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The ongoing pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), poses a grave threat to global public
health and imposes a severe burden on the entire human society. Like other
coronaviruses, the SARS-CoV-2 genome encodes spike (S) glycoproteins, which
protrude from the surface of mature virions. The S glycoprotein plays essential roles in
virus attachment, fusion and entry into the host cell. Surface location of the S glycoprotein
renders it a direct target for host immune responses, making it the main target of
neutralizing antibodies. In the light of its crucial roles in viral infection and adaptive
immunity, the S protein is the focus of most vaccine strategies as well as therapeutic
interventions. In this review, we highlight and describe the recent progress that has been
made in the biosynthesis, structure, function, and antigenicity of the SARS-CoV-2 S
glycoprotein, aiming to provide valuable insights into the design and development of the S
protein-based vaccines as well as therapeutics.

Keywords: SARS-CoV-2, spike glycoprotein, receptor-binding domain, synthesis, structure, membrane fusion,
neutralizing antibodies, immunogen design
INTRODUCTION

The coronavirus disease 2019 (COVID-19) global pandemic represents an unprecedented public
health, social and economic challenge (1, 2). The etiological agent of COVID-19 is a new member of
the Coronaviridae family that is closely related to severe acute respiratory syndrome coronavirus
(SARS-CoV) and was recently referred to as SARS-CoV-2 by the Coronavirus Study Group of the
International Committee on Taxonomy of Viruses (3). The virus has spread rapidly and sustainably
around the global resulting in over twenty-one million cases and more than 750,000 deaths as of
August 15, 2020 (4).

Coronaviruses (CoVs) are enveloped positive-sense RNA viruses (5). Enveloped CoVs entering
host cells and initiating infection is achieved through the fusion of viral and cellular membranes
org October 2020 | Volume 11 | Article 5766221
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(6, 7). Membrane fusion is mediated by the large type I
transmembrane S glycoprotein on the viral envelope and the
cognate receptor on the surface of host cells (8–10). The surface-
exposed location of the S glycoprotein not only allows it to carry
out membrane fusion but also renders it a direct target for host
immune responses, making it the major target of neutralizing
antibodies (11). Because of its central roles in viral infection and
eliciting protective humoral and cell-mediated immune
responses in hosts during infection (10), the S protein is the
primary target for vaccine design as well as antiviral
therapeutics (12).

Here, we provide a comprehensive overview of the wealth of
research related to the SARS-CoV-2 S glycoprotein biosynthesis,
structure, function, and antigenicity, aiming to provide useful
insights into the design and development of the S protein-based
vaccines as well as therapeutics to prevent or treat the ongoing
global spread of SARS-CoV-2/COVID-19.
SYNTHESIS, PROCESSING AND
TRAFFICKING OF THE SARS-COV-2 S
GLYCOPROTEIN

The SARS-CoV-2 S glycoprotein is synthesized as a 1273-amino
acid polyprotein precursor on the rough endoplasmic reticulum
(RER) (Figure 1) (13). The unprocessed precursor harbors an
endoplasmic reticulum (ER) signal sequence located at the N
terminus, which targets the S glycoprotein to the RER membrane
and is removed by cellular signal peptidases in the lumen of the ER
(14, 15). A single stop-transfer, membrane-spanning sequence
located at the C terminus of the S protein prevents it from being
fully released into the lumen of the ER and subsequent secretion
from the infected cell (16, 17). Co-translationally, N-linked, high-
mannose oligosaccharide side chains are added during synthesis
(18, 19). Shortly after synthesis, the S glycoprotein monomers
trimerize, which might be thought to facilitate the transport from
the ER to the Golgi complex. Once in the Golgi complex, most of
the high-mannose oligosaccharide side chains are modified to
more complex forms (20, 21), and O-linked oligosaccharide side
chains are also added (22, 23).

In the trans-Golgi network, the SARS-CoV-2 S glycoprotein is
proteolytically cleaved by cellular furin or furin-like proteases at
the S1/S2 cleavage site, comprising multiple arginine residues
that are not found in the closely related SARS-CoV (24, 25).
Cleavage at the S1/S2 site yields a surface subunit S1, which
attaches the virus to the host cell surface receptor, and a
transmembrane subunit S2, which mediates the fusion of viral
and host cell membranes (10). The S1 and S2 subunits remain
associated through noncovalent interactions in a metastable
prefusion state (11). Furin-like cleavage is essential for the S-
protein mediated cell-cell fusion and viral infectivity, and is
required for efficient SARS-CoV-2 infection of human lung cells
(24) and airway epithelial cells (26).

