-4, IL-10, and IL-13 (195–197). The
observation that T cell chemokine genes are epigenetically
silenced in DSC highlights their role in maintaining a tolerogenic
environment (12); indeed, they have even shown promise as a
novel therapy for acute and chronic graft-versus-host disease in
allogeneic stem cell transplant patients (198, 199). Their roles
in viral infection remain poorly defined, but recent data show
that murine DSC undergo necroptosis in response to transfection
with a synthetic analog of viral RNA (200).

It is therefore clear that DSC, instead of merely functioning as
a cellular scaffold that hosts the decidual immune system, are vital
contributors to its key functions of simultaneous fetal tolerance
and immune defense.

ACUTE VIRAL INFECTIONS THAT CAUSE
SEVERE MATERNAL DISEASE

Lassa Virus
Lassa virus (LASV) is an enveloped ssRNA arenavirus endemic
to West Africa that is acquired through contact with infected
rodents (Mastomys natalensis, the multi-mammate rat). It
causes regular seasonal outbreaks of Lassa fever, responsible
for over 500,000 cases and 5,000 deaths per year. In the
general population:

• 80% of patients will be asymptomatic or experience a mild
non-specific illness;

• 15–20% require hospital admission due to severe disease
(which may manifest as mucosal hemorrhage, hepatitis or
multi-organ failure);

• Up to 29% will develop sensorineural hearing loss during
their recovery;

• 1% will die (44, 201, 202).

However, these figures are strikingly altered in pregnancy. Cohort
studies have consistently estimated maternal mortality rates as
disproportionately high: 7% in the first two trimesters, rising as
high as 87% in the third trimester, with fetal loss rate reported
between 75 and 100% (44, 201, 203). The first systematic review of
Lassa fever outcomes in pregnancy, published this year, identified
just seven studies eligible for inclusion in the meta-analysis.
This incorporated a total of 236 women in whom the absolute
risk of maternal death was 33.7%, the fetal CFR was 61.5% and
the neonatal CFR was 30.2%. Pregnancy conferred a 2.86-fold
increase in risk of death (95% confidence interval 1.77–4.63)
compared to non-pregnant women of reproductive age (29).

This disparity “underscores the need to prioritize pregnancy”
in studies of the immune response to LASV (29). Currently,
however, our understanding is almost entirely limited to data
from animal models or cultured human cells (29, 204). These
have provided insights into the key components of the innate
immune response to LASV. The importance of the type I IFN
response to LASV has been demonstrated in a non-human
primate model: animals who survived viral challenge generated
a robust IFN-α response shortly after inoculation, whereas those
who died failed to upregulate IFN-α until the terminal phase of
illness (205). Given that the type I IFN response to other RNA
viruses such as influenza is less effective in pregnancy (206), it is
possible that a similar attenuation in the case of LASV infection
contributes to the higher mortality in pregnant women.

LASV has also been shown to directly antagonize the
type I IFN response through its Z matrix protein, which is
common to all arenaviruses, and its nucleoprotein (NP). LASV-
NP possesses a unique exonuclease domain that degrades viral
dsDNA—usually a potent ligand for RLR—to prevent type I IFN
production (207).

In cultured human cells, LASV replicates in DC and
macrophages but is remarkably adept at concealing its presence:
it does not activate the host cells, induce apoptosis, alter their
cell surface expression profile or trigger antigen presentation to
T cells. This creates immune-privileged reservoirs that facilitate
unchecked LASV replication in early infection, with subsequent
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systemic spread when the infected cells enter draining lymph
nodes (202). It may also be a critical determinant of LASV’s
pathogenicity—in contrast, infection of macrophages and mDC
with Mopeia virus, which shares 75% sequence homology with
LASV but is non-pathogenic, leads to rapid activation of both
cell types with upregulation of T cell costimulatorymolecules and
production of pro-inflammatory cytokines including type I IFNs
and IL-6 (208–211).

