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FGFR3 is a prognostic and predictive marker and is a validated therapeutic target in
urothelial bladder cancer. Its utility as a marker and target in the context of immunotherapy
is incompletely understood. We review the role of FGFR3 in bladder cancer and discuss
preclinical and clinical clues of its effectiveness as a patient selection factor and
therapeutic target in the era of immunotherapy.
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INTRODUCTION

Cytotoxic chemotherapy had been the only standard-of-care treatment for advanced urothelial
bladder cancer, which is the world’s 10 most common cancer and thirteenth most deadly (1).
Cisplatin-based regimens are associated with objective responses in up to 45% of patients, but these
responses are generally not durable (2, 3). Cisplatin-based therapies are associated with toxicities,
including treatment-related mortality in rare cases. Beginning with the regulatory approval of
atezolizumab, an inhibitor of programmed death-ligand 1 (PD-L1), in 2016, a total of five immune
checkpoint inhibitors (ICIs), including the programmed cell death protein 1 (PD-1) inhibitors
pembrolizumab and nivolumab and the PD-LI inhibitors avelumab and durvalumab, gained
regulatory approval for advanced urothelial cancer. These therapies are associated with durable
responses in a minority of patients (roughly 15% among patients selected based on immune
infiltration) and comparatively favorable side effect profiles (4). They have now been used in the first
line alone and in combination with chemotherapy and are the preferred choice in the second line
after chemotherapy (5-7).

In spite of the great therapeutic potential of ICIs, only a minority (approximately 20%) of
patients experience tumoral response to ICIs and median survival with second line immunotherapy
remains shorter than 1 year (8). It follows that the identification of biomarkers is a critical step in
improving therapy for advanced urothelial bladder cancer. Recognition of characteristics associated
with ICI response can help clinicians and researchers optimize patient selection, appreciate new
combination or sequencing strategies, and identify mechanisms or targets for development of novel
therapeutics. Tumoral PD-L1 expression is only modestly useful as a marker, as tumoral responses
to ICI have been observed regardless of PD-L1 status (albeit at a numerically higher rate among
those with greater PD-L1 expression) (9). Consensus molecular classifications, which define
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luminal, basal/squamous, stroma-rich, and neuroendocrine-like
subgroups of muscle-invasive bladder cancer, although useful in
understanding the biology of tumors, similarly fall short in
helping to guide ICI therapy (10). The goal remains to
discover tumor characteristics, drivers, and markers that can
offer greater therapeutic and instructive value in the context of
ICI therapy. Overactivity in the ErbB family (including EGFR
and Her2/neu), which is associated with luminal and basal/
squamous classifications, has only demonstrated utility as a
drug target or predictive marker in a small proportion of
clinical trials related to that pathway (11). Similarly, although
VEGF activation portends poor outcomes, VEGF has not proved
to be particularly promising as a therapeutic target (11).
Mutations in DNA damage response genes, including ERCCI,
ERCC2, ATM, FANCC, and RBI can help predict response to
platinum-based therapy, but markers for newer immune-based
therapies are needed (11). The fibroblast growth factor receptor 3
(FGFR3) gene has long been associated with bladder cancer
oncogenesis and recently become a therapeutic target (12). It
has become particularly important in the context of
immunotherapy given its inverse relationship with an anti-
tumor immune response due, at least in part, to its association
with a lymphocyte-excluded phenotype (13). We review
the current knowledge of FGFR3 in the context of both
modern therapies such as anti-PD-1 immunotherapy and
FGEFR blockade.

FGFR3 IN BLADDER CANCER

The chromosome 4 gene FGFR3 encodes the FGFR3 protein, a
tyrosine kinase that has classically been known to play important
roles in development, osteogenesis, and bone maintenance (14,
15). FGFR3 is highly expressed in chondrocytes and osteoblasts,
and germline mutations are associated with bone growth
disorders such as achondroplasia, chondrodysplasia, and
thanatophoric dysplasia (16-20). Curiously, while activating
mutations curb growth in bone, the same mutations are
associated with excess growth in other tissues (e.g., nevi in
skin) (21). Germline FGFR3 mutations are paternally inherited
and are associated with advanced paternal age (22). The
introduction of improved clinical genetic testing techniques in
oncology has facilitated the discovery that FGFR3 gene
alterations are implicated in a wide range of cancers [Figure
1A, (23, 24)]. The prevalence of FGFR3 gene aberrations is
highest in urothelial carcinomas (18% of cases), followed by
uterine carcinosarcoma (14%), esophageal (5%), ovarian (5%),
and endometrial (4%) cancers (23-25). FGFR3 signaling has
been observed to overlap with known oncogenic pathways such
as RAS/PI3K/ERK/AKT/EGFR and has been implicated in
tumoral epithelial-to-mesenchymal transition (26, 27). The role
of FGFR3 gene in oncogenesis may even be at the pre-
translational level: Has_circ_0068871, a circRNA product of
FGFR3 gene transcription, is overexpressed in bladder cancer,
and is associated with cancer cell proliferation and migration
(28). Expression of the antisense transcript FGFR3-AS1, which

increases stabilizes and promotes expression of FGFR3 mRNA,
and which is overexpressed in urothelial tumors, is associated
with tumor invasiveness, proliferation, and motility (29). The
most common FGFR3 mutation, $249C, likely develops through
an apoprotein B mRNA editing enzyme, catalytic polypeptide-
like (APOBEC)-mediated mutagenic mechanism (30). FGFR3-
transforming acid coiled coil 3 (TACC3) fusions, which result in
constitutive signaling, represent another frequent source of
FGFR3 gene aberration (31).

