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COVID-19 is a disease caused by the coronavirus SARS-CoV-2 (Severe Acute
Respiratory Syndrome Coronavirus-2), known as a highly contagious disease, currently
affecting more than 200 countries worldwide. The main feature of SARS-CoV-2 that
distinguishes it from other viruses is the speed of transmission combined with higher risk
of mortality from acute respiratory distress syndrome (ARDS). People with diabetes
mellitus (DM), severe obesity, cardiovascular disease, and hypertension are more likely
to get infected and are at a higher risk of mortality from COVID-19. Among elderly patients
who are at higher risk of death from COVID-19, 26.8% have DM. Although the reasons for
this increased risk are yet to be determined, several factors may contribute to type-2 DM
patients’ increased susceptibility to infections. A possible factor that may play a role in
increasing the risk in people affected by diabetes and/or obesity is the impaired innate and
adaptive immune response, characterized by a state of chronic and low-grade
inflammation that can lead to abrupt systemic metabolic alteration. SARS patients
previously diagnosed with diabetes or hyperglycemia had higher mortality and morbidity
rates when compared with patients who were under metabolic control. Similarly, obese
individuals are at higher risk of developing complications from SARS-CoV-2. In this review,
we will explore the current and evolving insights pertinent to the metabolic impact of
coronavirus infections with special attention to the main pathways and mechanisms that
are linked to the pathophysiology and treatment of diabetes.

Keywords: coronavirus disease (COVID-19), type 2 diabetes, angiotensin converting enzyme2 (ACE2), Furin,
transmembrane protease, serine 2 (TMPRSS2), metformin, interferon induced membrane (IFITM3)
Abbreviations: SARS-CoV-2, severe acute respiratory syndrome coronavirus-2; ARDS, acute respiratory distress syndrome;
DM, diabetes mellitus; MERS-CoV, middle east respiratory syndrome coronavirus; COPD, chronic obstructive pulmonary
disease; CVD, cardiovascular disease; CKD, chronic kidney disease; ACE2, angiotensin-converting enzyme 2; T2DM, type-2
dm; TNF-a, tumor necrosis factor alpha; MCP-1, monocyte chemoattractant protein-1; IL-6, interleukin-6; rhACE2,
recombinant angiotensin-converting enzyme 2; TCZ, tocilizumab; IFITM, interferon-induced transmembrane; ADAM17, a
disintegrin and metallopeptidase domain 17; GRP78, glucose regulated protein 78; SBDb, GRP78 substrate binding domain;
bDKA, Diabetic Ketoacidosis; DPP-4i, Dipeptidyl peptidase 4 inhibitor; AICAR, 5-Aminoimidazole-4-
carboxamide ribonucleotide.
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WORSE OUTCOMES IN COVID-19
PATIENTS AFFECTED BY OBESITY
AND DIABETES

COVID-19 is caused by the coronavirus SARS-CoV-2 and has
emerged as a fast-spreading contagious disease affecting most
countries across the globe (1). SARS-CoV-2 is the third
coronavirus appearance in human history following severe acute
respiratory syndrome coronavirus (SARS-CoV) and the Middle
East respiratory syndrome coronavirus (MERS-CoV) (2, 3).
Coronaviruses are a family of enveloped viruses encoded by a
single-stranded positive-sense RNA genome and named for the
crown-like appearance of their virions under the electron
microscope. The key feature of SARS-CoV-2 that differentiates it
from other viruses is its transmissibility combined with a greater risk
of mortality due to the acute respiratory distress syndrome (ARDS).
Signs and symptoms of SARS-CoV-2 infections range from mild/
asymptomatic infections (20-86% of all infections), restricted to the
upper respiratory tract (20–86% of all infections), to severe
respiratory distress characterized by the spread of infection to the
lower airways leading to regional inflammation and pneumonia.
This is manifested particularly in patients with comorbidities such
as chronic obstructive pulmonary disease (COPD), asthma,
diabetes, hypertension, and cardiovascular disease (CVD) (4, 5).
Frontiers in Immunology | www.frontiersin.org 2
Significantly, Maddaloni et al. suggested an increased prevalence of
COPD and of chronic kidney disease (CKD) in Covid-19 patients
with diabetes (6).