The fact that LASV uses elaborate evasion mechanisms to
avoid activation of innate immunity, and that this capacity
correlates directly with suppression of adaptive responses,
reinforces the role of the innate immune system in defense
against Lassa fever. However, no single animal or human study
to date has focused specifically on innate anti-LASV responses
in pregnancy. The question of why pregnant women experience
such high mortality from this disease therefore remains unsolved
and should be urgently prioritized in future research.

Ebola Virus
Ebola virus (EBOV) caused over 11,000 deaths in the 2013–2016
outbreak in West Africa and had catastrophic implications for
the region’s already fragile public health infrastructure. Cases of
Ebola virus disease (EVD) were concentrated in Guinea, Sierra
Leone and Liberia, which have among the highest maternal
mortality ratios in the world, and it is estimated that at least 100
pregnant women died (212–214).

EBOV causes abrupt onset of a febrile illness that can
progress to profuse diarrhea, hemorrhage, meningo-encephalitis
and hepatic or renal failure (44). Overall CFR is high (45–
90%) and if acquired in pregnancy it is almost always lethal for
the fetus (213, 215). However, a recent synthesis of available
studies demonstrated no significant difference between mortality
rates in pregnant vs. non-pregnant women (214). While this
may be the case, caution is required on two counts: firstly,
as the authors acknowledge, their analysis is limited by the
small size, retrospective nature and considerable heterogeneity
of included studies; and secondly, while pregnant women may
not be intrinsically more vulnerable to EVD, the fact that they
are often carers for sick relatives and make frequent visits to
health facilities places them at increased risk of acquiring the
disease (212).

Like LASV, EBOV targets myeloid DC and macrophages for
entry and replication. Both viruses arrest mDC in an immature
state that is permissive for viral replication, but their effect
on macrophages is different: unlike LASV, EBOV does activate
macrophages (44, 216). This allows them to present antigen to
T cells, meaning that adaptive responses are at least partially
activated in EVD: paradoxically, rather than being protective, this
may exacerbate the strong and rapid upregulation of both innate
and adaptive immunity that is characteristic of fatal disease (217).

The role of the IFN response in EVD has proved difficult
to elucidate. On one hand, EBOV, like LASV, exhibits complex
mechanisms that specifically counteract IFN: its VP35 protein
contains an inhibitory domain that can scavenge viral dsRNA
to prevent it from binding to RIG-I receptors (218) and its
VP24 protein blocks nuclear accumulation of phosphorylated
STAT1, a critical transcription factor in IFN signaling (219).

On the other hand, certain ISGs such as tetherin have been
found to actively suppress EBOV replication (220) and the IFN
response is massively exaggerated in patients who die of EVD
compared to those who survive, suggesting a contribution of
host inflammatory response to disease similar to that seen in
influenza (217, 221).

The West African epidemic revealed an unexpected tropism
for the placenta: women who survived EVD in early pregnancy
with complete resolution of viremia and no fetal loss were found
to have unusually high rates of miscarriage and stillbirth weeks
or months later, with abundant EBOV RNA detected in placental
and fetal tissues (222, 223). Immuno-histochemistry analysis
of placentas from EBOV-positive mothers shows accumulation
of EBOV antigen within the intervillous space, where it co-
localizes with a population of atypical maternal macrophages,
and in extravillous trophoblast (224). This may reflect shared
dependence on specific endocytic mechanisms: EBOV entry into
target cells depends on the Niemann-Pick cholesterol transporter
protein Niemann-Pick C1 (NPC-1), a protein that is also
expressed on the syncytiotrophoblast (225, 226). These findings
raise the suspicion of an EBOV predilection for pregnancy, even
if the maternal death rate is comparable to that of the non-
pregnant population, and support a rationale for close follow-up
of female survivors (214).

Dengue Virus
The arboviruses are a group of over 100 arthropod-borne RNA
viruses including dengue, Zika, Chikungunya, and yellow fever
viruses. They constitute a major threat to global public health:
90% of pregnant women live in areas with either endemic or
epidemic transmission of arboviruses (47).

