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Host defense against the human pathogen Toxoplasma gondii depends on secretion of

interferon (IFN)-γ and subsequent activation of monocytic cells to combat intracellular

parasites. Previous studies have shown that T. gondii evades IFN-γ-mediated immunity

by secreting the effector TgIST into the host cell where it binds to STAT1, strengthens

its DNA binding activity and recruits the Mi-2/NuRD complex to STAT1-responsive

promoters. Here we investigated the impact of the host chromatin environment on

parasite interference with IFN-γ-induced gene expression. Luciferase reporters under

control of primary and secondary IFN-γ response promoters were only inhibited by T.

gondii when they were stably integrated into the host genome but not when expressed

from a plasmid vector. Absence of CpG islands upstream and/or downstream of the

transcriptional start site allowed more vigorous up-regulation by IFN-γ as compared to

CpG-rich promoters. Remarkably, it also favored parasite interferencewith IFN-γ-induced

gene expression indicating that nucleosome occupancy at IFN-γ-responsive promoters

is important. Promoter DNA of IFN-γ-responsive genes remained largely non-methylated

in T. gondii-infected cells, and inhibition of DNA methylation did not impact parasite

interference with host responses. IFN-γ up-regulated histone marks H4ac, H3K9ac, and

H3K4me3 but down-regulated H3S10p at primary and secondary response promoters.

Infection with T. gondii abolished histone modification, whereas total nuclear activities of

histone acetyl transferases and histone deacetylases were not altered. Taken together,

our study reveals a critical impact of the host chromatin landscape at IFN-γ-activated

promoters on their inhibition by T. gondii with a comprehensive blockade of histone

modifications at parasite-inactivated promoters.

Keywords: interferon-γ, gene expression, Toxoplasma gondii, immune evasion, epigenetics, chromatin, histone

modification, DNA methylation

INTRODUCTION

The intracellular parasite Toxoplasma gondii is a ubiquitous pathogen infecting birds and
mammals including up to 30% of humans world-wide. While infections of immunocompetent
hosts are commonly asymptomatic to benign, they can be severe to even life-threatening in
immunocompromised hosts or after transmission to fetuses during pregnancy (1). T. gondii is also
a significant cause of posterior uveitis after infection of immunocompetent adults (2), particularly
in South America where hypervirulent strains of the parasite are common (3). In the U.S.A.,
toxoplasmosis has recently been recognized as a leading food-borne infectious disease based on
annual costs and loss of quality-adjusted life years (4).
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T. gondii actively invades various host cell types including
monocytic cells and extensively modifies host signaling pathways
and dampens anti-parasitic effector mechanisms [recently
reviewed in (5, 6)]. This facilitates replication of the tachyzoite
stage within a membrane-bound parasitophorous vacuole (PV).
It also allows dissemination to distant organs including brain
and muscle tissues (7, 8) where the parasite transforms into a
latent stage, i.e., the bradyzoite. Bradyzoites persist for months
to years, and they are critical for transmission to new hosts.
Host cell modulation by T. gondii requires injection of secreted
effector proteins of the rhoptry family (ROPs) into the host cell
during invasion (9, 10), or translocation of dense granule effector
proteins (GRAs) across the PV membrane (11–13) in a MYR1-
and/or ASP5-dependent process (14–16).

One of the critical host pathways that is severely impaired
in infected cells is their responsiveness to IFN-γ (17–20).
IFN-γ regulates expression of >1,000 genes involved in
cell-autonomous immune defense, regulation of immune
responses and immune-unrelated processes (21). After
binding to its receptor, it activates signal transducer and
activator of transcription (STAT)-1, which enters the
nucleus and binds to gamma-activated site (GAS) motifs
in the promoters of IFN-γ responsive genes (22). IFN-γ
responses are induced in multiple waves with expression
of primary response genes being initiated by active STAT1
alone, while transcription of secondary and tertiary response
genes requires additional transcription factors expressed
during the first round of expression. Both IFN-γ (23) and
STAT1 (24, 25) are essential for efficient control of T. gondii
infections. Recently, the GRA protein TgIST was shown
translocating into the host cell in an ASP5-dependent
manner, entering the host cell nucleus and repressing IFN-
γ-regulated gene transcription (26, 27). TgIST binds to
activated STAT1 complexes (20, 26, 28) and recruits the Mi-
2/NuRD chromatin repressor complex to STAT1-responsive
promoters (26, 27). This is associated with impaired chromatin
remodeling at distinct IFN-γ-responsive promoters (20, 26),
sequestration of STAT1 at GAS and non-GAS promoters (27–
29) and impaired nuclear export and recycling of STAT1
(28, 29). How exactly TgIST inhibits IFN-γ-regulated
gene transcription is however yet unknown. Importantly,
parasites deficient in TgIST are unable to counteract IFN-γ
responses of their host cells in vitro, and they are avirulent
in vivo (26, 27).

Transcription of genes including those of an inflammatory
response requires a permissive three-dimensional chromatin
structure that allows binding of transcription factors, chromatin
modifiers and the transcriptional machinery at respective
promoters (30). Posttranslational modifications (PTMs) of
residues particularly within histones H3 and H4 tails are critical
in regulating this process. Acetylation and phosphorylation
neutralize or negatively charge histone domains thereby
decreasing their interaction with DNA (31). Furthermore,
methylation and to a lower extent also acetylation and
phosphorylation of histones can enable or prevent recruitment
of diverse chromatin-modifying enzymes. Mono-, di- or tri-
methylation, and cross-talk between different histone PTMs

further contribute to regulation of transcription. Methylation
of DNA at the cytosine of CpG dinucleotides is another
epigenetic mark that regulates gene transcription, with non-
methylated CpGs allowing and methylated CpGs restricting
promoter activation, respectively (32). Whereas vertebrate
genomes are generally CpG-poor due to the mutagenic
potential of methyl-cytosine, 60–70% of promoters contain
an elevated number of CpGs referred to as CpG islands
(CGI) (33, 34), though mostly non-methylated in normal
cells (35).

