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Covid-19 features a delayed onset of critical illness occurring approximately one week
from the beginning of symptoms, which corresponds to the bridging of innate and
adaptive immunity. We reasoned that the immune events occurring at the turning point of
disease might mark the direction toward pathogenic versus protective inflammatory
responses. Subjects with either severe (s; PaO2/FiO2 ratio <200) or mild (m; PaO2/
FiO2 ratio>300) Covid-19 were enrolled. A range of chemokines and cytokines as well as
reactive oxygen species (ROS) were measured in plasma. Dendritic and NK cell
frequency, monocyte and B-/T-cell phenotype and SARS-CoV-2-specific T-cell
responses were assessed in PBMC. Twenty mCovid-19 and 20 sCovid-19 individuals
were studied. sCovid-19 patients displayed higher non-classical monocytes, plasma
chemokines (CXCL8, CXCL9, CXCL10), cytokines (IL-6, IL-10), and ROS versusmCovid-
19. sCovid-19 also showed significantly increased activated CD38+HLA-DR+ T-
lymphocyte, and granzyme-B+/perforin+ pro-cytolytic T-cells. All Covid-19 patients
showed SARS-CoV-2 specific-T-cell response with a predominance of Th1 bi- or
trifunctional IFN-g/IL-2/TNF-a-expressing CD4+, while no difference according to
disease severity was observed. Severe Covid-19 features heightened circulating IFN-
inducible chemokines and activated pro-cytolytic Th1 cell phenotype in the second week
of illness, yet SARS-CoV-2-specific responses are similar to that of mild illness. Altogether,
our observations suggest Th1 polarization coupled to higher cytolytic profile in sCovid-19
as correlate of disease pathogenesis and as potential targets to be investigated in the
roadmap to therapy and vaccine development.
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INTRODUCTION

SARS-CoV-2 is the etiologic agent of Coronavirus disease 2019
(Covid-19) which may feature interstitial pneumonia leading to
severe respiratory distress and death (1). While literature
findings point to the presence of older age, neutrophilia, organ,
and coagulation dysfunction in subjects with critical disease (2–
4), scant data exist on the immune correlates of Covid-
19 progression.

Literature evidence suggests that individuals with severe
SARS-CoV-2 infection may have a “cytokine storm syndrome”,
characterized by increased levels of cytokines and chemokines
(5–7), crucial mediators of the adaptive immune response.

Lymphopenia also appears to feature SARS-Cov-2 infection
(1, 7, 8) with low CD4+, CD8+, B and NK counts (7, 9). In line
with these findings, functional exhaustion of cytotoxic
lymphocytes in adult individuals with Covid-19, presenting
lower intracellular cytokine expression compared to healthy
controls, has also been described (3). Of note, significantly
lower T- and B-cell counts as well as skewing of T-cell
maturation were detected in subjects with severe Covid-19
compared to those with mild disease (6, 9), suggesting that
diverse adaptive immunity phenotypes may feature Covid-19
severity. In contrast, a limited number of studies report
conflicting results on the functional profile of T-lymphocytes
in SARS-CoV-2-infected subjects with different clinical
presentation (6, 7).

Clinical aggravation of Covid-19 occurs approximately one
week from the onset of illness (5, 10, 11), which corresponds to
the temporal bridging of the innate and adaptive immune
responses. In the animal model, CoV-specific T-cells are not
only necessary and sufficient for virus clearance but also account
for protection from clinical disease (12), as they dampen
overactive innate immune responses (13, 14), thus limiting
further damage to the host (12, 15). This observation has led
us to hypothesize that the immune characteristics at this specific
time-point in the course of SARS-CoV-2 infection may represent
a watershed for the clinical outcome of the disease.

In the attempt to outline an immune signature of severe and
mild Covid-19, we conducted an extensive analysis of innate and
adaptive immune parameters of SARS-CoV-2-infected subjects
at the defining moment of illness.
METHODS

Study Population
We included in the study 40 individuals hospitalized with
ascertained acute SARS-CoV-2 infection (positive naso-
pharyngeal swab) presenting with either severe (n = 20, PaO2/
FiO2 ratio< 200) or mild (n = 20, PaO2/FiO2 ratio>300) Covid-
19. At hospitalization, demographic, and clinical characteristics
were recorded from electronic clinical charts. All enrolled
patients provided written informed consent according to the
Ethical Committee of our institution (no. 2020/ST/049).
Following informed consent, peripheral blood samples were
Frontiers in Immunology | www.frontiersin.org 2
collected from all study participants for plasma and peripheral
blood mononuclear cell (PBMC) separation which were stored
for laboratory analyses.

Immune parameters were compared to those of 10 healthy
controls (HC) in archived laboratory samples.