Following cleavage, an ER retrieval signal (ERRS) consisting
of a conserved KxHxx motif (27) located at the extreme C
terminus ensures that the mature SARS-CoV-2 S protein
Frontiers in Immunology | www.frontiersin.org 2
accumulates near the ER-Golgi intermediate compartment
(ERGIC) (27, 28), where driven by interactions with another
structural protein, the membrane (M) protein, the S protein
participates in virus particle assembly and is incorporated into
virus envelope (Figure 1) (29, 30). Besides, a fraction of mature
SARS-CoV-2 S proteins travel through the secretory pathway to
the plasma membrane, where they can mediate fusion of infected
with uninfected cells to form multinucleated giant cells
(syncytia) (24, 31). This may allow direct spreading of the
virus between cells and potentially alter the virulence of SARS-
CoV-2 (24).

Notably, a deletion of ~20 amino acid containing the ERRS
from the cytoplasmic tail of the SARS-CoV-2 S protein has been
shown to increase the infectivity of single-cycle vesicular
stomatitis virus (VSV)-S pseudotypes (9) and replication-
competent recombinant VSVs bearing the S glycoprotein (32,
33), which likely could be translated to single-cycle human
immunodeficiency virus (HIV)-S or other retrovirus-S
pseudotypes straightforward (33). Presumably, this deletion
may enhance the cell surface expression of the SARS-CoV-2 S
glycoprotein (32), thereby facilitating the S protein incorporation
into pseudovirions and replication-competent virions.
SARS-COV-2 S PROTEIN STRUCTURE
AND FUNCTION

As mentioned above, the SARS-CoV-2 S glycoprotein plays
pivotal roles in viral infection and pathogenesis. Mature S
glycoprotein on the viral surface is a heavily glycosylated
trimer, each protomer of which is composed of 1260 amino
acids (residues 14-1273) (Figure 2A). The surface subunit S1 is
composed of 672 amino acids (residues 14–685) and organized
into four domains: an N-terminal domain (NTD), a C-terminal
domain (CTD, also known as the receptor-binding domain,
RBD), and two subdomains (SD1 and SD2) (Figure 2A) (34).
The transmembrane S2 subunit is composed of 588 amino acids
(residues 686-1273) and contains an N-terminal hydrophobic
fusion peptide (FP), two heptad repeats (HR1 and HR2), a
transmembrane domain (TM), and a cytoplasmic tail (CT),
arranged as FP-HR1-HR2-TM-CT (Figure 2A) (34).

As a typical class I viral fusion protein (35), the SARS-CoV-2
S glycoprotein shares common structural, topological and
mechanistic features with other class I fusion proteins,
including HIV envelope (Env) glycoprotein and influenza virus
haemagglutinin (HA) (36–38). Like other class I viral fusion
proteins, the SARS-CoV-2 S glycoprotein is also a
conformational machine that mediates viral entry by
rearranging from a metastable unliganded state, through a pre-
hairpin intermediate state, to a stable postfusion state (38, 39).
Since the first genome sequence of SARS-CoV-2 became publicly
available (40), a number of structures have been determined for
the SARS-CoV-2 S glycoprotein trimer fragments in both the
prefusion and postfusion states (Figures 2B–D) (11, 34, 41).

The overall architecture of the prefusion SARS-CoV-2 S
ectodomain stabilized by two consecutive proline mutations in
October 2020 | Volume 11 | Article 576622
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two conformations determined by single particle cryo-electron
microscopy (cryo-EM) is a ~160 Å long trimer with a triangular
cross-section, with the S1 subunit adopting a “V” shape contributing
to the overall triangular appearance and the S2 subunit forming the
stalk (Figures 2B, C) (11, 34). The structural difference between
these two conformations only lies in the position of one of the three
S1 RBDs (Figures 2B, C) (11). When all three RBDs are in the
“down” position, the resulting S ectodomain trimer assumes a
closed conformation, in which the receptor-binding surface of the
S1 RBD is buried at the interface between protomers and cannot be
accessible by its receptor (Figure 2B) (11). The S ectodomain trimer
with one single RBD in the “up” position assumes a partially open
Frontiers in Immunology | www.frontiersin.org 3
conformation and represents the functional state, as the receptor-
binding surface of the “up” RBD can be fully exposed (Figure 2C)
(11, 34). The structural information provides a blueprint for
structure-based design of vaccine immunogens and entry
inhibitors of SARS-CoV-2.