Dengue, a spherical enveloped flavivirus with four ssRNA
serotypes (DENV1-4), is the most abundant of the arboviruses
and occupies two separate environmental niches: a sylvatic cycle,
in which DENV circulates between arthropod vectors and non-
human primate reservoirs, and an urban cycle, in which humans
and Aedes mosquitoes are the only hosts. Following inoculation,
the majority of people remain asymptomatic, but a minority will
develop an acute febrile illness accompanied by severe headache,
retro-orbital pain, arthralgia, and a rash. Approximately 1%
develop severe dengue, a potentially lethal manifestation of
disease that results from a sudden increase in systemic vascular
permeability and can cause shock, profound thrombocytopenia,
hemorrhage, and multi-organ failure. Mortality in severe dengue
can be reduced from over 20 to <1% with good supportive
care, but there are no specific antiviral therapies with proven
benefit (227).

Quantifying the risks associated with DENV infection in
pregnancy has proved particularly challenging due to the high
proportion of asymptomatic cases, the lack of large prospective
studies with comparison groups, the inevitable reporting bias in
small case series and the inherent difficulties in accurate diagnosis
of acute dengue fever (dengue IgM cross-reacts with other
flaviviruses and coinfections are common) (48). Machado and
colleagues were the first to definitively establish the association
between pregnancy and severe dengue. They analyzed all 151,604
cases of suspected DENV in Rio de Janeiro from 2007 to 2008,
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compared outcomes in 99 pregnant women to 447 matched non-
pregnant women of reproductive age, and found an increased
risk of severe dengue in the pregnant women (odds ratio 3.38)
with a trend toward higher mortality (3 vs. 1.1%) (47). A 2018
study added to this by investigating correlates of severe maternal
disease in French Guiana: they showed an 8.6-fold increase in the
risk of postpartum hemorrhage in the presence of severe dengue
(228). Whether or not dengue increases the risk of adverse
fetal and perinatal outcomes (specifically miscarriage, stillbirth,
preterm birth, and low birthweight) remains controversial, with
two meta-analyses from 2016 and 2017 reporting conflicting
results (229, 230).

The origins of this increased susceptibility to severe dengue in
pregnancy remain unknown but are likely to include placental
tropism, innate immune adaptations and the physiological
increase in vascular permeability that occurs in normal
pregnancy, which may both delay diagnosis and exacerbate
severe dengue (40). An immunohistochemical analysis of
placentas from women with dengue in pregnancy showed
accumulation of DENV antigen in the trophoblast and decidua
in 92% (22/24) of cases. Microscopy revealed hypoxic changes
(including villous edema and infarction) and an unusual
observation of sickled erythrocytes in the intervillous space—
this occurred despite no history of maternal sickle cell disease
and was correlated with maternal death, suggesting that
the virus may be able to influence erythrocyte biology in
pregnancy (231, 232).

DENV can infect and deplete human megakaryocytes,
suppressing their capacity to produce platelets and causing
dengue-induced thrombocytopenia. Campbell et al. found
that DENV leads to marked upregulation of interferon-
induced transmembrane protein 3 (IFITM3) on platelets with
corresponding release of type I IFNs, and that the highest levels
of IFITM3 expression correlated with mildest disease (233, 234).
These mechanisms are yet to be studied in pregnancy, but it
is conceivable that enhanced DENV-mediated megakaryocyte
depletion or a failure to upregulate platelet IFITM3 could
contribute to the higher rates of hemorrhagic complications
during pregnancy.