Plasma Chemokine and Cytokine
Measurements
Chemokine (CXCL8/IL-8, CCL5/RANTES, CXCL9/MIG, CCL2/
MCP-1 and CXCL10/IP-10) and cytokine (IFN-a, IFN-g, IL-1b, IL-
4, IL-5, IL-6, IL-10, IL-12 (p70), IL-17A, and tumor necrosis
factor-a) serum levels were analyzed with Bead Array Human
Chemokine Kit, and Bead Array Human cytokine Kit (Becton
Dickinson, San Josè, CA) following the manufacturer’s instructions.

Briefly, the samples were diluted 1 to 4 with assay diluent and
incubated for 3 h with the relative capture beads and with the
human chemokine detection reagent. Samples were washed in a
wash buffer resuspended in 0.3 ml of the same buffer and
acquired by flow cytometry. Data were acquired on (BD)
FACSCanto II flow-cytometer and analyzed by FCAP v3
array software.

Cell Phenotyping
Lymphocyte surface phenotypes were evaluated by flow
cytometry on cryopreserved PBMCs: CD4-APC-H7, CD8-
PErCP-Cy5.5, CD38-PCY-7, HLA-DR-BV421, CD45RA-APC-
H7, CCR7- PECy5, LIVE/DEAD-V500, Granzyme B-PE,
Perforin-FITC, CD16-APC, CD14-BV421, CD56-PE (BD
Biosciences, San Jose, CA, USA) and CD19-PercPVio700,
CD80-APC (Miltenyi Biotec, Bergisch Gladbach, Germany).
Combinations used were: CD4/CD8/CD38/HLA-DR (T-cell
activation), CD14/CD16 (monocyte), CD16/CD56/CD3 (NK
cells), CD11c/CD3 (DC), CD3/CD19/CD80 (B-cell activation),
CD4/CD8/CD45RA/CCR7 (T-cell maturation). T-cell subsets
were defined as naïve CCR (C-C chemokine receptor)7+
CD45RA+, central memory (CM) CCR7+CD45RA−, effector
memory (EM) CCR7−CD45RA−, terminally differentiated (TD)
CCR7−CD45RA+. T follicular helper (Tfh) CD4+CxCR5+
CD45RA+, T helper 17-like (Th17) CD4+CCR6+CD161+, T
regulatory-like (Treg) CD4+CD127-CD25+. Briefly, 1 × 106

PBMCs were stained with the appropriate antibodies for 20 min
at 4°C in the dark and then washed and acquired using
FACSVerse™ cytometer (BD Biosciences).

Antigen Stimulation
SARS-CoV-2 PepTivator peptide pools (Miltenyi Biotec,
Bergisch Gladbach, Germany), consisting of the S-protein, N-
and M-protein pools, were used for PBMC stimulation, given
data on M, spike, N co-dominance in T-cell SARS-CoV-2-
specific response (16). PBMCs were prepared from EDTA
collection tubes by gradient centrifugation. 1.5 × 106 PBMCs
were stimulated with 1 mg/ml peptide pool for 16 h in RPMI
supplemented with 1% Penicillin–Streptomycin–Glutamin and
10% FCS or Phorbol myristate acetate (PMA) (25 ng/ml) and
ionomycin (Sigma Aldrich Merck) (1 ug/ml). 1.5 ×10 6 PBMCs
were also stimulated with Staphylococcus aureus enterotoxin B
October 2020 | Volume 11 | Article 580987
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(SEB, Sigma-Aldrich, Darmstadt, Germany) at 1 mg/ml as a
positive control (Supplementary Figure 2). Negative controls
were left untreated. Brefeldin A (1 mg/ml, Sigma Aldrich) was
added after 1 h. Intracellular detection of IL-17A, IL-4, IL-2,
interferon (IFN)-g and tumor necrosis factor (TNF)-a was
assessed by flow cytometry. Only samples with >90% cell
vitality were studied. Antibodies used were: CD4-APC-H7,
CD8-PECy5, LIVE/DEAD-V500, IL-17A-FITC, IL-4-PE, TNF-
A-V450, IFN-Y-PECY-7, IL-2-APC (BD Biosciences, San Jose,
CA, USA) (Miltenyi Biotec, Bergisch Gladbach, Germany). Cells
were harvested after stimulation and stained with surface
antibodies; after paraformaldehyde (PFA) fixation (1%, Sigma-
Aldrich), cells were permeabilized with Saponin 0.2% (Sigma-
Aldrich) and stained with intracellular cytokines for 30 min at
room temperature (RT). Unspecific activation in unstimulated
controls was subtracted from stimulated samples to account for
specific activation. We considered a positive response when the
cytokine production was above the 90th percentile of
healthy controls.