The Mi-2/NuRD complex that is recruited to STAT1-
responsive promoters in T. gondii-infected cells in a TgIST-
dependent manner is a multi-subunit complex comprising
histone deacetylases (HDAC) 1 and 2 and methyl-CpG-
binding domain-containing protein (MBD) 2 and 3, among
other components (36). It may thus silence gene expression
by histone deacetylation (36) and/or by increasing DNA
methylation (36–38).

To better understand how IFN-γ-regulated gene expression
is inhibited in T. gondii-infected cells, we herein performed
an in-depth analysis of the host chromatin at promoters of
representative primary and secondary response genes. We for the
first time directly identify the critical impact native chromatin has
on the evasion of IFN-γ responses by T. gondii. The parasite’s
ability to abrogate IFN-γ-induced gene expression is favored
at promoters lacking CGIs, and consistently, it does not rely
on DNA methylation. In contrast, it coincides with broadly
counteracting IFN-γ-regulated histone modifications at both
primary and secondary response genes.

RESULTS

Inhibition of IFN-γ-Regulated Gene
Expression by T. gondii Requires Native
Chromatin Environment
The T. gondii effector TgIST, after translocation into the host
cell, recruits Mi-2/NuRD to STAT1-responsive promoters (26,
27) and represses IFN-γ responses of its host cell (17, 19,
20, 26, 27). It also increases binding of STAT1 to naked
DNA oligonucleotides in vitro and to native genomic DNA in
infected cells, thereby diminishing recycling and reactivation
of STAT1 (28, 29). Here, we have directly determined whether
a native chromatin environment is required for T. gondii
to inhibit STAT1-dependent gene transcription in infected
monocytic cells. RAW264.7 cells were stably transfected with
luc under control of a 5’-truncated version of the endogenous
cIIta promoter IV (pIV; Figure 1A), representing a secondary
response gene. Non-infected cells up-regulated luciferase activity
∼4-fold upon activation with IFN-γ (Figure 1C). Infection
with T. gondii rendered cells unable to respond to IFN-
γ, as expected from our previous results (39). Remarkably,
when cells were transiently transfected with the cIIta pIV-
driven reporter, T. gondii infection did not abrogate IFN-γ
responsiveness (Figure 1D), indicating that a native chromatin
environment is required for the parasite to inhibit IFN-γ-
induced activation of this promoter. Gene expression may
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FIGURE 1 | Inhibition of primary and secondary IFN-γ responses of monocytic cells by T. gondii requires a native chromatin environment. RAW264.7

monocytes/macrophages were stably (C,E) or transiently (D,F) transfected with luciferase reporters under control of a truncated version of the cIIta promoter IV (A) or

a minimal 4×GAS promoter (B). (C–G) Cells were infected with T. gondii for 24 h or left non-infected and stimulated or not with IFN-γ at 3 h p.i. as indicated.

Luciferase activities in lysates from equal amounts of cells were determined by luminescence measurements; lysates from non-transfected wild type cells were

measured in parallel (G). Bars represent mean percent luciferase activities ± S.E.M. (six biological replicates) as compared to non-infected cells after stimulation with

IFN-γ (100%); differences between groups were evaluated by ANOVA (***p < 0.001; ns, not significant).

be differently regulated by the chromatin environments of
primary and secondary response genes (40). Therefore, we
next stably transfected RAW264.7 cells with luc downstream
of a minimal 4xGAS promoter which is regulated by activated
STAT1 only and thus represents a primary response gene
(Figure 1B). These cells up-regulated luciferase activity in
response to IFN-γ ∼200-fold when being non-infected, but
only ∼40-fold after infection with T. gondii (Figure 1E; p
< 0.001; ANOVA). The higher regulation of luciferase as
compared to pIVcIIta-luc cells may be due to synergistic
binding of STAT1 tetramers to adjacent GAS motifs (41, 42).
More importantly however, after transient transfection with
p4xGAS-luc, T. gondii only slightly inhibited IFN-γ-induced
activity (Figure 1F; p > 0.05). Wild-type cells did not show
any significant luciferase activity (Figure 1G). In unstimulated
luc-transfected cells, infection with T. gondii slightly increased
reporter activity (Figures 1C–F), consistent with increased
binding of STAT1 to DNA in infected cells, and possibly

depending on ROP16 as reported for type I parasites (20, 28, 29).

Together, these results directly establish a critical impact of

native host chromatin on the ability of T. gondii to counteract

IFN-γ-dependent activation of both primary and secondary

response genes.

Lack of CpG Islands Favors T. gondii
Interference With IFN-γ-Induced Gene
Expression
CpG islands (CGIs) hinder DNA bending around histone
octamers, and CGI promoters are thus generally nucleosome-
depleted and readily accessible to transcription factors and
the basal transcriptional machinery [reviewed in (43)]. CGI
promoters of inflammatory response genes differ from non-
CGI promoters by their activation independently of nucleosome
remodeling by SWI/SNF (40) and by their lower fold induction
after stimulation (44). Here, we made use of a previous genome-
wide microarray analysis of T. gondii-infected and control
mouse macrophages during stimulation with IFN-γ (20) to
decipher the role of CGIs in the ability of T. gondii to
counteract IFN-γ responses. We selected 67 IFN-γ-induced
genes each, expression of which was either strongly repressed
by the parasite (0.00–0.15-fold) or not repressed (0.7–1.6-
fold; Figure 2A). Although mechanisms regulating repression
of genes by IFN-γ are only known for ∼15% of them (45),
we also selected ∼45 IFN-γ-repressed genes each being either
strongly induced after infection (11.51–122.71-fold) or not (0.7–
1.86-fold). Only ∼30% of those IFN-γ-induced genes that
were strongly inhibited by parasite infection contained CGIs
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FIGURE 2 | T. gondii preferentially inhibits expression of IFN-γ-induced genes regulated by non-CpG island promoters. Genes (n = 223) were selected from a

previous microarray analysis (20), and they were grouped according to their regulation by IFN-γ (up- or down-regulated) and the x-fold regulation by concomitant

infection with T. gondii. (A) They were in silico analyzed for presence or absence of CpG islands within nucleotides −200 to +200 relative to the transcriptional start

site. Fold mRNA regulation induced by IFN-γ in non-infected cells (B) or by T. gondii compared to non-infected controls (C) were calculated for genes with or without