As prognostic indicators, FGFR3 gene alterations are
generally associated with lower grade and stage among all
urothelial bladder carcinomas (32). Among non-muscle
invasive cases, 49-84% express FGFR3, compared to 18% of
muscle-invasive cases, and FGFR3 mutations are associated
with lower disease-specific survival (32-34). Among American
Joint Committee on Cancer (AJCC) 8th edition T1 tumors,
FGFR3 expression is associated with lower grade tumor and
lower risk of cancer progression (35). FGFR3 gene mutations,
amplifications, and fusions are associated with luminal-papillary
subtype of urothelial cancer, which itself is associated with non-
muscle invasive disease and favorable prognosis compared with
other subtypes (13, 36, 37). However, in spite of the general
association of FGFR3 alterations with favorable characteristics,
there is no evidence to suggest that FGFR3 gene alterations
correlate with a less aggressive phenotype once urothelial
carcinoma has become advanced. In fact, FGFR3 gene
alterations are associated with less favorable outcomes in the
context of chemotherapy for advanced disease (38, 39).

The identification of FGFR3 as an oncogenic driver in
urothelial cancer has led to the development of FGFR3-
targeting therapeutics [Table 1, (40)]. While the dovitinib,
which targets FGFR3, among other tyrosine kinases, showed
poor single-agent activity in an unselected urothelial cancer
patient population, using pan-FGFR inhibitors with greater
target affinity in genomically selected populations has proven
to be a more promising approach (41, 42). This observation
may reflect a compensation of other FGFR isotypes when
therapeutics target FGFR3 on its own. The FGFR1-4 inhibitor
erdafitinib is the sole FGFR-targeting agent to which the
United States Food and Drug Administration has granted
regulatory approval to date. Erdafitinib is indicated for
patients with FGFR2 or FGFR3-altered, platinum-treated
urothelial cancer (43). Infigratinib, a FGFR1-3 inhibitor, has
also demonstrated promising activity (44, 45). Rogaratinib,
another pan-FGFR inhibitor is under investigation using
FGFR1 or FGFR3 RNA expression levels, rather than genetic
mutational status, as a patient selection criterion (46). The
most common treatment-emergent toxicities among these
agents are hyperphosphatemia, stomatitis, diarrhea, elevated
creatinine, fatigue, hand-food syndrome, and decreased
appetite. Although the FGFR-inhibitors are undoubtedly
becoming a valuable component of the oncologist’s
armamentarium for advanced bladder cancer treatment, a
greater understanding is needed of how best to combine and
sequence these medications with other therapies in the
treatment paradigm.
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FIGURE 1 | (A) FGFR3 gene alterations by cancer type based on available data from The Cancer Genome Atlas (TCGA) (only recurrent mutations and fusions—
those comprising in >1% of mutations/fusions—were included). Potential mechanisms of improved response rate to FGFR3-targeted therapy in the post-
immunotherapy setting include (B) primary immunotherapy resistance, (C) secondary immunotherapy resistance, and (D) enrichment of patients with

immunotherapy-resistant tumors in trials of FGFR3-targeted therapy.
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TABLE 1 | FGFR inhibitors marketed or in development for bladder cancer.

Medication Target Manufacturer Phase of Patient population Combination NCT
name development identifier
Erdafitinib FGFR1-4 Johnson & Marketed FGFR2/3 mutation or fusion - NCT02365597
(Balversa) Johnson /1l FGFR2/3 mutation or fusion Cetrelimab (PD-1 inhibitor) NCT03473743
Infigratinib FGFR1-3 BridgeBio Pharma Il Adjuvant, FGFR3 altered’ - NCT04197986
(BGJ398) Pilot Non-muscle invasive, FGFR mutation or fusion - NCT02657486
Rogaratinib FGFR1-4 Bayer (AL high FGFR1 or 3 expression - NCT03410693
(BAY 1163877) 1o/11 cisplatin-ineligible, high FGFR1, or three Atezolizumab (PD-L1 NCT03473756
expression inhibitor)
Pemigatinib FGFR1-3 Incyte Il FGF or FGFR alteration? - NCT02872714
(Pemazyre) I platinum ineligible, FGFR3 mutation or Pembrolizumab (PD-1 NCT04003610
rearrangement inhibitor)
Il Non-muscle invasive (neoadjuvant) - NCT03914794
Derazantinib Pan-FGFR Basilea /1l FGFR altered? Atezolizumab (PD-L1 NCT04045613
(ARQ 087) inhibitor)
Vofatamab FGFR3 Rainier 1o/1l Pembrolizumab (PD-1 NCT03123055
(B701) Therapeutics inhibitor)

T“Susceptible” FGFR3 mutations, fusions, or translocations.
ZDefinition of “altered” are not specified.