Soluble ROS Quantification
Plasma levels of ROS were measured by an enzyme-linked
immunosorbent assay (ELISA; LSBio), according to the
manufacturer’s instructions.

Statistics
Twenty individuals with severe and 20 with mild Covid-19
(sCovid-19 and mCovid-19, respectively) were enrolled. Aside
for a non-significant trend to older age in sCovid patients, no
significant differences were registered between groups in terms
of sex, comorbidities, type, and duration of Covid-19-related
symptoms (Table 1). The two groups were comparable in terms
of pulmonary radiologic findings and medical therapy, except for
a higher proportion of subjects with sCovid-19 on supplemental
oxygen upon hospital admittance and more frequent treatment
with Continuous Positive Airway Pressure (CPAP) and
mechanical ventilation during hospitalization (Table 1).

Furthermore, sCovid-19 patients presented significantly
higher CRP, d-Dimer and LDH levels, total white blood cells
and neutrophils versus mCovid-19 (Table 1). Death as a clinical
outcome was more frequent in sCovid-19 than in mCovid-19
(Table 1).

Samples for immune investigations were collected at a median
(IQR) of 7 (3–8) days from symptoms onset, with no differences
between mCovid and sCovid patients (Table 1).

Innate Immune Cells
Comparable frequencies of dendritic cells (DC, CD11c+) and
natural killer cells (NK, CD56+CD16+) were observed between
groups (Supplementary Table 1), as well as classical (CD14
+CD16−) and intermediate monocytes (CD14++CD16+)
(Figures 1A, B). In sharp contrast, sCovid-19 patients presented
significantly higher percentages of non-classical monocytes (CD14
+CD16++) versusmCovid-19 (16.8 vs 9.8%, p = 0.003 Figure 1C).
Interestingly, compared to mCovid-19, sCovid-19 displayed
decreased HLA-DR molecules on all three monocyte subtypes
(Figures 1D–F). Whereas no differences between groups were
Frontiers in Immunology | www.frontiersin.org 3
detected in CXCR5 and CD45RA monocyte expression
(Supplementary Table 1).

Plasma Chemokines, Cytokines and ROS
Levels
Compared to mCovid-19, sCovid-19 subjects presented a trend
to higher circulating CXCL8/IL-8 (8 pg/ml, 5–15 vs 19 pg/ml, 8–
26; p = 0.06; Figure 1G), higher CXCL9/MIG (98 pg/ml, 69–123
vs 149 pg/ml, 131–233; p = 0.01; Figure 1H), and CXCL10/IP-10
(1,808 pg/ml, 729–3949 vs 7,069 pg/ml, 2,299–21,893; p = 0.02;
Figure 1I). Likewise, sCovid-19 presented higher CCL2/MCP-1,
albeit not reaching statistical significance (96 pg/ml, 41–137 vs
141 pg/ml, 73–223; p = 0.22; Figure 1J), whereas no differences
between groups were detected in CCL5/RANTES (10,680 ng/ml,
4,424–16,645 vs 9,094 ng/ml, 3,413–12,774; p = 0.54; Figure 1K).
Interestingly, the frequency of circulating neutrophil cells was positively
associated with CXCL9/MIG, CXCL10/IP-10 and CXCL8/IL-8 (r =
0.35, p = 0.05; r = 0.39, p = 0.05 and r = 0.5, p = 0.01). No major
differences in Interferon (IFN)-a, IFN-g, Interleukin (IL)-4 and IL-5
were observed between (mCovid-19) and (sCovid-19) (Figure 2A–D).

Covid-19 patients also displayed greater IL-6 levels (17 pg/ml, 7–
32 vs126pg/ml, 42–318; p=0.004;Figure2E) and IL-10 (5pg/ml, 1–
7 vs 11 pg/ml, 6–15; p = 0.02; Figure 2F). IL-6 values positively
correlated with both neutrophils (r = 0.6, p = 0.004) and classical and
non-classical monocytes (r = 0.6, p = 0.0008, and r = 0.5, p = 0.006).
The levels of IL-12, IL-17A and tumor necrosis factor (TNF)-a were
comparable between mCovid-19 and sCovid-19 (Figure 2G–I).

Further, reactive oxygen species (ROS), which derive, among
others, from non-classical monocytes and neutrophils, were also
greater in sCovid-19 subjects (7.9 vs 4.7 ng/ml; p=0.032) (Figure 2J),
and correlated with the frequencies of both non-classical monocyte
(r = 0.44, p = 0.042); and neutrophil frequencies (r = 0.40, p = 0.01).