CpG island promoters. Bars represent means ± S.E.M.; differences between groups were evaluated by Student’s t-test (***p < 0.001; ns, not significant).

in their promoters (Figure 2A, Supplementary Table 1), thus
significantly deviating from the overall ∼60% of CGI promoters
in the mouse genome (33). In contrast, 56.7–62.2% of the IFN-
γ-induced genes not being repressed by T. gondii and of the
IFN-γ-repressed genes irrespective of being induced by T. gondii
or not, were characterized by CGI promoters, being in line
with the average percentage in the mouse genome (Figure 2A,
Supplementary Table 1). IFN-γ-induced genes with non-CGI
promoters were generally more strongly expressed than those
with CGI promoters, although this differed statistically only
for those not being counteracted by the parasite (p < 0.001,
Student’s t-test; Figure 2B), consistent with previous findings
for lipopolysaccharide (LPS)-induced genes (44). Furthermore,
overall fold up-regulation by IFN-γ irrespective of CpG
occupancy of their promoters differed significantly between
genes being either repressed by T. gondii (210.99 ± 79.41) or
not (6.39 ± 0.4; p = 0.011, Students t-test; not shown). In
contrast, the impact T. gondii had on the gene regulation by IFN-

γ did not differ between CGI promoters and non-CGI promoters

(Figure 2C). Together, results indicate that among the IFN-γ-

inducible genes, T. gondii primarily inhibits those lacking CGIs

in their promoters and thus favoring strong induction by IFN-γ.

DNA Methylation Does Not Impact T.
gondii-Mediated Host Cell
Unresponsiveness to IFN-γ
The Mi-2/NuRD repressor binds methylated DNA via methyl-
binding domain protein (MDB) 2 (36, 46). Furthermore, the
complex recruited by TgIST to STAT1-dependent promoters
in T. gondii-infected cells contains the highly related MDB3
(26, 27). Finally, the IFN-γ-responsive pIV of cIIta is silenced
in fetal trophoblast cells (47, 48) and in cancer cells (49)
by DNA methylation. We therefore tested the hypothesis of
unresponsiveness of T. gondii-infected cells to IFN-γ being
linked to increased methylation of cytosines at STAT1-responsive
promoters. Genomic DNA from T. gondii-infected and non-
infected RAW264.7 cells stimulated or not with IFN-γ was
bisulfite-treated, and then analyzed using methylation-sensitive
melting curve analysis (50). The PCR amplicon of an irf1
promoter region yielded a melting peak that specifically
differed from non-bisulfite-treated input DNA, consistent with
conversion of non-methylated cytosines to uracil (Figure 3A).
More importantly, melting peaks did not differ between cells
being parasite-infected or not and/or stimulated with IFN-
γ or not indicating highly similar DNA methylation patterns
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FIGURE 3 | Promoters of irf1 and cIIta (pIV) in monocytic cells remain non-methylated during infection with T. gondii and/or stimulation with IFN-γ. RAW264.7 cells

were infected or not with T. gondi and were stimulated or not with IFN-γ at 3 h p.i. DNA was isolated from the cells 24 h after infection and was subjected to bisulfite

conversion; universally methylated DNA was treated in parallel and used as standard. Promoter regions of irf1 (A,B) and cIIta (C,D) were qPCR-amplified from input

sample DNA and from bisulfite-treated sample or standard DNA using methylation-independent primer pairs. Amplicons were subjected to methylation-sensitive

melting curve analysis; (A,C) melting peaks were visualized by plotting the first negative derivative of fluorescence with respect to temperature vs. temperature.

(B,D) Bars represent mean melting peaks ± S.E.M. (n = 5) of amplicons from bisulfite-treated sample and standard DNA as calculated by the LightCycler software;

significant differences were identified by ANOVA (**p < 0.01; ***p < 0.001; ns, not significant).

(Figures 3A,B). Universally methylated control mouse DNA,
after bisulfite conversion, yielded a melting peak at significantly
higher temperature than DNA from RAW264.7 samples (p <

0.001, ANOVA; Figures 3A,B). This is consistent with methyl-
cytosines remaining unchanged during bisulfite treatment, and
the notion that CpGs within the irf1 promoter are largely
non-methylated in RAW264.7 cells before and after infection
with T. gondii. Similarly, melting peaks of amplicons from pIV
of cIIta did not differ between cells infected or non-infected
and/or IFN-γ-treated or untreated. Their peak temperatures
except that from unstimulated, non-infected cells were however
significantly lower than that from methylated control DNA
(Figures 3C,D) indicating that the corresponding promoters are
also largely non-methylated.