In the closed SARS-CoV-2 S ectodomain trimer, inter-
protomer interactions occur through the S1 CTD packed
against the other two S1 CTDs and one NTD from an adjacent
protomer because of domain swapping and through S2,
primarily between helical interactions formed by the upstream
and central helices from each subunit around the trimer axis
(Figure 2B) (11). The S1 subunits rest above the S2 trimer,
FIGURE 1 | Schematic representation of the life cycle of SARS-CoV-2. The life cycle of SARS-CoV-2 begins with membrane fusion occurring at the plasma
membrane or within acidified endosomes after endocytosis, which is mediated by conformational changes in the S glycoprotein triggered by angiotensin-converting
enzyme 2 (ACE2) binding. Following viral entry, SARS-CoV-2 releases its genomic RNA into the host cell cytoplasm. Genome RNA is first translated into viral
replicase polyproteins (pp1a and 1ab), which are further cleaved by viral proteases into a total of 16 nonstructural proteins. A replication-transcription complex (RTC)
is formed based on many of these nonstructural proteins. In the process of genome replication and transcription mediated by RTC, the negative-sense (− sense)
genomic RNA is synthesized and used as a template to produce positive-sense (+ sense) genomic RNA and subgenomic RNAs. The nucleocapsid (N) structural
protein and viral RNA are replicated, transcribed, and synthesized in the cytoplasm, whereas other viral structural proteins, including the S protein, membrane (M)
protein and envelope (E) protein, are transcribed and then translated in the rough endoplasmic reticulum (RER) and transported to the Golgi complex. In the RER
and Golgi complex, the SARS-CoV-2 glycoprotein is subjected to co-translational and post-translational processing, including signal peptide removal, trimerization,
extensive glycosylation and subunit cleavage. The N protein is subsequently associated with the positive sense genomic RNA to become a nucleoprotein complex
(nucleocapsid), which together with S, M, and E proteins as well as other viral proteins, is further assembled and followed by budding into the lumen of the ER-Golgi
intermediate compartment (ERGIC) to form mature virions. Finally, the mature virions are released from the host cell, waiting for a new life cycle to start. This figure is
adapted from the template in BioRender (https://biorender.com/).
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https://biorender.com/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Duan et al. Insights Into the Design of SARS-CoV-2 Spike-Based Immunogens
stabilizing the later in the prefusion conformation (Figure 2B)
(11). When the S ectodomain trimer adopts a partially open
conformation, the RBD in the “up” position will abolish the
contacts with the S2 subunit of an adjacent protomer,
destabilizing the partially open conformation (Figure 2C) (11,
34). This will be beneficial to the dissociation of the S1 subunit
and facilitate conformational rearrangements that the S2 trimer
undergoes to mediate viral entry.

Prefusion structures of human coronavirus HKU1 (HCoV-
HKU1) and mouse hepatitis virus S protein ectodomains without
two consecutive proline mutations reveal only fully closed
Frontiers in Immunology | www.frontiersin.org 4
conformation (37, 42), similar to that observed for a full-length,
wild-type prefusion form of the SARS-CoV-2 S glycoprotein (41).
Notably, it is well established that trimeric prefusion HIV-1 Env
primarily resides in a closed configuration that is conformationally
masked to evade antibody-mediated neutralization (43, 44) and can
spontaneously sample a transient, functional configuration (45). It
can thus be speculated that native CoV S glycoproteins on mature
and infectious virions share a similar conformational masking
feature (46), concealing the receptor-binding surface (for those
utilizing CTDs as RBDs) (Figure 2C), which is further
discussed below.
A