People with diabetes mellitus (DM), severe obesity, CVD, and
hypertension are at a higher risk of poor outcome from COVID-
19 (4, 7–10). The reasons underlying this increased risk have not
been determined. However, a panoply of factors may contribute
to type-2 DM (T2DM) patient increased risk of poor outcomes of
COVID-19 disease (Figure 1). Individuals affected by diabetes
and/or obesity generally have an impaired innate and adaptive
immune response, characterized by a state of chronic low-grade
inflammation (11), which can lead to abrupt systemic metabolic
alteration, characterized by higher levels of leptin (a
proinflammatory adipokine) and lower adiponectin (an anti-
inflammatory adipokine) (12–16). An unfavorable hormone
environment also contributes to dysregulation of the immune
response (17). Typically, obese people have defective innate
immunity manifested by enhanced production of several
proinflammatory cytokines, such as tumor necrosis factor
alpha (TNF-a), monocyte chemoattractant protein-1 (MCP-1),
and interleukin-6 (IL-6) (18). Upon antigen exposure, obesity-
related chronic inflammation reduces the activation of
macrophages and dampens proinflammatory cytokine
production (19). This exceptional obesogenic state may partly
FIGURE 1 | A schematic model summarizing the various mechanisms by which diabetes can impact on COVID-19 poor outcome.
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explain the presence of antiviral-resistance and vaccine-escape
deviations in the obese population (19, 20). Moreover, B- and T-
cell responses are weakened in obese patients and even more so
in obese patients with diabetes (21). After analyzing a case cohort
of 70,000 individuals infected with COVID-19, the Chinese
Centre for Disease Control and Prevention reported
augmented mortality in individuals with diabetes, increasing
from 2.3% in the general population to 7.3% in people with
diabetes (22). Interestingly, earlier studies demonstrated that
individuals with diabetes exhibit a similar high risk for SARS
and MERS (23, 24). Among patients infected with the SARS
virus, it has been shown that histories of diabetes and
hyperglycemia are independent predictors of mortality and
morbidity and that metabolic control might improve their
prognosis (24). Moreover, hyperglycemia is a strong prognostic
predictor of outcome in hospitalized patients with COVID-19.
Earlier studies showed that hyperglycemic patients with COVID-
19 displayed higher cumulative incidence of severe disease than
normoglycemic controls (25, 26). Possible mechanisms for this
increased mortality include hyperglycemia-induced changes in
the immune system and increases in inflammatory cytokines
(27). Furthermore, among elderly individuals who were at higher
risk of death from COVID-19, 26.8% had diabetes (4). In the
United States, 10.5% of the total population has diabetes (4).
Similarly, obese individuals are at higher risk of developing
complications from SARS-CoV-2 (28, 29).

In this review, we will discuss current and growing
perceptions pertinent to the metabolic impact of coronavirus
infections while paying special attention to the main pathways
and mechanisms that are connected to the pathophysiology and
treatment of diabetes.

Hypertension is another predictor of poor outcomes in
COVID-19 patients. This may be due to the SARS-CoV-2
Frontiers in Immunology | www.frontiersin.org 3
binding to the angiotensin-converting enzyme 2 (ACE2) in
human epithelial lung cells, potentially involved in ARDS.
Ace2 KO mice display severe pathology of ARDS (30). An
earlier report has shown that recombinant angiotensin-
converting enzyme 2 (rhACE2) can attenuate arterial
hypoxemia and pulmonary blood flow in a piglet model of
lipopolysaccharide-induced ARDS (31). ACE2 exerts its
functions through cleaving either Angiotensin I or Angiotensin
II into inactive Angiotensin (1–9) and Angiotensin (1–7)
respectively. Angiotensin (1–9) gets further metabolized into
Angiotensin (1–7). Angiotensin (1–7) is a vasodilator. Hence,
ACE2 counteracts the vasoconstrictor effects of the ACE-
Angiotensin II axis. Angiotensin-converting enzyme inhibitors
(ACEi) and/or angiotensin receptor blockers (ARBs) may
interfere with angiotensin-converting enzyme 2 expression
and/or activity. Thus, as recommended by several medical
associations, and in light of more scientific evidence
supporting their beneficial/non-harmful impact, ACEis/ARBs
should be continued in COVID-19 patients (32–34). Moreover,
the impact of metabolic syndrome (MS) and its comorbidities on
COVID-19 prognosis must be considered. Yet, MS by definition
is a set of metabolic disorders that include insulin resistance,
dyslipidemia, central obesity and hypertension. All are risk
factors for the development of type-2 diabetes and
cardiovascular diseases (35). In 2017, it was estimated that MS
affected 20% of North American population, 25% of European
population and approximately 15% of Chinese population (36).
Considering the presence of MS across different ethnicities and
continents, more future studies focusing on the effect of MS on
COVID-19 outcomes are needed.