The impact of DNA methylation on IFN-γ-unresponsiveness
of T. gondii-infected cells was further validated by quantitating
H2-A/E molecules on RAW264.7 cells treated or not treated for

7 days with 5-aza-2-deoxycytidine (AZA), i.e., an irreversible
inhibitor of DNA methyltransferases. H2-A/E are bona fide IFN-
γ-regulated molecules, which we have routinely measured in the
past by FACS to confirm inhibition of their IFN-γ-regulated
up-regulation in macrophages infected with T. gondii (17, 20).
Furthermore, H2-A/E expression depends on both primary
(IRF1) and secondary (CIITA) IFN-γ-regulated transcription
factors, and this increases likelihood to detect any effect of
AZA on IFN-γ-regulated gene expression in infected cells. AZA-
treated cells significantly up-regulated H2-A/E molecules in
response to IFN-γ similar to mock-treated cells (p < 0.05,
ANOVA; Figures 4A,B), though to slightly lower extent. Up-
regulation of H2-A/E in response to IFN-γ was abolished by
previous infection with T. gondii, both in AZA- andmock-treated
cells (p < 0.05; Figures 4A,B). Staining of cells with an isotype
control antibody, irrespective of being treated with AZA or not,
yielded background fluorescence only (Figure 4C). Collectively,
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FIGURE 4 | T. gondii blocks IFN-γ-induced MHC class II expression irrespective of inhibition of DNA methyltransferases. RAW264.7 cells were treated with

5-aza-2-deoxycytidine (AZA) for 7 days, before being infected with T. gondii and/or activated with IFN-γ. Surface expression of MHC class II was determined at ∼42 h

p.i. by flow cytometry, after fluorescence staining of cells using H2-A/E-specific antibodies (A,B) or isotype control antibodies (C). (A) Representative histograms of

mock- and AZA-treated cells being left non-activated, non-infected (red), IFN-γ-activated (black), or T. gondii-infected and IFN-γ-activated (green); figures within the

plots indicate mean fluorescence intensities of the respective cell population. (B,C) Bars represent mean fluorescence intensities ± S.E.M. from five biological

replicates; significant differences between groups were identified by ANOVA (*p < 0.05).

these results establish that DNA methylation does not mediate
unresponsiveness of T. gondii-infected monocytes/macrophages
to IFN-γ.

Regulation of Histone Marks During
IFN-γ-Responses Are Broadly Inhibited by
T. gondii
During activation by IFN-γ, acetylation of histones at promoters
of secondary response genes is inhibited by prior infection with
T. gondii (20, 26). We therefore wondered how other histone
marks may change in infected and non-infected cells during
an IFN-γ response, how they are regulated over time, and
whether they differ between primary and secondary response
genes. Chromatin immunoprecipitation (ChIP) revealed pan-
acetylation of histone H4 (H4ac) and tri-methylation of H3
at lysine 4 (H3K4me3) at the irf1 promoter within 30min of
IFN-γ activation in non-infected RAW264.7 cells and a decline
until 18 h of stimulation (Figures 5A,G). Prior infection of
cells with T. gondii completely abolished up-regulation of H4ac
and H3K4me3 (p < 0.05 for H4ac, p < 0.01 for H3K4me3,
ANOVA). Acetylation of H3K9 showed a slower increase with
a peak at 4 h of stimulation in non-infected cells, but was
also abrogated by prior infection (Figure 5D; p < 0.001).
H3K9ac was similarly regulated at the promoters of the primary
response genes irf8 and stat1, and it was also significantly

inhibited by T. gondii (Supplementary Figures 1A,B; p < 0.05).
Remarkably, phosphorylation of H3 at serine 10 (H3S10p)
steadily decreased in non-infected cells in response to IFN-
γ (Figure 5J), indicating that its presence marks non-activated
STAT1-responsive promoters. Importantly, the decrease of
H3S10p was also largely inhibited by T. gondii (p < 0.05).
Thus, histone modification as observed at the irf1 promoter
in response to IFN-γ is broadly and almost completely
prevented by T. gondii infection. H4ac, H3K9ac, and H3K4me3
also increased and H3S10p decreased in response to IFN-
γ at the pIVcIIta promoter, though with delayed kinetics
compared to the irf1 promoter as expected (Figures 5B,E,H,K).
In contrast, cells infected with T. gondii were largely unable
to regulate these modifications after IFN-γ activation. The
induction of H3K9ac was also significantly reduced by T.
gondii at the promoter of gbp2, i.e., another secondary
response gene (Supplementary Figure 1C; p < 0.01). At the
constitutive promoter of β-actin, H4ac, H3K9ac, H3K4me3,
and H3S10p did not considerably differ between parasite-
infected and non-infected cells during activation with IFN-γ
(Figures 5C,F,I,L). Collectively, these results establish a severe
defect of T. gondii-infected monocytes/macrophages to regulate

different histone marks including acetylation, methylation

and phosphorylation at both primary and secondary IFN-γ

response genes.
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FIGURE 5 | T. gondii largely abolishes regulation of diverse histone modifications during IFN-γ stimulation of RAW264.7 cells. Cells were parasite-infected for 24 h or

were left non-infected. During the final 0.5–18 h, they were stimulated with IFN-γ or were left unstimulated (0 h). After cross-linking DNA-protein complexes, cell lysates

were subjected to ChIP using antibodies binding to pan-acetyl-H4 (A–C), acetylK9-H3 (D–F), tri-methylK4-H3 (G–I) or phosphoS10-H3 (J–L). After isolation of DNA

from chromatin immunoprecipitates or from input chromatin, fragments of promoters of irf1 (A,D,G,J), cIIta (pIV; B,E,H,K) and β-actin (C,F,I,L) were amplified by

qPCR. Data indicates means ± S.E.M. (two to six biological replicates) of cytokine-induced regulation of histone modifications in T. gondii-infected (closed symbols)

and non-infected (open symbols) cells normalized to input DNA; differences between experimental groups were identified by ANOVA (*p < 0.05; **p < 0.01;