Type I IFN production is central to the innate anti-DENV
response, although no specific studies have been conducted in
pregnancy. DENV triggers type I IFNs through binding with
various PRRs (RIG-I, endosomal TLR3, and endosomal TLR7)
and is detected by the mannose-binding lectin complex. This
leads to deposition of Cb4 and C2a on the virion surface,
formation of the C3 convertase and activation of complement-
mediated virolysis, although the virus can subvert this through its
non-structural protein NS1 as described above. RNA interference
and activation of apoptosis in infected cells are also important
contributors to DENV defense, as reviewed by Uno and
Ross (96). NS1 also appears to be a critical regulator of the
DC and NK-mediated response to dengue infection. Sentinel
cutaneous DC detect invading DENV and rapidly recruit NK
cells through contact-dependent IFN-mediated upregulation of
adhesion molecules, and the NK are key for viral suppression:
in humanized mice, depletion of NK cells exacerbates DENV
viremia and thrombocytopenia (235).

Although mechanistic insights into DENV pathogenicity
with plausible relevance to pregnancy continue to emerge—
for example, the observation that vitamin D supplementation
reduces cultured human DC susceptibility to DENV2 through
downregulation of TLR3, TLR7, and TLR9 signaling (236)—these
findings cannot be extrapolated to the pregnant population and
dedicated studies are urgently needed.

Hepatitis E
The hepatitis E virus (HEV) is a small, non-enveloped ssRNA
hepevirus that causes over 20 million infections annually. Of
its four genotypes, HEV-1 and 2 cause human disease and are
spread by feco-oral transmission through contaminated water
supply, entering the body via enterocytes and replicating in the
liver. This route accounts for the wide geographical variation in
disease burden of hepatitis E, which is concentrated in areas of
poor sanitation (42, 49). In the general population, hepatitis E
is asymptomatic in the vast majority of cases, but still causes 3.3
million symptomatic infections (usually mild, self-limiting and
clinically indistinguishable from hepatitis A) and 56,000–70,000
deaths per year, a mortality rate of <0.5% (42).

However, outcomes are much worse for pregnant women:
HEV mortality can exceed 50%, particularly if acquired in the
third trimester. Several large cohort studies from India have
demonstrated that pregnant women with HEV are both more
likely to develop fulminant hepatic failure (FHF) and more likely
to die from it (237–240). A 2019 systematic review including a
total of 1,338 pregnant women with hepatitis E showed a 45% risk
of fulminant hepatic failure, a median maternal CFR of 26% and
a median fetal CFR of 33%. Other obstetric complications were
not consistently reported in the included articles but data from
four studies suggest an increased risk of postpartum hemorrhage,
ranging from 13.6 to 30% (28). There are no proven drug
therapies for hepatitis E (ribavirin, which has shown equivocal
benefits in small case series, is contraindicated in pregnancy) and
the only available vaccine for prevention of hepatitis E is not
manufactured or licensed outside China (28).

Like the other viruses discussed in this review, there is
therefore a global imperative to identify the factors that
confer increased susceptibility to fatal HEV infection in
pregnancy. Common themes emerge: the mechanisms are
poorly characterized, difficult to recapitulate through in vitro
models, influenced by hormonal factors and likely to arise
from dysregulation of immune homeostasis at the maternal-
fetal interface (241). Studies examining peripheral blood cells
and circulating inflammatory mediators from women with
HEV-induced FHF have implicated excessive Th2 switching,
impaired NFkB-mediated liver regeneration, oxidative stress,
and coagulopathy in its pathogenesis; these are reviewed by
Perez-Gracia et al. (242), although no convincing individual
candidate has emerged. The innate immune response to HEV
is also unclear, although it appears to be crucial for prevention
of severe disease. In 2015, a comparison of macrophages and
DC from pregnant patients with HEV-induced FHF, non-
fulminant acute HEV, and healthy pregnant controls found
that macrophages from the women who developed fulminant
liver disease had significantly impaired phagocytic capacity, with

Frontiers in Immunology | www.frontiersin.org 13 September 2020 | Volume 11 | Article 572567

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Cornish et al. Pregnancy and Innate Antiviral Immunity

reduced TLR3 and TLR9 expression impeding MyD88-mediated
IFN production (239).