Studies from different countries have demonstrated a varying
prevalence of diabetes, other comorbidities, and mortality among
patients infected with COVID-19. Table 1 summarizes the
TABLE 1 | Prevalence (%) of comorbidities in COVID-19 infected patients.

Study Sample size (n) Diabetes (%) CVD (%) HTN (%) CKD (%) Ref

Li B et al. 1,527 9.7 16.4 17.1 NR (5)
Covid-19 group, Italy 481 33.9 30.1 73.8 20.2 (37)
Onder et al. 355 35.5 42.5 NR NR (7)
Zhou et al. 191 19 8 30 1 (8)
Wu C et al. 201 10.9 4 19.4 1 (9)
Guan et al. 1,099 7.4 3.8 15 0.7 (10)
Bhatraju et al. 24 58 NR NR 21 (38)
CDC, USA 7,162 10.9 9 NR 3 (39)
Zhang et al. 140 12.1 8.6 30 1.4 (40)
Liu J et al. 61 8.2 1.6 19.7 NR (41)
Guo et al. 187 15 11.2 32.6 3.2 (42)
Huang et al. 41 19.5 15 14.6 NR (43)
Chen N et al. 99 12.1 40 NR NR (44)
Wang et al. 138 10.1 19.6 31.2 2.9 (45)
Yang J et al. Meta-analysis of eight studies n = 46,248 0.08 0.05 0.17 NR (46)
Yang X et al. 52 17 23 NR NR (47)
Liu K et al. 137 10.2 7.3 9.5 NR (41)
Chen T et al. 274 17 8 34 1 (48)
CDC China 20,982 5.3 4.2 12.8 NR (49)
Singh et al. Meta-analysis of 10 studies = 2,209 0.11 0.07 0.21 NR (50)
Hu Y et al. Meta-analysis of 21 studies n = 47,344 7.7 4.7 15.6 2.1 (37)
Dec
ember 2020 | Volu
me 11 | Article 57
CVD, cardiovascular disease; HTN, hypertension; CKD, chronic kidney disease; NR, not reported; CDC, Centers for Disease Control and Prevention.
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prevalence of comorbidities among patients with COVID-19,
and Tables 2 and 3 summarize the prevalence of diabetes and
other comorbidities among patients with severe versus mild
COVID-19 symptoms and among survivors versus non-
survivors of COVID-19. Overall, it was reported that the
proportion of people affected by diabetes among COVID-19
patients was from 5.3% to 20%. Although the COVID-19
surveillance group in Italy showed a higher prevalence of
comorbidities such as hypertension and diabetes (73% and
34%, respectively), other studies from China showed a 9 to
15% prevalence rate. Bhatraju et al. (38). reported that US
patients had morbidity rates similar to patients in Italy.
However, it is important to note that Bhatraju et al. included
only critically ill patients from the Seattle area. Differences in the
characteristics of patients included in the studies could explain
the difference in the prevalence of comorbidities among various
cohorts. Data also show that the presence of diabetes is
associated with a high risk of severe to critical illness in 14 to
32% of patients with COVID-19 (39, 40). Other studies showed
higher rate of admission into the intensive care unit (ICU)
among people who were diagnosed with diabetes or other
comorbidities when compared with non-ICU patients (22.2 vs
5.9%) (45). Furthermore, mortality rates among COVID-19
patients with various comorbidities when compared to those
without any comorbidities were 15 vs 2.3%, respectively (43–45).
Notably, several studies showed that diabetes is strongly
associated with increased risk of mortality due to COVID-19
Frontiers in Immunology | www.frontiersin.org 4
as compared with COVID-19 patients without diabetes and
other comorbidities (22–31 vs 2–4%) (8, 10, 47). Zhou et al.
also showed that the mortality rate among COVID-19 patients
with diabetes was higher than the overall mortality rate with the
viral infection (8). Wu et al. showed that diabetes was associated
with a hazard ratio of 2.3 for ARDS (9). Other studies associated
diabetes to the severity of COVID-19 (51). Hence, it was
proposed that the course of treatment and prognosis should be
stratified based on occurrence or absence of comorbidities (52).