***p < 0.001).
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Histone acetylation is critical to activate gene expression (51).
Furthermore, Mi-2/NuRD recruited by T. gondii to STAT1-
responsive promoters contains histone deacetylases (HDAC)
1 and 2 (26, 27), and HDAC inhibitors partially rescue T.
gondii-infected monocytic cells to respond to IFN-γ (20, 29).
Therefore, we next tested the possibility that HDAC or histone
acetyl transferase (HAT) activities are altered after infection.
HDAC activity in nuclear extracts of RAW264.7 cells was not
significantly altered after infection with increasing amounts of
T. gondii as compared to non-infected controls (Figure 6A).
It did also not change following stimulation with IFN-γ for
3 or 21 h, irrespective of being infected or not. The HDAC
inhibitor trichostatin A (TSA) completely abolished HDAC
activity, confirming specificity of the assay (Figure 6A). Further,
NAD+ within the reaction buffer did not impact measurements,
indicating that sirtuins do not contribute to the overall nuclear
HDAC activity in RAW264.7 cells (data not shown). Acetylation
of a histone H4 peptide by HATs was higher, though statistically
not significantly, in nuclear extracts from T. gondii-infected
RAW264.7 cells throughout stimulation with IFN-γ for 0–21 h,
compared to non-infected controls (Figure 6B). In addition,
HAT activity toward a histone H3 peptide was impaired in
nuclear extracts from infected but non-activated cells (0 h),
but did not differ during stimulation with IFN-γ (Figure 6C).
Results thus establish that overall nucleoplasmic HDAC and
HAT activities do not contribute to IFN-γ unresponsiveness of
monocytes/macrophages during T. gondii infection.

DISCUSSION

Infection by T. gondii renders host cells including immune
cells largely unresponsive to IFN-γ (17–20), and this is critical
for parasite survival and virulence during acute infection
(26, 27). We now demonstrate that T. gondii inhibits IFN-
γ-dependent gene expression (i) only at promoters with a
native chromatin environment, and (ii) predominantly at
those lacking CpG islands. Consistent with these findings,
(iii) were histone modifications at promoters of primary
and secondary response genes broadly ablated by T. gondii,
whereas (iv) DNA methylation was unaffected during infection.
These results further our understanding of how T. gondii
manipulates cytokine responsiveness of monocytes/macrophages
via interference with the chromatin environment at a subset of
STAT1-responsive promoters. They also unveil new insights into
the general regulation of IFN-γ-mediated gene expression in
mouse monocytic cells.

T. gondii infection increases binding of activated STAT1
to host chromatin (28, 29) and to IFN-γ-responsive native
promoters (26, 27, 29), and it impairs histone modifications
at promoters of secondary response genes (20, 26). T. gondii
however also potentiates binding of aberrant STAT1 complexes
to naked DNA (20, 26, 28, 52) raising questions about the role
of the host chromatin for repression of IFN-γ-mediated gene
expression. Using luciferase reporters, we here provide direct
experimental evidence that native chromatin is indispensable for
T. gondii to inhibit IFN-γ-regulated gene expression. Only after

stable integration of the transgene into the host cell genome
but not when being expressed from a plasmid vector, was
the reporter repressed. Further, both primary and secondary
response promoters were silenced in a host chromatin-dependent
manner. It is unlikely that high copy numbers of the transgene
within transiently transfected cells and therefore exhaustion of
T. gondii to inhibit luc expression account for this finding, since
absolute luciferase activities were not consistently higher in these
cells as compared to stable transfectants (data not shown). Also,
only a small proportion of plasmid DNA reaches the nucleus
and can get expressed (53). Our results instead suggest that the
Mi-2/NuRD complex can only be recruited by TgIST to GAS
promoters (26, 27) within a native chromatin context and/or
that a repressive chromatin environment is crucial for inhibition
of IFN-γ-triggered gene expression. The sole increased and
sustained binding of STAT1 complexes from T. gondii-infected
cells to naked DNA as described by us and others in vitro
(20, 26, 28, 52) appears however to not suffice for repression of
gene expression, as we expect such altered binding also occurring
at GAS promoters within plasmid DNA.

We also provide strong evidence that T. gondii preferentially
ablates activation of those promoters which are devoid of
CpG islands (Figure 7A). In agreement with the ∼40%
CpG-poor promoters of the mouse genome (33), 38–43%
of promoters whose IFN-γ-regulated activities were not
significantly counteracted by T. gondii (20), were CpG-poor.
In sharp contrast however, of the IFN-γ-induced promoters
whose activation was strongly inhibited by the parasite (20),
70% were CpG-poor. This indicates that non-CpG island
promoters structurally and/or mechanistically favor interference
of T. gondii with their IFN-γ-induced activation. Absence of
CpG islands promotes assembly of promoter DNA within
nucleosomes (43), and imposes a requirement for SWI/SNF-
dependent nucleosome remodeling for their activation, at
least in response to NF-κB (40, 44). The promoter IV of
the IFN-γ secondary response gene cIIta is also devoid of
CpG islands (see Supplementary Table 1), and its activation
depends on the SWI/SNF core subunit BRG-1 (54). We have
previously confirmed significant recruitment of BRG-1 to DNA
encompassing STAT1 consensus sequences including the cIIta
pIV in non-infected, but not in T. gondii-infected macrophages
in response to IFN-γ (20). In LPS-activatedmacrophages, theMi-
2/NuRD complex selectively antagonizes SWI/SNF-dependent
activation of secondary and delayed primary response genes (55).
In contrast, SWI/SNF-independent early primary response genes
are not or only slightly repressed by Mi-2/NuRD (55). Along that
line may TgIST predominantly recruit the Mi-2/NuRD complex
in IFN-γ-activated macrophages to SWI/SNF-dependent, i.e.,
to CpG-poor promoters (Figure 7B). We thus propose a model
in which binding of TgIST to STAT1 (26, 27) does not suffice
to recruit Mi-2/NuRD to GAS promoters and repress their
activation, but additionally requires a chromatin environment
that is often CpG-poor, and dependent on SWI/SNF-mediated
nucleosome remodeling for IFN-γ-induced activation. In
contrast, CpG islands in promoters correlate with H3K4me3 and
constitutive association with RNA polymerase II, that are features
of active chromatin prior to stimulation (40, 56) and allows rapid
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FIGURE 6 | Histone acetylation at IFN-γ-responsive promoters is inhibited by T. gondii without generally impacting HDAC and HAT activities in nuclei of infected cells.