Importantly, although the life cycle of HEV remains
enigmatic, extrahepatic replication has been demonstrated in
both the placenta (241, 243) and, more recently, in cultured
human endometrial stromal cells (244). Gouilly et al. (241)
showed that HEV-1 causes severe necrotic tissue injury in both
decidua and trophoblast, significantly reduces both tissues’ ability
to produce type III IFNs and distorts the cytokine secretome of
cultured DSC, upregulating potent pro-inflammatory mediators
including IL-6 and the chemokines CCL-3 and CCL-4. As the
authors suggest, these widespread disruptions to the architecture
and homeostasis of the maternal-fetal interface are likely to
contribute to viral dissemination, adverse obstetric outcomes and
increased disease severity in pregnancy.

Influenza—Seasonal and Pandemic
The Orthomyxoviridae family includes three species capable of
causing human disease: influenza viruses A, B, and C. Types
A and B account for the majority of seasonal influenza, which
causes approximately 389,000 deaths per year (245). They have
an unusual segmented genome with eight negative-sense RNA
strands and, unlike the other viruses discussed in this review,
replicate in the nucleus. The pleiomorphic IAV virion consists
of a host-derived lipid envelope displaying embedded surface
glycoproteins haemagglutinin (HA) and neuraminidase (NA),
which account for its antigenicity and are used to classify the
different IAV serotypes (e.g., H1N1).

Major influenza pandemics over the last century have
consistently shown disproportionately high mortality rates in
pregnant women, mostly recently the H1N1 outbreak in 2009
(34–36). A 2011 meta-analysis including a total of 3,110 pregnant
women who developed H1N1 showed that rates of hospital
admission (52.3%), requirement for intensive care (23.3%) and
death (4.1%, of which two thirds occurred in the third trimester)
were all significantly increased in pregnancy. Despite only 1%
of the susceptible population being pregnant, these women
accounted for 5.7% of all deaths in the pooled analysis (52).
Although maternal mortality outside a pandemic setting is
low, these data prompted the WHO to recommend seasonal
influenza vaccination for all pregnant women (52, 246). A
subsequent larger systematic review and individual participant
data meta-analysis (including 36,498 women of reproductive age)
confirmed a 6.8-fold higher risk of requiring hospital admission
in pregnant women with H1N1, but did not find any evidence of
an increased risk of death (27, 247).

Like Ebola, whether maternal mortality from IAV is actually
disproportionately increased remains unclear, but disease is
certainly more severe in pregnant women. Pregnant women
appear to develop particularly severe lung injury and are also
at higher risk of extrapulmonary complications. In a study
reporting autopsy findings of 21 Brazilian patients who died
of H1N1-related acute respiratory failure, the single pregnant
woman in the cohort had the most severe pulmonary disease,
with widespread necrotising bronchiolitis, diffuse alveolar
damage and significant upregulation of TLR3, IFN-γ, and

granzyme B-producing cells in the airway epithelium, suggesting
excessive activation of the innate immune response (248).

Mouse models have shown that disrupted TLR signaling is
an important component of IAV pathogenesis. Following cell
entry, IAV virions are internalized into endosomes, in which
the low pH induces a conformational shift in HA resulting
in release of the nucleocapsid protein into the cytosol. This
process is essential for viral replication but also stimulates the
innate immune response: in pDC isolated from mouse spleens,
endosomal sensing of IAV ssRNA by TLR7 led to massive IFN-
α release, a response that was completely abrogated in TLR7−/−

mice (129). TLR3-deficient mice also show a muted response to
IAV infection, with significant reductions in pro-inflammatory
cytokine expression andCD8+ T cell recruitment to the broncho-
alveolar space. However, despite higher viremic burden, this
actually confers a survival advantage compared to control TLR3-
competent mice (249). In purified human alveolar epithelial cells,
RIG-I and TLR3 are the primary IAV sensors and trigger a
type III-predominant IFN response (250). As with the other
RNA viruses discussed here, IAV has a sophisticated array of
innate evasionmechanisms, which are reviewed by Kikkert (251).
IAV can also induce necroptosis of infected cells, leading to
potent neutrophil recruitment and exacerbated lung injury. Mice
deficient in MLKL, a critical mediator of necroptosis, exhibit
improved survival in response to a lethal IAV challenge (252).