FGFR3 AS A THERAPEUTIC TARGET
AND AS A PATIENT SELECTION TOOL
IN CONTEXT OF IMMUNOTHERAPY
FOR BLADDER CANCER

The preclinical and correlative literature underpinning the
rationale for combining FGFR3-targeted therapy with
immunotherapy is substantial. Research in animal models have
contributed to an appreciation of the potential synergies between
these two mechanisms. Some studies have suggested that FGFR3
has an important role in regulating the innate immune system,
including inhibition of interferons and stimulation of tumor
necrosis factor-o (47, 48). Others have noted inhibitory effects
on a broad range of components of the adaptive immune response,
including lymphocyte infiltration, and T-cell CD8A expression, as
well as stimulatory effects on the anti-inflammatory TGF-B
response signature (13, 49-52). In fact, our previous work has
suggested that FGFR3 mutations and FGFR3-TACC3 fusions may
be associated exclusively with tumors that exhibit a lymphocyte-
excluded phenotype. Moreover, the degree of FGFR3 expression
predicts lymphocyte exclusion (13). Wnt/B-catenin signaling,
which is associated with non-T-cell-inflamed tumors both in
bladder cancers and across most solid cancers, has been shown
to overlap with FGFR3 signaling (13, 53-55). In lung cancer
models, FGFR3 inhibition enhances the effect of programmed cell
death-1 (PD-1) blockade (56). However, evidence that FGFR3
pathways work in opposition to immune activity is not uniform:
FGFR3 amplifications are associated with decreased anti-
inflammatory M2 macrophage bladder tumor infiltration (51).
Additionally, some correlative analyses have not detected a
difference in ICI response rates among patients with FGFR3
mutations compared to those with the wild-type allele (52).
Additionally, FGFR3 mutations are associated with lower PD-L1
expression, a marker that has been shown to have some
correlation with ICI response in some bladder cancer trials (7, 50).

Investigational approaches studying the most appropriate
role for FGFR inhibition in the context of ICI therapy (either
through sequencing or combination) are generally in early
clinical stages. The most robust experience available are what
appear to be post-hoc analyses of FGFR inhibition following ICI
therapy. In erdafitinib’s pivotal trial, patients who had
previously received ICI therapy experienced higher response
rates compared with the cohort as a whole (59% vs. 40%) (43,
57). Preliminary data with rogaratinib suggest a similar effect: an
interim analysis of its phase I trial demonstrated 30% response
among ICI-treated patients compared with 24% across all
patients (58). There are several potential reasons for the
finding of increased responsiveness to FGFR inhibitors after
ICI (Figures 1B-D). It may be that previous ICI therapy primes
patients for FGFR-targeted therapy - ie., FGFR inhibition
“sensitizes” the tumor to the effects of ICI by altering the
microenvironment to allow for lymphocyte invasion (Figure
1B). Another related explanation for the clinical trial results is
that tumors develop enhanced FGFR3 pathway (lymphocyte
exclusionary) signaling as a resistance mechanism while on
immunotherapy. Subsequent FGFR inhibition would disrupt
this oncogenic tumoral lymphocyte exclusion (Figure 1C). A
third possibility is that patients who fail immunotherapy tend to
be patients whose tumors exhibit poor lymphocyte exclusion
(Figure 1D). These may be the exact patients who we might
expect to benefit most from FGFR-targeted therapy, which may
directly address this immune deficit. These may also be patients
whose tumors are driven by mechanisms unrelated to the
immune system. Importantly, rogaratinib in combination with
atezolizumab for first-line urothelial bladder cancer has now
shown an objective response rate of 44% including a 16%
complete response rate (59). Future research may provide
insight to help identify which of these interpretations (or
combination of these interpretations or different interpretation
altogether) is most accurate. This research may help us
understand to what degree FGFR-targeted therapy is best
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considered as a treatment to be sequenced with immunotherapy.
Or, alternatively, to what degree patients who will benefit from
FGFR-targeted therapies and those who will benefit from
immunotherapy represent two distinct categories. Eventual
analyses from currently ongoing phase Ib/II trials testing the
FGFR inhibitors vofatamab (NCT03123055), erdafitinib
(NCT03473743), and rogaratinib (NCT03473756) in
combination with ICI therapies in broad (not genetically
selected) populations may enhance our ability to evaluate
these propositions.

DISCUSSION

The FGFR3 gene is prevalent in bladder cancers and may hold
value as a prognostic marker and as a tool for patient selection.
FGFR3 mutations are associated with less aggressive disease
across all bladder cancers, although this is not necessarily the
case among advanced tumors. Therapies targeting the FGFR3
protein (and its isoforms) have demonstrated clinical benefit in
some patients. However, clinicians still require a greater
understanding of how these drugs fit into the treatment
paradigm alongside immunotherapies. There is conflicting
evidence from preclinical and retrospective correlative studies
related to the scientific rationale for combining and/or
sequencing FGFR-targeted therapies with immunotherapies.
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