RAW264.7 monocytes/macrophages were infected with T. gondii at parasite-to-host cell ratios of 3:1 (A: +) or 6:1 (A: ++; B,C) for 24 h or were left non-infected, and

they were stimulated with IFN-γ during the final 3–21 h or left non-stimulated (0 h). (A) HDAC activity was determined in nuclear extracts by measuring deacetylation of

a synthetic substrate fluorometrically; some test reactions were performed in presence of the HDAC inhibitor trichostatin A (TSA). Bars represent means ± S.E.M. from

two biological replicates. (B,C) Acetylation of synthetic histone H4 (B) and H3 (C) peptides by nuclear extracts was determined by a colorimetric ELISA; data

represent means ± S.E.M. (five biological replicates; ns, not significant, ANOVA).

gene expression after LPS stimulation (57). The majority of
these promoters are not significantly regulated by Mi-2/NuRD
(55). Likewise, independence of Mi-2/NuRD may explain why
TgIST does not globally repress CpG-rich promoters in response
to IFN-γ (Figure 7C). It is important to note that presence of
CpG islands within IFN-inducible promoters does not per se
preclude repression by T. gondii (see Supplementary Table 1).
Whether distinct chromatin features enable parasite-mediated
Mi-2/NuRD recruitment to these promoters despite presence of
CpG islands, or whether gene expression is repressed by different
means (28) is unknown.

In response to LPS, SWI/SNF-dependent, i.e., CpG-poor
promoters in macrophages are more tightly regulated and show
a higher dynamic range of regulation (44). Data presented herein
now extends this conclusion to promoters that are activated in
response to IFN-γ (see Figure 2B, left panels; Figure 7A). It
does however not apply to promoters which are repressed upon
IFN-γ treatment. In human macrophages, ∼15% of repressed
genes are downregulated by disassembly of enhancer regions
(45), i.e., distal control elements that regulate gene expression
in a tissue-specific manner. Suppression of the gene-activating
histone mark H3K27ac at enhancers and promoters in response
to IFN-γ might additionally regulate gene repression (45, 58).
SWI/SNF and/or Mi-2/NuRD have not yet been related to
gene repression by IFN-γ, and this may explain that presence
or absence of CpG islands in promoters of these genes does
not affect the magnitude of regulation (see Figure 2B, right
panels). However, gene repression in response to IFN-γ clearly

requires further clarification. It will also be of major interest
to uncover how T. gondii counteracts IFN-γ-regulated gene
repression mechanistically (20).

Consistent with amajor impact of the chromatin environment
on T. gondii-mediated inhibition of IFN-γ-induced gene
expression are histone modifications broadly inhibited in
infected monocytes/macrophages, whereas DNA methylation
(47–49) does not have an impact. H4Kac including K5ac,
K8ac and K91ac, H3K9ac and H3K4me3 are part of an
acetylation/methylation histone code that correlates with gene
activation in human T cells (59). Along that line, IFN-γ-induced
increase of H4Kac, H3K9ac, and H3K4me3 were all inhibited at
primary and secondary response gene promoters after parasite
infection. Inhibition did not generally differ between promoters
containing or not containing CpG islands, since it similarly
occurred at the CpG-rich irf1 and stat1 promoters and the CpG-
poor cIIta pIV and gbp2 promoters (see Supplementary Table 1),
although it is difficult to draw a general conclusion from
this small number of promoters. Therefore, ChIP-seq analyses
may in the future provide a genome-wide view on that issue.
Phosphorylation of H3S10 decreased in non-infected, but not in
T. gondii-infected cells in response to IFN-γ. This is remarkable,
since H3S10p is associated with active gene expression in
response to mitogens, stress signals and TLR ligands (60, 61).
Our data now suggests, that in response to IFN-γ, H3S10p
rather represents a repressive histone mark, at least at the irf1
and cIIta pIV promoters. After stimulation of non-infected
cells with IFN-γ, H4Kac and H3K4me3 appeared earlier at the
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FIGURE 7 | Model of epigenetic control of IFN-γ-induced gene expression by T. gondii. (A) Presence or absence of CpG islands impact magnitude of promoter

activation by IFN-γ and propensity of T. gondii to counteract such activation, but it does not generally impact relative levels of parasite-mediated inhibition.

(B) CpG-poor promoters are generally densely packed within nucleosomes and their activation by IFN-γ depends on extensive remodeling by SWI/SNF complexes. In

T. gondii infected cells, TgIST favors binding of NuRD that is co-recruited together with SWI/SNF and represses promoter activation including nucleosome remodeling

and histone modifications. (C) CpG islands within promoters instead favor an open chromatin that does not rely on extensive nucleosome remodeling. Activation of

such promoters by IFN-γ requires distinct histone modifications, e.g., acetylation by histone acetyl transferases (HATs). Binding of TgIST to STAT1 in infected cells can

abolish histone modifications with limited propensity.

irf1 promoter than H3K9ac and loss of H3S10p, suggesting
apical roles in activating promoters of primary response genes.
H4Kac and H3K4me3 also peaked earlier at the irf1 promoter
than at the cIIta pIV, consistent with the different kinetics of
promoter activation (48). Finally, T. gondii generally inhibited
histone modifications more vigorously at primary response gene
promoters than at secondary response promoters. The reason
for the latter observation is unknown. Our data nevertheless
clearly show a profound and broad inhibition of IFN-γ-triggered
histonemodifications by T. gondii thus confirming and extending
previous findings (20, 26). Of note, histone modifications
were selectively counteracted by T. gondii at IFN-γ-regulated
promoters, indicating that cis control elements, most presumably
GAS sites, are critical. In agreement, total cellular H4Kac level are
not altered by parasite infection (Brand and Lüder, unpublished),
nor are the nuclear activities of HATs and HDACs.