Pregnancy appears to suppress the systemic type I and type
III IFN responses to IAV. A 2012 study showed that peripheral
blood mononuclear cells from pregnant women exhibited a 10-
fold reduction in the expression of protein kinase receptor, an
ISG that is stimulated early in the antiviral response, compared
to matched female controls in response to H1N1 IAV challenge.
This effect was partially reversed by vaccination, although still
not completely restored to non-pregnant levels (206). Some
studies have also shown an IAV-induced upregulation of T cell
costimulatory markers on pDC, hypothesizing that the virus
may break the physiological attenuation of DC maturation in
pregnancy and lead to exaggerated immune responses and tissue
damage; conversely, others suggest that a failure to activate
lung DC and recruit virus-specific CD8T cells to the airway
epithelium could contribute to the inability to control the
virus in pregnancy (253, 254). Whether the severe disease
observed in pregnancy results from a failure to generate robust
innate responses or a harmful virus-induced disruption of the
tolerogenic state remains to be clarified.

The role of hormones in modulating lung physiology
and the response to IAV has been extensively studied.
Progesterone, which is essential for the maintenance of
pregnancy, is a muscle relaxant that causes physiological
airway dilatation. It also affects the innate immune system,
preventing NK cell degranulation and upregulating neutrophil-
attractant chemokines in the respiratory epithelium. It interacts
closely with the prostaglandins PGE2, which increases vascular
permeability in the lungs and downregulates effectormechanisms
in neutrophils and macrophages, and PGF2a, a potent broncho-
and vasoconstrictor (86). In animal studies, female mice treated
with exogenous progesterone are protected against severe IAV
disease through increased expression of amphiregulin, which
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promotes tissue repair in the lungs and improves survival
(255). However, the immunoregulatory role of progesterone
appears to be strain- and exposure-specific: in another study,
pre-treatment of female mice with progesterone protected
them against severe disease during initial H1N1 exposure but
reduced their survival during subsequent challenge with H3N2
(256). Influenza infection in pregnant mice dysregulates the
progesterone-prostaglandin axis, leading to bronchoconstriction,
an alveolar influx of neutrophils and respiratory failure (86).
The implications of these findings in the severity of influenza in
pregnancy are discussed further in a recent review in this journal
by Littauer and Skountzou (38).

Novel Coronaviruses
Coronaviruses, which were first isolated from humans in the
1960s, cause frequent mild upper respiratory tract illnesses on
a large scale but are not usually associated with significant
disease. However, in the last 20 years, three zoonotic novel
coronaviruses capable of causing severe pneumonia have
emerged: severe acute respiratory syndrome coronavirus (SARS-
CoV), Middle East respiratory syndrome coronavirus (MERS-
CoV) and COVID-19 (SARS-CoV-2). Global experiences of the
first two, which disproportionately affected pregnant women,
have caused significant apprehension about the consequences
of the third, which remains subject to intensive and ongoing
research (55, 257). Given that pneumonia is the leading non-
obstetric infectious cause of maternal death, vigilance is required
with any emerging respiratory virus and pregnant women
should be prioritized in efforts to anticipate and mitigate their
effects (258).