T-Cell Immunephenotype
Circulating total CD3+, CD4+ and CD8+ T-lymphocytes were
comparable in mCovid and sCovid patients (Supplementary
Table 1). Interestingly, sCovid displayed a trend to significantly
higher activated HLA-DR+CD38+CD4+ and CD8+ versus
mCovid (p = 0.06 for both comparisons; Figures 3A, B).

We next investigated T-cell maturation, finding significant
differences according to disease severity, with sCovid-19 patients
displaying lower EM cells (p = 0.03; Figure 3C and p = 0.02; Figure
3D) and higher granzyme B- and perforin-producing CD4+ (Figure
3E). A similar trend was observed in CD8+ compartment, albeit not
reaching statistical significance (Figure 3F).

sCovid-19 and mCovid-19 displayed comparable Treg, Th17
and TFh (Supplementary Table 1).

T-Cell Cytokine Secretion Upon SARS-
CoV-2 Challenge in Covid-19 Patients
Because CoV-specific T-cells are crucial for virus clearance, we
sought to investigate ex vivo CD4+/CD8+ T-cell intracellular
cytokine production following in vitro challenge by PMA
(positive control), SARS-CoV-2 peptide pool (gating strategy in
Supplementary Figure 1) and SEB (Supplementary Figure 2). It
must be noted that although IL-4 and IFN-g were positively
October 2020 | Volume 11 | Article 580987
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TABLE 1 | Demographic and clinical characteristics of study subjects.

Characteristic All
Covid-19
N = 40

Severe (s)
Covid-19
N = 20

Mild (m)
Covid-19
N = 20

p-value
sCovid-19 vs
mCovid-19

Sex (n, %)° 1.0
M 33 (83) 17 (85) 16 (80)
F 7 (17) 3 (15) 4 (20)
Age, years (median, IQR)* 61, 53–72 64, 55–77 56, 47–63 0.06
PaO2/FiO2 206, 88–341 86, 69–141 340, 304–391 <0.0001
Symptoms upon hospitalization (n, %)°
Fever
Cough
Dyspnea
Thoracic pain
Conjunctivitis
Diarrhea

37 (93)
26 (65)
19 (48)
5 (13)
1 (3)
2 (5)

18 (90)
12 (60)
11 (55)
2 (10)
0 (0)
0 (0)

19 (95)
14 (70)
8 (40)
3 (15)
1 (5)
2 (10)

0.5
0.7
0.5
1.0
1.0
0.5

Duration of symptoms, days (median, IQR)* 7, 3–8 7, 5–8 6, 2–8 0.3
Comorbidities (n, %)°
Hypertension
Diabetes
Cardiovascular Disease
Pulmonary Disease
Renal Disease
Neoplasms

13 (33)
4 (10)
5 (13)
6 (15)
2 (5)
4 (10)

6 (30)
3 (15)
2 (10)
5 (25)
1 (5)
3 (15)

7 (35)
1 (5)
3 (15)
1 (5)
1 (5)
1 (5)

1.0
0.6
1.0
0.2
1.0
1.0

White Blood Cells, cell/µl (median, IQR)*
Neutrophils
Lymphocytes
Monocytes

6,190, 4,580–8,393
4,360, 2,778–6,513
970, 720–1,228
470, 350–560

7,860, 5,458–9,413
6,040, 4,130–8,373
800, 635–1,040
445, 285–545

4,880, 4,390–6,608
3,375, 2,670–4,365
1,170, 963–1,538
530, 390–650

0.02
0.004
0.004
0.2

Platelet Count, cell ×103/µl (median, IQR)* 232, 184–289 253, 132–293 230, 197–270 0.9
Inflammation Markers (median, IQR)*
C Reactive Protein, mg/L
Ferritin, ng/ml

56, 19–111
542, 209–818

109, 65–129
549, 346–849

33, 15–48
172, 117–912

<0.0001
0.4

LDH, U/L (median, IQR)* 295, 228–379 364, 284–566 237, 204–301 0.0004
Coagulation (median, IQR)*
INR
D-dimer, ng/ml

1, 1–1.2
394, 305–835

1, 1–1
414, 367–1,514

1, 1–1
202, 135–550

0.5
0.01

Liver enzymes, U/L (median, IQR)*
AST
ALT

33, 29–57
38, 24–49

52, 31–80
39, 26–84

30, 26–33
30, 22–42

0.001
0.2

Creatinine, mg/dl (median, IQR)* 0.8, 0–1 0.7, 0–1 0.85, 0.13-1.0 1.0
Total Bilirubin, mg/dl (median, IQR)* 0.4, 0–1.1 0.2, 0–1 0.5, 0–1 0.6
Pulmonary infiltrates
None
Monolateral
Bilateral