Together, we provide novel insights into epigenetic control
of monocyte/macrophage gene expression in response to

IFN-γ, and we identify a critical impact of the epigenomes
at IFN-γ-responsive promoters on their inhibition by an
intracellular parasite. Our results raise important future research
directions on how TgIST counteracts activation or repression
of IFN-γ-responsive promoters with different chromatin
landscapes mechanistically.

MATERIALS AND METHODS

Host Cells, Parasites and Infection
Themurine leukemia monocyte/macrophage cell line RAW264.7
(TIB 71; ATCC, Rockville, MD, USA) was cultured in RPMI 1640
containing 4.5 g/l glucose, 10% FCS, 1mM sodium pyruvate,
10mMHEPES, 100 U/ml penicillin and 100µg/ml streptomycin.
Tachyzoites of the mouse-avirulent type II T. gondii strain
NTE (62) were propagated in L929 fibroblasts as described
previously (17). Prior to infection, parasites were isolated by
differential centrifugation and thoroughly washed (39). Unless
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stated otherwise, host cells were infected at a parasite-to-host
cell ratio of 6:1 for 24 h. Infected cells or non-infected controls
were stimulated with 100 U/ml (all experiments except ChIP) or
300 U/ml (ChIP) of recombinant mouse IFN-γ (R&D Systems,
Wiesbaden, Germany) starting at 3–23.5 h after infection as
indicated. For some experiments, RAW264.7 cells were treated
with 0.5µM of 5-aza-2-deoxycytidine (AZA) for 7 days prior to
infection with T. gondii and/or treatment with IFN-γ.

Plasmids and Transfection
The plasmid pGL3-mCIITAp1.4(WT)-luc encoding luciferase
under control of the full-length cIIta pIV (63) was kindly
provided by J. Ernst, New York, and was used to generate
a plasmid with a 5′-truncated version of the cIIta pIV
encompassing nucleotides −403 to +83 [designated pGL3-
mCIITAp1.4(−403/+83)-luc]. In order to generate an IFN-γ
primary response reporter, an oligonucleotide with four adjacent
GAS consensus sequences (5′-AGTTTCATATTACTCTAAAT
CAGTTTCATATTACTCTAAATCAGTTTCATATTACTCTAA
ATCAGTTTCATATTACTCTAAAT-3′; GASs underlined) was
cloned (ATG Biosynthetics, Merzenhausen, Germany) into the
pGL4.27[Luc2P/minP/Hygro] vector (Promega, Madison, WI,
USA) and was referred to as pGL4.27-4×GAS-luc. Sequences
of reporter constructs were verified by sequencing (Microsynth
SeqLab, Göttingen, Germany). RAW264.7 monocytic cells were
transfected using the X-treme Gene HP DNA Transfection
Reagent as recommended by the manufacturer (Roche,
Mannheim, Germany). Briefly, 2 µg of pDNA were complexed
with 6 µl of transfection reagent and were added to 1 × 106

RAW264.7 seeded 24 h prior to transfection. After 8 h, cells
were isolated, reseeded and 12 h later, experimentally treated
as indicated. Stable RAW264.7/4xGAS-luc reporter cells were
selected using 150µg/ml hygromycin B and cloned by limiting
dilution. A mutant RAW264.7 cell line stably expressing
luciferase under control of promoter region −477 to +83 of the
cIIta promoter IV was described previously (64).

In silico Prediction of CpG Islands
Nucleotide sequences from −200 to +200 upstream and
downstream of the transcriptional start site (TSS) of
representative IFN-γ-regulated genes were retrieved from
the DataBase of TSSs (65). CpG islands were predicted either
separately within DNA regions −200 to +1 or +1 to +200
or within the complete DNA region −200 to +200 using the
CpG Island Searcher online resource (66). CpG islands were
identified as nucleotide sequences of at least 100 bp with an
observed CpG/expected CpG ratio of >0.6 and a GC content of
>50% (67).

DNA Methylation Analysis
Methylation of cytosines within promoters of representative
primary and secondary IFN-γ response genes was determined
by methylation-sensitive melting curve analysis (MS-MCA)
following bisulfite treatment of genomic DNA (50). To this
end, DNA from T. gondii-infected and non-infected RAW264.7
cells either stimulated or not with IFN-γ was isolated using the
QIAamp DNA Mini Kit (Qiagen, Hilden, Germany) following

the manufacturer’s instructions. Equal amounts of DNA (up
to 500 ng/sample) were then bisulfite-converted using the
EZ DNA Methylation-Lightning Kit as recommended by the
manufacturer (Zymo Research Europe, Freiburg, Germany).
Universal Methylated Mouse DNA Standard (Zymo Research)
was bisulfite-converted in parallel and was used as positive
control. Subsequently, promoter regions of irf1 and cIIta were
amplified from bisulfite-converted and input DNA by PCR
in a LightCycler 1.5 (Roche, Manheim, Germany) using the
LightCycler FastStart DNAMasterPlus SYBR Green I kit (Roche).
Primers (Supplementary Table 2) were designed to allow
for methylation-independent target amplification following
previously recommended guidelines (68, 69). They were assessed
by calculating oligonucleotide properties (http://biotools.
nubic.northwestern.edu/OligoCalc.html) and by comparing
melting curves (https://www.dna.utah.edu/umelt/umelt.html)
of the expected amplicons assuming that all cytosines within
CpG dinucleotides were either methylated or non-methylated.
Melting curves of amplicons were recorded between 70 and 99◦C
without initial denaturation and reannealing (50).