SARS-CoV caused over 8,400 cases in 29 countries in the
outbreak of 2002–2003. The 916 reported deaths corresponded
to a global CFR of ∼11%. Studies describing its effects in
pregnant women, although small, are strongly suggestive of
a higher burden of mortality and morbidity than in the
general population. Wong et al. summarized outcomes in 12
pregnant women hospitalized due to confirmed SARS-CoV in
Hong Kong in 2003: 50% were admitted to intensive care due
to hypoxia (vs. 20% of non-pregnant patients), 33% required
mechanical ventilation and 25% died. Associated complications
included disseminated intravascular coagulation, renal failure
and superimposed bacterial pneumonia. Of the 7 who presented
in the first trimester, 5 had a spontaneous miscarriage; and
of the 5 who presented beyond 24 weeks’ gestation, 80%
delivered preterm. Surviving neonates did not develop SARS
and there was no evidence of vertical transmission, although
placental histopathology did show other features indicative of
maternal hypoxemia. The authors note that the use of ribavirin
in 11/12 cases (following careful counseling about potential
teratogenicity) may have exacerbated the high observed rate
of first-trimester miscarriage (57). A case-control study, also
from Hong Kong, confirmed the increased severity of disease in
pregnancy by comparing 10 pregnant to 40 non-pregnant women
with SARS at the same hospital: death (30 vs. 0%), intensive care
admission (60 vs. 17.5%) and renal failure were all significantly
more common in the pregnant group (58).

MERS-CoV, which emerged in 2012, caused 2494 confirmed
cases and 858 deaths, with a CFR of 34.4%. The higher
mortality rate has been attributed to both poor infection
control, facilitating rapid propagation in healthcare settings,
and an inherently more aggressive clinical course, with faster
progression to respiratory failure. The clinical spectrum was
broader than in SARS, with immunocompetent adults often
reporting mild or moderate symptoms while deaths were more
concentrated in those who were immunosuppressed, pregnant or
had major medical comorbidities (55, 259). A 2019 synthesis of
11 pregnant women with MERS-CoV found that 54% required
intensive care and 27% died. Although this was not elevated
compared to the CFR in the general population, these numbers
are too small to provide confident assurance that pregnant
women are not at increased risk fromMERS-CoV. As with SARS,
no episodes of vertical transmission were documented, although
umbilical cord and neonatal blood sampling were not universally
performed (59).

The spread of COVID-19 (SARS-CoV-2) has vastly exceeded
that of SARS and MERS, with over 21 million cases and 760,000
deaths at the time of writing (260). However, its mortality rate
is considerably lower than the two previous novel coronavirus
outbreaks, as is the proportion of patients who develop severe
disease (pooled estimate 18.0%) (261).

In the early stages of its escalation, experience from
the SARS-CoV and MERS-CoV outbreaks prompted some
national health policy departments to recommend increased
caution in pregnant women. However, accumulating data are
reassuring on this front: a systematic review of 2,567 affected
pregnancies published in July showed a 7% intensive care
unit admission rate with maternal mortality of approximately
1% (262) and a population-level analysis of 427 pregnant
women hospitalized with COVID-19 in the UK showed no
evidence of an increased risk of severe disease compared to
the general hospital population (60). In contrast to SARS-CoV
and MERS-CoV, vertical transmission appears to occur in a
small proportion of cases of SARS-CoV-2: in a recent meta-
analysis, 3.2% of neonates tested positive on nasopharyngeal
swabs and 3.7% had positive serology, based on IgM positivity
(263), however, caution is required given that the validity of
IgM serology tests can be compromised by cross-reactivity. These
findings are supported by the recent systematic confirmation of
transplacental transmission of SARS-CoV-2 following maternal
infection at 35 weeks’ gestation (264).

The exponential transmission of COVID-19 has prompted
renewed efforts to identify integral components of the immune
response to coronaviruses. While innate host defenses rely on
the same cardinal mechanisms as for the other RNA viruses
discussed—namely, the interferon response—coronaviruses
appear to have evolved a particularly diverse repertoire of
innate immune evasion strategies. Inhaled coronaviruses enter
pneumocytes andmacrophages in the upper respiratory tract and
replicate in the cytosol, hijacking host intracellular membranes
to create “replication organelles” (RO) that facilitate viral
replication while simultaneously shielding the RNA within
double-membrane vesicles to prevent detection by intracellular
PRRs such as RIG-I (265).