In Italy, patients with diabetes showed high prevalence,
severity of disease and mortality during SARS-COV-2 infection
as well as higher rates of ICU admission. They frequently
reported respiratory symptoms and were at increased risk of
numerous pulmonary diseases, such as COPD, bronchial severe
asthma and idiopathic pulmonary fibrosis (53, 54). Thus, we
speculate that the complicated alveolar-capillary network of
lungs could be targeted by diabetes micro-vascular injury.
Recently, continuous experimental therapy with monoclonal
antibody against the IL-6 receptor (tocilizumab, TCZ) in Italy
seems to have positive effects on severe lung disease and
prognosis in patients with COVID-19. Hence, TCZ could be
administered to patients with diabetes during the SARS-COV-2
infection (55). However, an earlier study showed that at
admission, hyperglycemic (n = 31) vs. normoglycemic (n = 47)
patients had fivefold higher IL-6 levels, which persisted even after
TCZ administration (P < 0.05) (56). Interestingly, in a risk-
adjusted Cox regression analysis, TCZ in hyperglycemic patients
failed to reduce risk of severe outcomes as it did in
normoglycemic patients (P < 0.009). Thus, hyperglycemia
could result in an unfavorable effect on hospital admission,
clinical outcomes and drug therapy (25, 26, 56). It is possible
that comorbidities associated with diabetes (e.g., obesity,
hypertension, and CVD) contribute to increased morbidity and
mortality due to COVID-19. Diabetes was associated with
COVID-19 poor outcomes (51) and with increased time
required for viral clearance (4). Increased expression of ACE2,
furin, and IL-6 and impaired T-cell function are several factors
that were associated with the risk and severity of SARS-CoV2
infection in individuals with diabetes (57).

COVID-19 could cause endothelial dysfunction and a hyper-
coagulation state. This condition is intensified by hypoxia, which
augments thrombosis by both increasing blood viscosity and
hypoxia-inducible transcription factors (HIF) (58, 59).
Consequently, these could lead to pulmonary embolism with
occlusion and micro-thrombosis in pulmonary vessels, as
detected in critically ill COVID-19 patients (59). It is also
TABLE 3 | Prevalence of diabetes among non-survivor and survivor COVID-19 infected patients.

Study Sample size (n) DM in entire cohort (%) DM (%) in non-survivors DM (%) in survivors Mortality rate Ref.

Zhou et al. 191 19% 31.00% 14.00% OR 2.8(1.35 to 6.05) p < 0.001 (8)
Wu et al. 88 18.2% 25.00% 12.50% HR 1.58(0.80 to 3.13), p = 0.19 (22)
Guan et al. 1,099 7.4% 26.90% 6.10% NR (10)
Yang X et al. 52 17% 22% 10% NR (47)
Chen N et al. 274 17% 21.00% 14.00% NR (44)
Dece
mber 2020 | Volume 11 | Article 57
TABLE 2 | Prevalence of diabetes amongst non-severe and severe COVID-19
infected patients.

Study Sample
size(n)

DM (%) ICU
admission
(Severe/
Critical)
(%)*

Significance
p value of

non-severe vs
severe COVID

Ref.

Wu et al. 201 10.90% 19.00% 0.002 (9)
Guan et al. 1,099 7.40% 16.20% NR (10)
CDC, USA 7,162 10.90% 32.00% NR (39)
Zhang et al. 140 12.10% 13.80% 0.615 (40)
Huang et al. 41 15% 25.00% 0.160 (43)
Wang et al. 138 10.10% 22.20% 0.009 (45)
Liu J et al. 61 8.20% 17.60% 0.094 (41)
Hu Y et al. Meta-analysis

of 21 studies
n = 47,344

7.70% 44.50% NR (37)
DM, diabetes mellitus; Ref., references; CDC, Centers for Disease Control and Prevention.
*% is calculated from total population with COVID-19.
6818

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Abu-Farha et al. COVID-19 and Diabetes
reported that COVID-19 is associated with increased incidence
of coagulation as well as thrombotic and inflammatory events
(60), which was responsible, at least in part, for the severe
morbidity and mortality. This suggests that COVID-19
activates yet another unidentified mechanism, which is
involved in the coagulation process. Interestingly, it is well
established that diabetes is a state of increased coagulability;
where increased plasminogen activator inhibitor-1 is a consistent
finding in patients with diabetes. Thus, increased coagulability in
diabetes may be a possible mechanism that links diabetes to
severity of COVID-19.
POSSIBLE MECHANISMS THAT
PREDISPOSE COVID-19 PATIENTS
WITH DIABETES AND/OR OBESITY TO
POOR OUTCOMES