2 (5)
10 (25)
28 (70)

0 (0)
4 (20)
16 (80)

2 (10)
6 (30)
12 (60)

0.5
0.7
0.3

Medical therapy*
LPV/r or DRV/c
Hydrossicloroquine
Antibiotics
Steroids

30 (75)
33 (83)
18 (45)
3 (8)

17 (85)
19 (95)
11 (55)
3 (15)

13 (65)
14 (70)
7 (35)
0 (0)

0.3
0.1
0.3
0.2

Oxygen therapy upon admittance (n, %)*
None/nasal cannula
Mask/Reservoir
CPAP

27 (68)
9 (23)
4 (10)

8 (40)
8 (40)
4 (20)

19 (95)
1 (5)
0 (0)

0.0004
0.02
0.1

Oxygen therapy during hospitalization (n, %)*
None/nasal cannula
Mask/Reservoir
CPAP

18 (45)
2 (5)

18 (45)

0 (0)
2 (10)
16 (80)

18 (90)
0 (0)
2 (10)

<0.0001
0.5

<0.0001
Mechanical Ventilation
Non-Invasive
Invasive

8 (20)
7 (18)

8 (40)
7 (35)

0 (0)
0 (0)

0.003
0.008

Outcome <0.0001
Death
Dismissal

15 (37)
25 (63)

14 (70)
6 (30)

1 (5)
19 (95)
Frontiers in Immunology | www.frontiersin.org
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produced following PMA stimulation, the frequency of CD4+

T-cells producing IL-4 and IFN-g were lower than expected.
Although we detected both CD4+ and CD8+ SARS-CoV-2-

specific T-cell responses, the frequency and magnitude of CD4+
response was greater than CD8+ (Figure 4).

Covid-19 subjects as a whole presented higher CD4+ and CD8+
IL-17A, IL-4, IFN-g, IL-2, TNF-a cytokine production in response
Frontiers in Immunology | www.frontiersin.org 5
to SARS-CoV-2-specific stimulation compared to HC from archived
materials who were not exposed to SARS-CoV-2 infection (Figure
4). This suggests a specific T-cell response in Covid-19 patients,
while we could not detect differences in intracellular cytokine
production between mCovid-19 and sCovid-19 subjects (Figure 4).

Because we found that SARS-CoV-2-reactive CD4+ T-cells
were predominantly of Th1 phenotype, we next analyzed
A B
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C
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J K

FIGURE 1 | Frequency and phenotypes of monocyte subsets and levels of plasma chemokines according to the degree of Covid-19 diseases. Peripheral blood
mononuclear cells (PBMCs) were isolated and analyzed from blood samples of 40 COVID-19 patients [severe Covid-19 (sCovid-19) n = 20 and mild Covid-19
(mCovid-19) n = 20]. (A, B) No differences were observed in classical monocytes (CD14+CD16−) and in intermediate monocytes (CD14++CD16+) between the two
study groups. (C) Non-classical monocytes (CD14+CD16++) were increased in (sCovid-19) compared to (mCovid-19). (D–F) HLA-DR mean fluorescent intensity
(MFI) on monocytes is lower in sCovid compared to mCovid patients. (G) CXCL8/IL-8 plasma levels were increased in sCOVID-19 patients in comparison to
mCOVID-19 patients, albeit not reaching significance (p = .06). (H, I) sCOVID-19 patients showed significantly higher circulating levels of CXCL9/MIG and CXCL10/
IP-10 in comparison to mCOVID-19 patients (p = 0.01 and p = 0.02) (J, K) When mCOVID-19 patients were compared to sCOVID-19 patients, no differences in
CCL5/RANTES and CCL2/MCP-1 plasma levels were detected. Graph box and whiskers represent medians and 10th–90th range percentile range. Dotted lines
indicate the median levels, and solid lines indicate 10th–90th range of healthy controls (HC) from archived material. Comparison between groups (sCovid-19 vs
mCovid-19) Mann–Whitney test.
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FIGURE 2 | Levels of plasma cytokines and oxidative stress according to the degree of Covid-19 diseases. Plasma samples were collected and analyzed
Covid-19 (sCovid-19) n = 10 and mild Covid-19 (mCovid-19) n = 10]. (A–D) No major differences in Interferon (IFN)-a, IFN-g, Interleukin (IL)-4 and IL-5 we
We observed increased levels of IL-6 and IL-10 in sCovid-19 compared to m-Covid-19 (p = 0.004 and p = 0.02). (G–I). The levels of IL-12, IL-17A and tu
mCovid-19 and sCovid-19. (J) sCOVID-19 patients showed significantly higher circulating levels of reactive oxygen species (ROS) in comparison to mCOV
represent medians and 10th–90th percentile range. Dotted lines indicate the median levels, and solid lines indicate 10th–90th range of healthy controls (HCs
(sCovid-19 vs mCovid-19) Mann–Whitney test.
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polyfunctionality by IFN-g, TNF-a, IL-2, IL-4, IL-17 expression
in parallel.