Frontiers in Immunology | www.frontiersin.org 15 September 2020 | Volume 11 | Article 572567

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Cornish et al. Pregnancy and Innate Antiviral Immunity

Coronaviruses go to great lengths to avoid recognition:
their non-structural proteins even exhibit endonuclease activity,
allowing them to degrade their own RNA and forestall activation
of PAMP-mediated antiviral signaling (266). As well as these
evasion strategies, coronaviruses can also directly antagonize the
innate immune response: the SARS-CoV non-structural protein-
1 (NSP-1) binds to the 40S subunit of host ribosomes and
induces “translational shutoff,” bringing all cellular expression
of antiviral effector proteins to a halt (267). This particularly
intricate capacity of CoV to both elude and suppress innate
effector mechanisms may contribute to their pandemic potential.
However, no studies thus far have been specifically designed
to investigate the disparities between individual coronaviruses
in terms of their effects on maternal disease and vertical
transmission in pregnancy.

CHALLENGES AND FUTURE
DEVELOPMENTS

Determining exactly how innate immune mechanisms and
corresponding viral evasion strategies contribute to the
disproportionately severe disease observed in pregnancy is an
ongoing problem. Challenges range from the technical and
ethical (e.g., the difficulty of accessing human decidual tissue and

replicating human pregnancy in animal models) to the global,
with the ever-present threat of widespread outbreaks caused
by novel viruses with pandemic potential. Emerging viruses,
epitomized by the current COVID-19 pandemic and the ongoing
Ebola outbreak in North Kivu, highlight the vulnerability and
inequity in the global health infrastructure. However, there
is also a considerable threat from resurgence of previously
controlled viruses: the global re-emergence of measles since
2016, including in several countries where transmission had
previously been eradicated, has caused thousands of deaths
and poses a major risk to pregnant women (268). A 2017
UK case report described a patient who required emergency
Cesarean section and extracorporeal membrane oxygenation
for deteriorating respiratory failure at 32 weeks’ gestation (269).
Control of preventable viral diseases like measles depends on
high rates of vaccination coverage, which is compromised by
conflict, migration, and persistent belief in the discredited
association with autism (268).

The ability to protect vulnerable groups from viral
infection depends partly on public health measures
such as vaccination and vector control but also on
our understanding of the biological correlates of this
vulnerability. The advent of technologies such as mass
cytometry and single-cell RNA sequencing have already
shown promise (270), offering unparalleled insights into

FIGURE 5 | Schematic summarizing effects of maternal infection with the following RNA viruses during pregnancy: Lassa, Ebola, dengue, hepatitis E, influenza and

novel coronaviruses.
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the cellular architecture of the maternal-fetal interface
in early pregnancy (183, 271, 272). These, along with
the recent development of human trophoblast organoids
that replicate the placental secretome in vitro, may
transform our ability to study the effects of viral infection
in pregnancy (273).

CONCLUSION

The RNA viruses discussed in this article share many
overlapping features in their clinical manifestations and
their interactions with the maternal immune system (Figure 5).
Common themes include placental tropism, an association
with adverse obstetric outcomes and the importance of a
tightly regulated interferon response, which is reflected in the
evolution of diverse viral IFN evasion mechanisms. Innate
immune cells are uniquely positioned at the maternal-fetal
interface and orchestrate the balance between the conflicting
immunological priorities of pregnancy: tolerance of the
fetal allograft and defense of both mother and fetus against
invasive pathogens.

The disproportionate rates of severe disease and mortality
observed in pregnant women with Lassa, Ebola, dengue, hepatitis
E, influenza and certain novel coronavirus infections cannot
be attributed purely to immunological adaptations: social and
behavioral factors also contribute (212). However, it is only
through research that is tailored toward these pregnancy-specific
factors that the outcomes will improve. In particular, as recently
and eloquently argued by Gomes et al. (274) and Schwartz and
Graham (55), the systematic exclusion of pregnant women from
the design of vaccine trials for viral illnesses will perpetuate and
exacerbate the problem. Addressing the gaps in our knowledge of
innate immunity in pregnancy is an urgent priority.
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