Considering the high incidence of obesity, hypertension, and
CVD in patients with diabetes, it remains unclear whether
diabetes is an independent contributor to the higher morbidity
and mortality associated with COVID-19 (7–10). Maddaloni
et al. have shown that patients with cardiometabolic
multimorbidity, and not diabetes or CVD alone, experience
worse COVID-19 outcomes (61). Nevertheless, plasma glucose
levels and diabetes are independent predictors of mortality and
morbidity in patients with SARS (24, 62). Mechanisms that likely
increase the vulnerability for COVID-19 in DM patients
comprise increased binding affinity and efficient virus entry,
reduced viral clearance, weakened T-cell role, increased
susceptibility to cytokine storm disorder, and the existence of
CVD. Lung cells, including pneumocytes, are the main cellular
sites for coronavirus entrance and inflammation (63). They
express key proteins that enable coronavirus entry into cells,
such as ACE2, transmembrane protease serine 2 (TMPRSS2),
furin, and dipeptidyl peptidase-4 (DPP4). ACE2 and DPP4 also
have established multiple metabolic activities linked to the
pharmacologic and physiologic control of cardiovascular and
glucose homeostasis and DPP4 inhibitors are used extensively in
diabetes therapy (28).

Increased ACE2 expression in pulmonary cells, kidney,
myocardium, and pancreas may mediate increased cellular
binding of SARS-CoV-2 (64–66). The increased expression of
ACE2 in these tissues is well documented in animal models of
diabetes (67, 68). Although insulin administration downregulates
ACE2 expression (46, 68), other hypoglycemic agents such as
glucagon-like peptide-1 (GLP-1) agonists and thiazolidinediones
(pioglitazone), anti-hypertensive drugs such as statins, and ACE
inhibitors increase ACE2 expression (69–73). Recently, Rao et al.
investigated illnesses or traits that may be connected to increased
ACE2 expression in the lung. Using a phenome-wide Mendelian
randomization analyses, they identified the association between
diabetes and higher lung ACE2 expression (74). Moreover,
circulating levels of furin (cellular protease) were found to be
higher in patients with type-2 diabetes (75). The findings of these
Frontiers in Immunology | www.frontiersin.org 5
studies support the hypothesis that COVID-19 patients with
diabetes are predisposed to poor outcomes. Furthermore, a
recent study stated that clearance of SARS-CoV-2 was delayed
in patients with diabetes (76). However, more extensive studies
are needed to confirm this finding.
HOW ARE THE DIFFERENT HOST-
CELLULAR PROTEINS INVOLVED IN
SARS-COV-2 INFECTION ASSOCIATED
WITH DIABETES?

Apart from ACE2, a number of other host-cellular protein
components are thought to have the ability to regulate the
entry of SARS-COV-2; such components are known to be
involved in the pathogenesis of diabetes, as illustrated in
Figure 2 and as described below.

ACE2
ACE2 acts as the receptor for the binding of SARS-CoV-2 with
the host cell. It is already known that the binding of the SARS
coronavirus to its receptor damages islets and causes acute
diabetes (77). Clinical data, which includes patients with mild
and severe COVID-19, established the existence of mild
pancreatitis (78). Diabetes and hypertension (common
comorbidities associated with COVID-19) are often treated
with ACE inhibitors and angiotensin II type-I receptor
blockers. Studies have reported that the expression of ACE2 is
elevated in people with diabetes treated with these medications
(79, 80). The higher levels of ACE2 can thus facilitate critical
illness in COVID-19 patients (81).

Furin
Furin cleaves cell surface proteins. The SARS-CoV-2 S-protein
S1/S2 cleavage site is the target for furin during infection. This
cleavage is critical, as it allows the fusion sequences on the
COVID-19 spike protein to be exposed for the fusion of the virus
with the host cell membranes (1, 65, 82). Thus, high levels of
furin enhance the ability of the virus to enter the host cell. It is
known that individuals with high plasma furin concentrations
have a pronounced dysmetabolic phenotype and elevated risk of
diabetes and premature mortality (75, 83). A point mutation at
the furin cleavage site in the insulin pro-receptor was seen in an
individual with extreme insulin-resistant diabetes (84).
Furthermore, variations in the furin gene have been associated
with decreased triglyceride and increased high-density
lipoprotein cholesterol levels (85). Furin has an impact on the
pancreas, as verified by previous studies, which demonstrated
that furin controls the growth of pancreatic b-cells (86). It also
plays a role in granular acidification in the endocrine pancreas
via impaired processing of Ac45 (87). We have previously
identified a higher proportion of damaging variations in the
furin gene in the Arab population as compared with Europeans
(88), which is a population with high rates of diabetes that
requires special attention during this pandemic (89).
December 2020 | Volume 11 | Article 576818
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TMPRSS2
SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry, and
the serine protease TMPRSS2 is required for S-protein priming,
which entails S-protein cleavage at the S1/S2 and the S2′ site and
allows fusion of viral and cellular membranes. TMPRSS2 belongs
to the family of serine proteases. It is now known that ser/thr
protein kinases contribute to the onset of insulin resistance via
the introduction of phosphorylation-based negative feedback
control mechanisms, which disengage the insulin receptor
from its downstream effectors (90). Circulating levels of serine
proteases, such as granzyme B, are elevated in diabetes patients
(91). Hence, it can be assumed that the increased activity of
TMPRSS2 can increase the viral entry in the host.