Following SARS-CoV-2 antigens challenge, 20/20 patients
presented IL-2-producing CD4+, of which 45% (9/20)
displayed trifunctional IL-2+IFN-g+TNF-a+CD4+, 6/20 (30%)
single IL-2+ IFN-g−TNF-a−CD4+, 5/20 (25%) bifunctional
CD4+ (1/20, 5% IL-2+IFN-g+TNF-a−, and 4/20, 20% IL-2+IFN-
g−TNF-a+). Dissecting CD8+ Th1 intracellular cytokine
expression, 30% (6/20) of patients lacked IL-2-expressing CD8+,
8/20 (40%) patients displayed a trifunctional IFN-g+IL-2+TNF-
a+CD8+ subset, while 6/20 (30%) showed bifunctional
CD8+ (3/20, 15% IL-2+IFN-g+TNF-a−, 3/20, 15% IL-2+
IFN-g−TNFa+).

Intracellular IL-4 cytokine staining revealed IL-4 producing
CD4+ in 11/20 (55%), of which 8/11 (73%) were trifunctional IL-
4+IL2+TNFa+, 3/11 (27%) were bifunctional (IL-4+IL-2+
TNF-a−).

Likewise, 10/20 (50%) patients presented IL-4-producing
CD8+, of which 30% (3/10) show trifunctional IL-4+IL2+TNF-
a+, 40% (4/10) bifunctional (2/20, 10% IL-4+IL-2+TNF-a−, and
2/10, 20% IL-4+IL-2−TNF-a+), and 30% (3/10) single IL-4-
expressing CD8+ phenotype.

We lastly investigated IL-17-producing phenotypes. Overall,
8/20 (40%) patients presented IL-17-producing CD4+ T-cells, of
which 5/8 (62%) were trifunctional IL-17+IL-2+TNF-a+ and 3/8
(37%) bifunctional IL-17+IL-2+TNFa−CD4+.

Likewise, 9/20 (45%) patients present IL-17-producing CD8+:
4/9 (44%) trifunctional IL-17+IL-2+TNF-a+, and 5/9 (55%)
bifunctional CD8+ (3/9, 33% IL-17+IL-2+TNF-a− and 2/9,
22% IL-17+IL-2−TNF-a+).

Interestingly, breaking down CD4+/CD8+ SARS-CoV-2-
specific Th1, Th2, and Th17 intracellular cytokine data, no
differences were shown in the proportion of polyfunctional
CD4+/CD8+ subsets in mCOVID-19 versus sCOVID-19
(Figures 4E–P).
DISCUSSION

Covid-19 pandemic has dramatically struck Italy: as of
September 7th, Italy recorded 277,634 laboratory-confirmed
cases (>35,000 deaths) with over 100,000 in Lombardy (17, 18).

Although about 80% of Covid-19 patients display a benign
clinical phenotype, up to 20% of the patients can develop rapidly
progressing respiratory failure. While several clinical and
epidemiological factors have been associated with poor outcome,
specific immunologic aspects featuring the worst clinical outcome
are still elusive. Clinical experience with Covid-19 has demonstrated
that the second week of illness seemingly represents a turning point
in disease, suggesting that the immune events occurring at this
phase of the infection might mark the direction toward pathogenic
versus protective inflammatory responses.

With this idea in mind we comparatively assessed innate and
adaptive immunity measured at approximately one week from
the onset of symptoms in a cohort of Covid-19 patients featuring
severe versus milder illness.
Frontiers in Immunology | www.frontiersin.org 9
In patients developing severe Covid-19, we demonstrate: i)
elevated inflammatory chemokines, cytokines and ROS positively
associating with neutrophilia and pro-inflammatory monocytes; ii)
T-cell immune phenotype characterized by increased activated,
granzyme/perforin-producing T-lymphocytes, and reduced
effector-memory cells; iii) evidence of SARS-CoV-2-specific
intracellular cytokine production, with a predominance of Th1
CD4+ T-cells, similar to patients with milder disease.

The direct comparison of patients with severe versus
moderate disease revealed highest inflammatory chemokines
including MCP-1/CCL2, IP-10/CXCL10, IL-8/CXCL8, as well
as cytokines in subjects with critical illness, correlating with both
neutrophilia and increased circulating pro-inflammatory CD14+
CD16++ monocytes with reduced HLA-DR surface expression.