B D

C

FIGURE 2 | Overall structures of the SARS-CoV-2 S glycoprotein trimer in different conformations. (A) Schematic representation of the domain arrangement of the
SARS-CoV-2 S protein precursor. SS, signal peptide; NTD: N-terminal domain; RBD: receptor-binding domain; RBM: receptor-binding motif; SD1/2: subdomain 1
and 2; FP, fusion peptide; HR1, heptad repeat 1; CH, central helix; CD, connector domain; HR2, heptad repeat 2; TM, transmembrane domain; CT, cytoplasmic tail.
Arrows denote protease cleavage sites. (B) Side and top views of the prefusion structure of the SARS-CoV-2 S ectodomain trimer with all three RBDs in the down
conformation (PDB ID: 6VXX). One protomer is shown in ribbon representation colored corresponding to the schematic in (A), a second protomer in light gray
surface representation, and the third protomer in dark gray surface representation. (C) is identical to (B) except that a single RBD assumes the up conformation and
is shown in ribbon representation (PDB ID: 6VYB). (D) Overall structure of the SARS-CoV-2 S2 trimer in the postfusion conformation is shown in ribbon
representation colored corresponding to the schematic in (A) (PDB ID: 6XRA). The glycans were omitted for clarity.
October 2020 | Volume 11 | Article 576622
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Several lines of research have established that angiotensin-
converting enzyme 2 (ACE2) is an entry receptor for SARS-CoV-2
(47–49). Detailed interactions between the SARS-CoV-2 RBD
and its receptor ACE have been revealed by several structures of
ACE2 in complex with RBD (50–53). Structurally, RBD consists
of two subdomains: a core and an external subdomain (51, 52).
An extended loop (residues 438-506), which lies on one edge of
the core subdomain, presents a gently concave surface to cradle
the N-terminal helix (a1) of ACE2. Analysis of the interface
between the SARS-CoV-2 RBD and ACE2 reveals that a total of
17 residues in RBD are in contact with 20 amino acids in ACE2,
forming a network of hydrophilic interactions that are suggested
to predominate the virus-receptor engagement (51). Outside this
extended loop, residue Lys417 located in helix a3 of the core
subdomain, was shown to form ionic interactions with Asp30 of
ACE2. As the extended loop contains almost all the amino acids
of the SARS-CoV-2 RBD that contact ACE2, it is referred to as
the receptor-binding motif (RBM) (51).

It has been proposed that inhibiting the interaction between
RBD and ACE2 might be useful in treating SARS-CoV-2
infection. Recombinant soluble ACE2 (54) and ACE2-Fc (55,
56) have been shown to have potential applications in the
prevention and treatment of SARS-CoV-2 infection in vitro. As
the interaction between the RBD and ACE2 is extensive, small
molecules probably cannot be used as entry inhibitors to
effectively block the virus entry by targeting the interaction
interface. However, peptides would be able to engage most of
the residues belonging to RBM (57). A pioneering study
demonstrated that a 23-amino acid peptide (residues 21-43),
derived from the N-terminal helix (a1) of ACE2, specifically
associates with the SARS-CoV-2 RBD with low nanomolar
affinity and disables receptor interactions (57), representing a
promising strategy for preventing the virus from invading
human cells. In another study, a 65-amino acid peptide
(residues 19-83), derived from the N-terminal back-to-back
helices (a1 and 2) and composed of most of the residues of
ACE2 that mediate interactions with the S protein, shows a
similar but probably more potent inhibitory effect (58).

The formation of a trimer-of-hairpins structure (also known
as six-helix bundle) comprising HR1 and HR2 in the postfusion
conformation is a unifying feature of class I viral fusion proteins
(37). The crystal structure of a protein construct in which SARS-
CoV-2 HR1 and HR2 were connected by a six-residue
hydrophilic flexible linker was determined to be a canonical
six-helix bundle structure with a rod-like shape ∼115 Å in length
and ∼25 Å in diameter (59). Three HR1 helices form a parallel
central coiled-coil with three HR2 helices packing in an oblique,
antiparallel manner against deep hydrophobic grooves on the
surface of the central coiled-coil (59). Notably, when a full-length
S protein construct bearing the native furin-like cleavage site was
transiently expressed by Expi293F cells, the purified S proteins
contained the dissociated S2 trimer in the postfusion
conformation (41). The cryo-EM structure of this trimeric
postfusion S2 shows that the central helix (CH) extended
regular helices from the central coiled-coil, oriented toward
target cells (Figure 2D) (41), which forms the longest central
Frontiers in Immunology | www.frontiersin.org 5
triple helical coiled-coil (~180Å) among all known class I
transmembrane subunit structures.