IFITM3
Interferon-induced transmembrane (IFITM) proteins are
important effectors that inhibit viral infections. IFITM3
directly engages and shuttles the incoming virus particles to
lysosomes. It is known that the MERS-CoV entry into host cells
is sensitive to inhibition by IFITM proteins (particularly
IFITM3) and that the cellular context and/or IFITM
expression levels can affect the efficiency of inhibition (92, 93).
IFITM3 is now indicated as a novel entry site in the SARS-CoV-2
domain as well (94, 95). Inhibitors of the mammalian target of
rapamycin (mTOR), such as rapamycin, downregulate
endogenous IFITM3 through a lysosomal degradation pathway
in hematopoietic and non-hematopoietic cells (96). Interestingly,
mTOR signaling has a role in pancreatic b cells and immune
Frontiers in Immunology | www.frontiersin.org 6
cells, and hence it is also involved in the pathogenesis and
treatment of diabetes (97).

Adam17
In the context of SARS-CoV infection, it has been proposed that
SARS-S binding to ACE2 triggers shedding of ACE2 via the
disintegrin and metallopeptidase domain 17 (ADAM17) protein
to release the extracellular domain of ACE2 into the extracellular
space. This process promotes the uptake of SARS-CoV into cells
(98, 99). It is now further proposed that the inhibition of
ADAM17 may exert a protective effect on COVID-19 (100).
ADAM17 is a metalloprotease and disintegrin that lodges in the
plasma membrane in several cell types and can cleave a wide
variety of cell surface proteins. In this way, ADAM17 can influence
several physiological and pathological processes (101). In animal
models of insulin-resistant diabetes, the intraperitoneal injection
of ADAM-17 inhibitor, restored insulin sensitivity through the
inhibition of TNF-a (102). Consistent with these findings, Serino
et al. demonstrated that heterozygous ADAM-17 (−/+) mice fed a
high-fat diet were less predisposed to obesity and insulin resistance
than their wild-type littermates (103).

Other Players: GRP78 and CD147
It appears that apart from the ACE2 receptor entry mode, SARS-
CoV-2 may use the protease called TMPRSS2 to enter the cells;
some researchers speculate that there can be at least 8 other
different proteases. It is also proposed that other receptors such
as glucose regulated protein 78 (GRP78 receptors) may provide
FIGURE 2 | Illustration of association of the different host-cellular proteins involved in SARS-COV-2 infection with diabetes.
December 2020 | Volume 11 | Article 576818
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binding to the SARS-CoV-2 spike proteins. Protein–protein
docking studies revealed that four regions of the spike protein
can fit tightly in the GRP78 substrate binding domain b (SBDb)
(104). Grp78 is critically important for b-cell maturation and
survival; it is demonstrated that Grp78 heterozygosity attenuates
diet-induced obesity and insulin resistance (105). It is also
possible that other receptors mediate the entry of SARS-CoV-
2, such as CD147 into T cells. Also called Basigin or EMMPRIN,
CD147 is a transmembrane glycoprotein that belongs to the
immunoglobulin superfamily on the surface of T lymphocytes
(106). A recent study reported that it is a novel invasive route for
SARS-CoV-2 entry (106, 107). CD147 is essential for diabetes-
associated recombinant tissue-plasminogen activator (rt-PA)-
induced hemorrhagic transformation, and reduced CD147
glycosylation is an encouraging therapy for neurovascular-unit
repair following rt-PA treatment of diabetes patients (108).
USE OF GLUCOSE-LOWERING
THERAPIES IN COVID-19 PATIENTS
WITH DIABETES

Lack of specific and effective therapeutics is the major challenge
in dealing with COVID-19 patients that are suffering from severe
comorbidities such as diabetes. In the absence of specific
medication for COVID-19 patients, it is essential to evaluate
the applicability of drugs in practice for various comorbidities.
Diabetes is one of the major comorbidities of COVID-19 patients
who developed ARDS (43). It was originally thought that some
anti-diabetes treatment (such as metformin, PPARs, DPP4
inhibitors, GLP-1R agonists, SGLT2 inhibitors and insulin
therapy) could influence the course of COVID-19; however, no
convincing evidence has emerged to support this view.