In particular, while finding elevated circulating IL-6 and
decreased HLA-DR expression on circulating monocytes in
sCovid-19, we describe less relevant changes in other pro-
inflammatory cytokines, in line with the predominant role of
IL-6 as driver of Covid-19 hyperinflammatory response, immune
dysregulation and respiratory failure (19–21).

The behavior of other pro-inflammatory cytokines in Covid-
19 has proven more erratic across the literature, with discordant
findings being published (6, 22, 23). In particular, the failure to
detect differences in IL-1b and TNF-a might reflect receptor
antagonism or differential cytokine concentrations in diseased
tissue and peripheral blood (24).

Having ascertained a pattern of “cytokine storm” (6, 22, 25–
27), more evident in patients with severe disease, and given the
crucial interplay between innate and adaptive immunity, we next
investigated T-cell responses, aiming to shed light on the
contribution of adaptive immunity on Covid-19 course.

To date, little is known about the antiviral T-cell responses in
Covid-19. In animal models of coronavirus infection, adaptive
T-cell immunity has proven essential in tempering the innate
immune response, in turn mitigating immunopathology. Indeed,
upon acute coronavirus infection, T-cell deficient mice mounted
an exaggerated innate immune response with high levels of
circulating pro-inflammatory cytokines, resulting in rapid
lethality, proving that an unleashed innate response together
with the lack of antiviral-specific responses can be a direct cause
of death (12, 13, 28).

Less is known about T-cell response in human coronavirus,
whether it contributes to disease progression or recovery (25, 29). In
MERS, SARS, and Covid-19, patients with severe/fatal outcomes
present progressive lymphopenia and neutrophilia peaking at
approximately days 7–10 from symptom onset, while healing
patients efficiently recover physiologic lymphocyte/neutrophil
counts, suggesting a crossover between innate and adaptive
immunity in dictating disease outcome, with adaptive immunity
on the one hand controlling the infection and on the other hand
slowing immune pathology (6).

Accordingly, in our patient cohort, despite similar demographic and
pre-existing comorbidities, as well as analogous lung damage, we show
reduced neutrophil and increased lymphocyte counts in moderately
versus severely ill individuals at an average of 7 days from symptom
onset. Because lymphocyte activation/exhaustion has been suggested in
October 2020 | Volume 11 | Article 580987
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Covid-19 adult patients (3, 22), we next characterized T-cell
immunophenotype and function according to disease severity, with
particular focus on SARS-Cov-2-specific response.

As compared to milder disease, sCovid patients show highly
activated CD4+/CD8+ T-cells, with reduced effector-memory and
raised pro-cytolytic phenotypes. Given the paradigm of T-cell
differentiation described in humans featuring naïve!central-
memory!effector-memory!terminally-differentiated (30), our
findings of higher proportion of activated T-cells, with lower
effector-memory cells and higher cytolytic potential in s- versus
mCovid patients would altogether suggest higher T-lymphocyte
activation upon acute SARS-CoV-2 infection in individuals with a
severe disease course, resulting in the continuous T-cell
differentiation, overall resulting in a net reduction of the
effector-memory at the advantage of cytolytic T-cell phenotype.
Having shown that despite their bad prognosis, sCovid patients
display more vigorous T-lymphocyte engagement, activation and
function, we next sought to investigate SARS-CoV-2-specific
response according to disease severity.

Interestingly, we demonstrate the presence of T-cell reactivity
to SARS-CoV-2 S-, M-, N- overlapping antigen pool, at higher
magnitude within the CD4+ compartment, confirming the
pivotal role of CD4+ in the control over SARS-CoV infection,
confirming data on co-dominant M, spike and N-specific CD4+
response in 100% of Covid-19 convalescent patients (16), as well
as both humans and animal data correlating disease severity and
CD4+ responses in the course of SARS (25, 31).

Further detailing T-cell response revealed virus-specific IL-2-
producing CD4+ in the whole Covid-19 cohort, with up to 75%
of the patients displaying bi- or trifunctional INF-g/IL-2/TNF-a-
expressing CD4+ and similar virus-specific CD8+ functionality
despite lower frequency and magnitude. Because polyfunctional
T-cell response has been associated with better immunity versus
several infections (32–34), our data indicate an ongoing Th1-
polarized response to SARS-Cov-2, in agreement with recent
data showing predominant Th1 responses in convalescent (16) as
well as in ARDS ICU patient cohort (20).