The SARS-CoV-2 S trimer in the pre-hairpin intermediate
state is very unstable and is just transiently present in vivo after
triggering by ACE2 engagement, stymieing structural
characterization of the S protein in this state (60). However,
although this fusion-intermediate phase is very short, it is
enough for inhibitory peptides to associate with the pre-
hairpin intermediate and block the six-helix bundle formation
(39). Furthermore, it has already been shown that the HR1
regions in various human CoVs are highly conserved (61), and
therefore could serve as an attractive target for the design and
development of potent and broad-spectrum inhibitors of pan-
CoVs, including SARS-CoV-2. A highly potent pan-coronavirus
fusion inhibitor, EK1C4, has been reported to have good
prophylactic and therapeutic potential against SARS-CoV-2
infection (59).
GLYCAN SHIELD OF THE SARS-COV-2 S
GLYCOPROTEIN

As mentioned earlier, the SARS-CoV-2 S proteins are heavily
decorated by heterogeneous N-linked glycans projecting from
the S trimer surface. The SARS-CoV-2 S sequence encodes up
to 22 N-linked glycan sequons per protomer, which likely
plays an important role in protein folding (19) and host
immune evasion as a glycan shield (62). Of the 22 potential
N-linked glycosylation sites on the S protein, 14 were
identified to be predominantly occupied by processed,
complex-type glycans (63). The remaining eight sites were
found to be dominated by oligomannose-type glycans, which
are divergent from those founded on host glycoproteins (63).
Although glycosylation sites (N165, N234, N343) proximal to
the receptor-binding sites on the SARS-CoV-2 S protein can be
observed, ACE2 bound to the glycosylated and deglycosylated
S ectodomains with nearly identical affinity (1.7 nM vs 1.5 nM)
determined by a biolayer interferometry binding assay (64).
This observation suggests that the high binding affinity
between the SARS-CoV-2 S protein and ACE2 does not
depend on the S protein glycosylation.

When the site-specific N-linked glycans are mapped onto the
prefusion structure of the SARS-CoV-2 S ectodomain (63), the
resulting model exhibited substantially higher levels of glycan-
free surface than that revealed by structures of fully glycosylated,
trimeric HIV-1 Env ectodomains (65, 66). This suggests that the
SARS-CoV-2 S protein is covered by a less dense and less
effective glycan shield compared to viral glycoproteins from
HIV-1 (36, 66) and Lassa virus (67), which may be beneficial
for the induction of humoral immunity and could be good news
for a SARS-CoV-2 vaccine (68).

Notably, it has been shown that multiple major viral surface
antigens have neutralizing epitopes that are partly or even
exclusively composed of carbohydrate moieties (69, 70),
exemplified by the HIV-1 Env spike, which could be
recognized by a large number of carbohydrate-binding
October 2020 | Volume 11 | Article 576622
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antibodies, including 2G12, PG9, PG16, CH04, PGT121,
PGT128, PGT135, and PGT145 (70, 71). In the case of SARS-
CoV-2, more recently a potent neutralizing antibody against
both SARS-CoV and SARS-CoV-2, S309, has been shown to
recognize a highly conserved glycan-containing RBD epitope
(72). These observations suggest that carbohydrate moieties
could be immunogenic and highlight the need for
immunogens to display the glycans important for the
recognition of neutralizing antibodies (73); in support of this,
specific N-linked glycans on Hemagglutinin has been shown to
be essential for the elicitation of broadly neutralizing antibodies
against Influenza (74). Accordingly, there has been mounting
interest in exploring the potential of immunogenic glycan
moieties as vaccine candidates against multiple viruses,
including SARS-CoV-2 (75, 76).
SARS-COV-2 S GLYCOPROTEIN-
MEDIATED MEMBRANE FUSION