GLP-1R Agonists
GLP-1R agonists target many anti-inflammatory pathways in
animals and lessen systemic inflammation in individuals affected
by diabetes and obesity (109). These drugs decrease pulmonary
type-2 immune cytokine reactions and the degree of lung injury
in mice after respiratory viral infection (110). Thus, GLP-1-based
drugs possess strong anti-inflammatory effects in lungs and
could become possible repurposed drugs, useful to treat
COVID-19 patients with ARDS (111). However, the beneficial
effects of these drugs remain to be convincingly established in
COVID-19.

SGLT2 Inhibitors
Based on the findings that showed the organ-protective effects of
SGLT-2 inhibitors (112), in addition to their glycemic benefits,
these drugs were proposed to provide benefits in COVID-19
settings. However, these inhibitors were also known to lead to
risk of dehydration and euglycemic Diabetic Ketoacidosis (DKA)
(112). Though SGLT2 inhibitors may be potentially beneficial as
organ protective agents in COVID-19, there is no completed
clinical trial to assess the risk/benefit balance of using these
inhibitors in COVID-19 patients. Thus, caution needs to be
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exercised when these inhibitors are used (113). It is advisable to
re-evaluate or discontinue SGLT2 inhibitors upon hospital
admission of unstable patients with severe SARS-CoV-
2 infection.

Insulin Therapy
Given that insulin therapy has an optimal glucose-lowering effect
in patients affected by diabetes, it is suggested that insulin is the
treatment of choice in hospitalized COVID-19 patients with
diabetes (114, 115). As stated in the American Diabetes
Association guidelines, basal insulin or a basal plus bolus
correction insulin regimen is the favorite treatment for
noncritically ill hospitalized patients. Continuous intravenous
insulin infusion is preferred in critically ill patients. A target
glucose range of 7.8–10.0 mmol/L is recommended for both
critically and noncritically ill patients (114). Moreover, a recent
study examined the effects of optimal glycemic control using
insulin therapy in patients with hyperglycemia affected by
COVID-19 (25). Fifty-nine patients with COVID-19
hospitalized with moderate disease were stratified into
hyperglycemic and normoglycemic groups based on glycemia
measure of >7.77 mmol/L at the time of hospital admission.
Their data showed that patients with hyperglycemia treated with
insulin infusion had a lower risk of severe disease outcome than
patients without insulin infusion. Accordingly, insulin infusion
may be an effective method for reaching glycemic control and
improving outcomes in patients with COVID-19 (25).
Consistently, Bornstein et al. recommended insulin treatment
for diabetic patients with severe COVID-19 (116). However, a
recent study examining the effects of insulin therapy in
hospitalized diabetic patients with COVID-19 reported a
greater than threefold risk of mortality and severe outcome in
treated patients (117). Thus, it remains unclear whether insulin
therapy worsens COVID-19 outcomes or if these results were
caused by a patient selection bias (note: patients with diabetes
receiving insulin tend to have longer duration of disease with a
higher rate of comorbidities).

ACE2 and DPP4
DPP4 (CD26), a transmembrane ectopeptidase, acts as a co-
receptor for a subset of coronaviruses including MERS-CoV. Its
activity can potentially modulate the levels and activity of many
immunomodulatory cytokines and chemokines (118). Although
ACE2 and DPP4 are crucial modulators of glucose homeostasis,
there is no convincing evidence to propose that medications
regulating the ACE2- or DPP4-linked pathways yield obvious
benefit or harm during coronavirus infections. Several studies
have evaluated whether DPP4i are associated to improved
Covid-19 outcomes, with apparently opposing results. Some
groups have shown that patients with COVID-19 who were on
Dipeptidyl peptidase 4 inhibitor (DPP-4is) had a similar disease
outcome as those who were not (119–121). Instead, Solerte et al.
have found that sitagliptin (DPP-4i) treatment at the time of
admission was associated with improved clinical outcomes and
reduced mortality, compared to standard-of-care treatment
(122). ACE2 decoy receptors or antibodies targeting ACE2 can
be promising tools to block the viral cell-entry. However, the
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impact of these drugs on metabolic parameters has not been
sensibly investigated and requires further investigation (123).
CONCLUSION

Evidence implies that obesity and diabetes are leading risk factors
that affect the severity of disease caused by coronaviruses
infections, such as COVID-19. Among patients infected with
the SARS-CoV-2, history has shown that diabetes and
hyperglycemia are independent predictors for mortality and
morbidity, and that glycemic control might improve patient
prognosis. The risk seen among people with diabetes may be
due to insulin resistance, inflammation, or hypercoagulation, or
owed to underlying obesity, which may lead to adverse outcome.