Unexpectedly however, despite a more activated/pro-cytolytic
T-lymphocyte asset, we failed to detect any difference in virus-
specific intracellular cytokine response according to disease
severity. In particular, despite data suggesting Th2 polarization
as correlate of immunopathology (25), about half of our patients
presented IL-4-expressing CD4+ irrespective of disease outcome,
with a reasonable proportion of IL-4 and Th1 cytokine-co-
expressing T-cells to possibly suggest a Th0 profile in this stage
of the disease. Given recent data showing a predominant Th1
response in a small but well-defined cohort of convalescent
uncomplicated non-hospitalized Covid-19 cases (16), it will be
interesting to longitudinally follow up the fate of Th1/Th2 ratio
in later disease phases as well as in patients recovering from
complicated versus uncomplicated disease.

Likewise, our finding of a relevant proportion of IL-2/TNF-a/
IL-17 co-expressing T-cells suggest the activation of IL-17-
mediated immune pathway whose role in neutrophil
recruitment and immune regulation in Covid-19 will need to
be further investigated.
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Collectively, our data provide some hints to better understand
Covid-19 pathogenesis. Together, the findings of similar plasma
IFN-g, higher circulating IFN-stimulated chemokines CXCL9
and CXCL10 (35) in sCovid, and an overall heightened Th1
virus-specific ex vivo T-cell response, suggest Th1 polarization.
The lack of difference in IFN-g plasmatic levels might reflect a
more vigorous response in lymphoid organs and diseased tissues
(24) that might therefore fail to be captured by peripheral blood
cytokine assessment, in accordance with post-mortem data
showing mononuclear cell accumulation in the lungs (36).

Interesting speculations derive from the investigation of T-
lymphocyte phenotype and function. While the prevalent
activated/cytolytic T-cell phenotype would indicate vigorous T-
cell activation and function to neutralize the infection, the lack of
a difference in virus-specific T-cell response in sCovid versus
mCovid was somehow unexpected and contrasts previous data in
SARS (25). Higher T-cell activation and differentiation in the
face of non-efficacious virus-specific response have been
described in other models of viral infections such as HIV (37,
38), where ongoing non-virus-specific immune activation has
been long proven a major driver of disease progression even after
viral abatement by antiretroviral therapy (39, 40).

As a caveat in the interpretation, it must be noted that all but
two Covid-19 patients in our cohort developed pneumonia: it
will be interesting to assess SARS-Cov-2 specific T-cell responses
in pauci-symptomatic patients without pneumonia. However,
14/15 patients who died were within the sCovid groups, so we
can assume that the immune picture that we describe realistically
captures the immune events contributing to the most severe
immune pathology and clinical prognosis.

Limitations of this study include the patient’s size and the lack of
a longitudinal assessment that was not possible given the high
mortality within the sCovid group. In analogy to what was
described in other models of infectious diseases where disease
progression has been associated with different profiles of virus-
specific T-cell functionality (34, 41), a detailed longitudinal profiling
of virus-specific intracellular cytokine asset in larger patients
cohorts with different disease phenotype will further inform on
the immune features and tempo of disease progression and severity.

While the hectic run to anti-SARS-Cov2 therapy and vaccine
is ongoing, our study adds to the body of literature aimed at
broadening the knowledge about T-cell responses (42).

While no current targeted treatment is available thus far,
combined antiviral, antimalarials, corticosteroids, anti-inflammatory
molecules, convalescent plasma, and anticoagulant approaches are
being used and investigated for the treatment of Covid-19 (43).
Among immunomodulants, biologics interfering with the cytokine
storm, mainly the IL-6/IL-6R axis, as well as JAK-STAT signaling
inhibitors (i.e. bariticitinib, ruxolitinib, fedtratinib) have raised
expectations, prompting pilot studies and clinical trials (44, 45). By
showing elevated IFN-inducible chemokines as well as IL-6 at the end
of the first week of disease in patients developing severe versusmilder
Covid-19, our findings are informative on the rationale to the
therapeutic exploitation of JAK/STAT inhibitors or for cytokine
targeting antibodies in patients who develop severe Covid-19.
Because JAK/STAT activation is triggered by a wide range of
October 2020 | Volume 11 | Article 580987
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cytokines, our data support its broader inhibition as valid therapeutic
candidate to finely modulate the pro-inflammatory cascade
downstream of single cytokine signaling, possibly redirecting the
disastrous inflammatory response toward disease containment.

Likewise, the most thorough understanding adaptive immunity
fingerprints of protective immunity versus immune-mediated
enhancement of SARS-CoV-2 pathology will be essential to the
evaluation and design of a vaccine. By demonstrating similar virus-
specific T-cell response, our findings comfort on the presence of M,
S and N T-cell response as correlate of acute Covid-19 irrespective
of disease severity that will need to be further profiled in the course
of disease and convalescence to further inform the requisites of
candidate Covid-19 vaccine (16, 20).
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