Membrane fusion and viral entry of SARS-CoV-2 is initiated by
binding of RBD in the viral S glycoprotein transiently sampling
the functional conformation to ACE2 on the surface of target
cells (Figure 1) (10). After receptor engagement at the plasma
membrane or ensuing virus endocytosis by the host cell (8), a
second cleavage (S2′ cleavage site) is generated, which is
mediated by a cellular serine protease TMPRSS2 (48) or
endosomal cysteine proteases cathepsins B and L (10)
(Figure 1). Protease cleavage at S2′ site frees the fusion peptide
from the new S2 N-terminal region, further destabilizes the
SARS-CoV-2 S glycoprotein and may initiate S2-mediated
membrane fusion cascade. Following the second cleavage, the
fusion peptide at the N terminus of the S2 trimer is inserted into
the host membrane (8), forming the pre-hairpin intermediate
state (39). Since the pre-hairpin intermediate state is extremely
unstable, the S2 fusion protein is refolded quickly and
irreversibly into the stable postfusion state (39, 77). These large
conformational rearrangements pull the viral and host cell
membrane into close proximity, leading ultimately to the
membrane fusion (8, 39).
INSIGHTS INTO THE DESIGN AND
DEVELOPMENT OF S PROTEIN-BASED
VACCINES

Since SARS-CoV-2 was identified as the causative agent of
COVID-19, and its first genome sequence was released
immediately and freely by a Chinese research group (40),
SARS-CoV-2 vaccine candidates based on various vaccine
platforms, such as inactivated or live attenuated vaccines, DNA
and mRNA vaccines, viral vector-based vaccines, and
recombinant protein-based vaccines, have been developed (12,
78). Most of these vaccine strategies are based on the full-length S
glycoprotein, the major viral surface antigen (12). When a
Frontiers in Immunology | www.frontiersin.org 6
vaccine strategy requires that the SARS-CoV-2 S protein be
recombinantly expressed in the human body, the ERRS should
be omitted to enhance the cell surface expression level of the
resulting protein.

Theoretically, the native HIV-1 Env trimer present on the
surface of intact virions is thought to be a most ideal immunogen
(60), as most of the neutralizing antibodies thus far described
could recognize and bind to the prefusion form of trimeric HIV-1
Env, although it is with great difficulty that such neutralizing
antibodies against this glycan-covered, sequence-variable native
form are induced (36). For SARS-CoV-2, different lines of
research have shown that convalescent sera from SARS-CoV
and SARS-CoV-2 patients showed no or limited cross-
neutralization activity against these two viruses by pseudotyped
and authentic viral infection assays, despite significant cross-
reactivity in binding to the S glycoproteins of both viruses (9, 79–
81). Similar results were also observed in infected or immunized
animals (48, 79, 81). Together with the finding that although the
SARS-CoV-2 S protein shares a high degree of amino acid
sequence identity with that of SARS-CoV (~76% overall), the
RBM is less conserved (~47% identity) than any other functional
region or domain (82), it can thus been surmised that the RBM
has the most immunodominant neutralizing epitope(s) of the
whole S protein, capable of readily eliciting strong neutralizing
antibody responses. However, the native trimeric SARS-CoV-2 S
protein could conceal each of its immunodominant RBMs by
adopting the closed conformation (41, 83). Therefore, SARS-
CoV-2 evades immune surveillance also through conformational
masking, which is well-documented for HIV-1 (43, 44); while at
the same time, the S protein could transiently sample the
functional state to engage ACE2, consistent with the notion
that the fusion glycoprotein of highly pathogenic viruses have
evolved to perform its functions while evading host neutralizing
antibody responses.

Another concern for vaccine candidates based on the full-
length S glycoprotein of SARS-CoV-2 is raised by the
observation that the S1 subunit could spontaneously dissociate
from the S glycoprotein probably as a trimer that still assumes
the RBD closed conformation, leaving only the postfusion S2
trimer (41). The resulting S1 and S2 subunits might expose
immunodominant, nonneutralizing epitopes that are utilized by
SARS-CoV-2 to serve as decoys to distract the host immune
system, inducing a large proportion of ineffective antibody
responses, as documented for HIV-1 (60) and respiratory
syncytial virus (RSV) (84).