Several classes of anti-obesity and anti-diabetes medications
(such as metformin, 5-Aminoimidazole-4-carboxamide
ribonucleotide (AICAR), and PPARg agonists) are known to
modulate the immune system and result in improved insulin
sensitivity. Hence, further investigations are warranted to
Frontiers in Immunology | www.frontiersin.org 8
address their use alone or in combination with other antiviral/
immunomodulatory drugs in the treatment of COVID-19.
Moreover, GLP-1R agonists and DPP4 inhibitors are known to
mediate anti-inflammatory effects in human patients, while
controlling glucose levels in hospitalized patients (124)
Nevertheless, there is no convincing evidence advocating the
use of these drugs as replacements for insulin in severely ill
COVID-19 patients. The fast-growing medical information
pertaining to the COVID-19 pandemic entails continuing
scrutiny to assess the practical use, risks, and advantages of
these anti-hyperglycemic drugs and any other associated
medications generally used to treat diabetic people, who are at
higher risk of coronavirus infections.
AUTHOR CONTRIBUTIONS

MA-F, FA-M, TT, SK, HA, MA, and JA contributed to the
design, writing, and planning of the manuscript. All authors
contributed to the article and approved the submitted version.
REFERENCES
1. Walls AC, Park YJ, Tortorici MA,Wall A, Mcguire AT, Veesler D. Structure,

Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell
(2020) 181(2):281–292.e6. doi: 10.1016/j.cell.2020.02.058

2. Zhou J, Chu H, Chan JF, Yuen KY. Middle East respiratory syndrome
coronavirus infection: virus-host cell interactions and implications on
pathogenesis. Virol J (2015) 12:218. doi: 10.1186/s12985-015-0446-6

3. Chan JF, Lau SK, To KK, Cheng VC, Woo PC, Yuen KY. Middle East
respiratory syndrome coronavirus: another zoonotic betacoronavirus
causing SARS-like disease. Clin Microbiol Rev (2015) 28(2):465–522. doi:
10.1128/CMR.00102-14

4. Muniyappa R, Gubbi S. COVID-19 pandemic, coronaviruses, and diabetes
mellitus. Am J Physiol Endocrinol Metab (2020) 318(5):E736–e741. doi:
10.1152/ajpendo.00124.2020

5. Li B, Yang J, Zhao F, Zhi L, Wang X, Liu L, et al. Prevalence and impact of
cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol
(2020) 109(5):531–8. doi: 10.1007/s00392-020-01626-9

6. Maddaloni E, D'onofrio L, Alessandri F, Mignogna C, Leto G, Pascarella,
et al. Clinical features of patients with type 2 diabetes with and without
Covid-19: a case control study (CoViDiab I). Diabetes Res Clin Pract (2020)
p:108454. doi: 10.1016/j.diabres.2020.108454

7. Onder G, Rezza G, Brusaferro S. Case-Fatality Rate and Characteristics of
Patients Dying in Relation to COVID-19 in Italy. JAMA (2020) 323
(18):1775–6. doi: 10.1001/jama.2020.4683

8. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk
factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a
retrospective cohort study. Lancet (2020) 395(10229):1054–62. doi: 10.1016/
S0140-6736(20)30566-3

9. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk Factors Associated
With Acute Respiratory Distress Syndrome and Death in Patients With
Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med
(2020) 180(7):934–43. doi: 10.1001/jamainternmed.2020.0994

10. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou. Clinical Characteristics of
Coronavirus Disease 2019 in China. N Engl J Med (2020) 382(18):1708–
20. doi: 10.1056/NEJMoa2002032

11. Andersen CJ, Murphy KE, Fernandez ML. Impact of Obesity and Metabolic
Syndrome on Immunity. Adv Nutr (2016) 7(1):66–75. doi: 10.3945/
an.115.010207

12. Francisco V, Ruiz-Fernández C, Pino J, Mera A, González-Gay MA, Gómez,
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