It should be noted that although vaccine candidates based on
the full-length S protein of the closely related SARS-CoV could
elicit neutralizing antibody responses against infection of SARS-
CoV, they may also induce harmful immune responses,
including liver damage of the vaccinated animals, infection of
human immune cells by SARS-CoV, and antibody-dependent
enhancement of SARS-CoV infection (85–89). Therefore,
although the S proteins of both SARS-CoV and SARS-CoV-2
are thought to be promising vaccine immunogens for generating
protective immunity, optimizing antigen design is critical to
ensure an optimal immune response through exposing more
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neutralizing epitopes and displaying fewer potentially weakly or
non-neutralizing epitopes (90). Vaccines containing or
expressing the full-length S protein or its soluble ectodomain
form should thus be engineered to sample a RBD(s) “up”
conformation while the rest is still kept in the prefusion state
(91, 92).

Apart from recombinant, soluble, stabilized ectodomains that
are engineered to expose the immunodominant RBD by adapting
the RBD(s) “up” conformation, RBD proteins of SARS-CoV and
SARS-CoV-2 have also been widely used as recombinant
protein-based vaccines (85, 93–95). The RBD of SARS-CoV is
highly immunogenic (96, 97) and is targeted by most of the
neutralizing monoclonal antibodies that have been characterized
(98). Based on the observation that a 193-amino acid fragment
(residues 318-510) was previously identified to be the minimal
RBD region of SARS-CoV (99), a corresponding 194-amino acid
fragment (residues 331-524) can be readily selected as the
minimal RBD region of SARS-CoV-2 and has already been
characterized (100). This minimal form of RBDs of both
viruses could serve as a vaccine candidate (100).

However, a conserved cysteine residue is located immediately
upstream of the minimal RBD fragments of both viruses and
always forms a disulfide bond in nearly all published structures
containing this residue (101, 102); this is also the case for Middle
East respiratory syndrome coronavirus (MERS-CoV) (103, 104)
and HCoV-HKU1 (37), consistent with the observation that all
RBDs of these viruses share a conserved structural core. The
disulfide bond contributes to stabilization of the RBD structure
and likely modulates the protein immunogenicity. This notion is
consistent with the observation that mice immunized with a longer
form of the SARS-CoV RBD (residues 318-536) produced a higher
titer of neutralizing antibodies compared with mice immunized
with the minimal RBD region (residues 318-510) (105). Therefore,
when each of the minimal RBD fragments of SARS-CoV and
SARS-CoV-2 is used as vaccine candidates, the critical cysteine
residue should not be ignored and thus should be included (106).

Besides the RBD, which has been shown to a major target for
human neutralizing antibody responses (107), the NTD was
recently identified to be a new vulnerable site of the SARS-
CoV-2 S protein for antibody neutralizing and therefore could
also serve as a recombinant protein-based vaccine (108–110). As
expected, NTD-specific neutralizing antibodies could target the S
protein in both closed and open conformations (108). In
addition, the apparent accessibility of the fusion peptide and
HR1 region in published structures of the SARS-CoV-2 S
ectodomain trimer as well as their high sequence conservation
among CoVs suggests that they would be good immunogen
candidates for epitope-focused vaccine design aimed at raising
broadly CoV neutralizing antibodies (46). The epitope-focused
vaccine design has proven to be successful in generating
neutralizing antibodies against RSV fusion glycoprotein (111).
However, neutralizing antibodies targeted against these two
regions still need to be isolated in infected individuals to
support this notion.

Unlike wild-type full-length S protein of SARS-CoV-2, the
above monomeric fragments do not induce any infection-
Frontiers in Immunology | www.frontiersin.org 7
enhancing antibodies or harmful immune or inflammatory
responses (106, 112), all of which could be potentially avoided
through structure-based immunogen design to improve
immunogenicity (113, 114). However, wide-type full-length or
soluble ectodomain form of the SARS-CoV-2 S protein could
trigger stronger cellular immune responses (115), which have
been demonstrated to play an important role in controlling
diseases caused by CoVs (116, 117), including SARS-CoV-2
(118), and are probably also an important determinant of
effective vaccines against SARS-CoV-2 (115, 119). Additionally,
when more than one RBD of the S protein trimer is engineered to
be locked in the “up” conformation (120, 121), the antigenicity
and immunogenicity of the resulting RBDs would be
significantly enhanced compared to monomeric RBD form (97,
122). Moreover, improved protection is likely to be achieved
when vaccinated with full-length or soluble ectodomain form of
the SARS-CoV-2 S protein in that both forms can elicit
neutralizing antibodies directed against non-RBD sites, as
observed for MERS-CoV (123).

Genetic variation has been used by many viruses that have
RNA genomes (124), including HIV and influenza, as a
mechanism to avoid antibody-mediated immunity, and is
partially responsible for the great difficulty in developing
effective and durable vaccines against these viruses (36). As an
RNA virus, however, SARS-CoV-2 has a very low mutation rate
overall (125) likely because CoVs have a genetic proofreading
mechanism (126). All reported variations occurred in the SARS-
CoV-2 S glycoprotein have a prevalence of no more than 1%
(127), with an exception of D614G, which has become the most
prevalent genotype in the global COVID-19 pandemic (127).
Fortunately, although the D614G mutation of the SARS-CoV-2 S
protein has been shown to enhance viral infectivity (128–130),
until now there is no evidence that infection with SARS-CoV-2
carrying the G614 mutant will be associated with disease severity
(127, 131). Furthermore, assays using both monoclonal and
polyclonal antibodies generated from individuals naturally
infected with D614- or G614-carrying viruses demonstrated
that the D614G mutation retains or even increases viral
susceptibility to neutralization (127, 130, 132, 133). This
suggests that the D614G mutant maintains or favors an open,
functional conformational state (134).

Although at an extremely low frequency, natural variations,
including L452R A475V, V483A, and F490L that render the S
glycoprotein resistant to certain neutralizing antibodies targeting
the RBD, emerged under no selection pressure exerted by
approved vaccines or neutralizing antibodies or entry
inhibitors (127, 132). However, it has been shown that SARS-
CoV-2 escape mutants could be easily selected and quickly
amplified under the selection pressure of single antibody
treatment (135). These observations suggest that a
combination of at least two neutralizing antibodies that
recognize and bind to distinct and non-overlapping epitopes
on the SARS-CoV-2 S glycoprotein (e.g., RBD and NTD, as well
as HR and glycan) is required to restrict the possible occurrence
of viral escape mutants and potential subsequent loss of single
antibody-mediated neutralization (135–138). When these
October 2020 | Volume 11 | Article 576622
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observations are taken into consideration for vaccine design and
development, an ideal SARS-CoV-2 immunogen should contain
as many exposed neutralizing epitopes as possible, although the
RBD also possesses extra epitope(s) besides the epitope in the
RBM region (72, 139–141).
CONCLUDING REMARKS AND
PROSPECTS

SARS-CoV-2 is a highly contagious pathogen that continues to
spread quickly around the globe, causing COVID-19 to be one of
the worst pandemics in recorded history. A safe and efficacious
vaccine represents one of the best ways to reduce or eliminate the
COVID-19 pandemic (142). Unfortunately, no vaccines for any
of the known human CoVs have been licensed (143, 144),
although several potential SARS-CoV and MERS-CoV vaccines
have advanced into human clinical trials for years (117, 145),
suggesting the development of effective vaccines against human
CoVs has always been challenging. However, it has been shown
that both SARS-CoV and SARS-CoV-2 could readily induce
neutralizing antibodies following natural infection or
immunization (146–149). Moreover, a growing number of
neutralizing monoclonal antibodies targeting the SARS-CoV-2
S glycoprotein with high potency have been isolated from plenty
of convalescent donors (33) as well as humanized mice (136,
141), some of which have been shown to afford protection
against SARS-CoV-2 challenge in animal models. It thus seems
that vaccine candidates designed to elicit such neutralizing
antibodies are feasible. It is widely accepted that the S protein
of SARS-CoV-2 is a most promising immunogen for producing
protective immunity (150). However, it is likely that the S protein
Frontiers in Immunology | www.frontiersin.org 8
has evolved to perform its functions while evading host
neutralizing antibody responses and thus should be engineered
to ensure an optimal immune response (151, 152). The
immunogen design strategies described in this review based on
the wealth of the SARS-CoV-2 S glycoprotein research related to
its biosynthesis, structure, function, antigenicity as well as
immunogenicity will likely contribute to the ultimate success of
safe and efficacious vaccines against SARS-CoV-2/COVID-19.
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