Luciferase Reporter Assay
Luciferase reporter activity was quantitated in transiently or
stably transfected RAW264.7 mutants or RAW264.7 wild type
cells using the Luciferase Assay System according to the
manufacturer’s instructions (Promega, Madison, WI, USA).
Briefly, T. gondii-infected and non-infected cells treated or not
with 100 U/ml IFN-γ were lysed (4 × 104 cells/µl of lysis
buffer) and soluble material harvested after centrifugation at
12,000 × g at 4◦C. After addition of 20 µl of protein lysate
to 100 µl of luciferase substrate, luminescence was measured
using a Victor3 V multi-label microplate reader (Perkin Elmer,
Rodgau, Germany).

Chromatin Immunoprecipitation (ChIP)
Histone modifications were analyzed in infected and non-
infected RAW264.7 cells during stimulation with IFN-γ for 0–
18 h. To this end, DNA-protein complexes were cross-linked
by incubating cells in 1% formaldehyde in PBS, pH 7.4 for
10min. Reactivity was quenched by adding 125mM glycine (final
concentration) for 5min. After having been washed twice with
ice-cold PBS, 1 × 107 cells/sample were isolated and lysed in
320mM sucrose, 10mM HEPES, pH 8.0, 5mM CaCl2, 5mM
magnesium acetate, 0.1mM EDTA, pH 8.0, 1mM DTT, 0.1%
Triton X-100 and protease inhibitor cocktail (Roche Diagnostics,
Mannheim, Germany) at 4◦C. After centrifugation at 1,000 ×

g for 5min, pellets containing nuclei were washed twice in
140mM NaCl, 50mM Tris, pH 8.0, 20mM EDTA, pH 8.0,
0.5% NP-40, 1% Triton X-100 and protease inhibitor cocktail,
and they were then extracted in 300 µl/sample RIPA buffer
[140mM NaCl, 10mM Tris, pH 8.0, 1mM EDTA, pH 8.0,
0.1% sodium deoxycholate (NaDOC), 1% Triton X-100, 0.5%
SDS and protease inhibitor cocktail] for 10min at 4◦C under
constant rotation. Chromatin was sheared to fragment lengths
of 200–1,000 bp using a Bioruptor Plus sonifier (Diagenode,
Seraing, Belgium). After centrifugation at 18,000 × g for 5min,
supernatants were stored at −80◦C. To test efficient shearing of
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chromatin, 50 µl of supernatant were treated with 20 µg each of
proteinase K and RNase A for 3 h at 55◦C and overnight at 65◦C.
DNA was then purified using a PCR Purification kit (Qiagen,
Hilden, Germany) and resolved by agarose gel electrophoresis.

Prior to ChIP, unspecific binding sites of magnetic Dynabeads
Protein A (Invitrogen, Carlsbad, U.S.A.) were blocked during 2 h
at 4◦C with 0.5% bovine serum albumin in IP buffer (140mM
NaCl, 50mM Tris, pH 8.0, 20mM EDTA, pH 8.0, 1% NP-40 and
0.5%NaDOC). After resuspending the beads in IP buffer, sheared
chromatin (100 µl, 1:10 diluted in IP buffer supplemented
with protease inhibitor cocktail) were precleared with 20 µl
of blocked Protein A beads for 1 h at 4◦C. One µg/sample
of precleared chromatin was then incubated overnight at 4◦C
with 2 µg of rabbit anti-acetyl-histone H4, rabbit anti-acetyl-
histone H3K9, mouse anti-trimethyl-histone H3K4, mouse anti-
phospho-histone H3S10 (clone CMA312) or isotype control
antibodies (all antibodies from Merck Millipore, Darmstadt,
Germany). Immune complexes were collected with 15 µl/sample
of blocked Protein A magnetic beads. They were washed twice
in IP buffer supplemented with 0.1% SDS, trice in 0.5M LiCl,
100mM Tris, pH 8.0, 20mM EDTA, pH 8.0, 1% NP-40 and 1%
NaDOC, and once in IP buffer. Beads and 100 ng of sheared
input chromatin were then consecutively incubated for 30min
at 37◦C with 2 µg of RNase A and overnight at 65◦C with 20 µg
of Proteinase K. After isolation of DNA using a PCR purification
kit (see above), distal promoter regions of irf1, irf8, stat1, cIIta,
gbp2, or β-actin were amplified by quantitative LightCycler PCR
(see above) using primers as specified in Supplementary Table 2.
The IFN-γ-induced regulation of histone modifications was
normalized to input DNA and was calculated as in the below
equation (70).

Ratio (IFNγ/unstimulated) =
21CP ChIP(unstimulated−IFNγ−treated)

21CP input(unstimulated−IFNγ−treated)

Flow Cytometry
Surface expression of MHC class II molecules H2-A/E on
RAW264.7 cells was quantified by FACS (fluorescence-activated
cell sorting) as described before (39). Briefly, infected and
non-infected monocytes/macrophages were isolated at ∼42 h of
infection and were washed twice. Unspecific binding sites of
500,000 cells per staining were blocked with 1 mg/ml normal
mouse IgG, 1% bovine serum albumin (BSA), 0.1% NaN3 in
PBS, pH 7.4 during 30min at 4◦C. Cells were then incubated
with 2µg/mL of rat monoclonal anti-H2-A/E (cloneM5/114.15.2
ATCC, Rockville, MD) or with a rat IgG2b isotype control
antibody (clone A95-1; BD Biosciences, Heidelberg, Germany)
for 30min at 4◦C. After having been washed three times in 1%
BSA, 0.1%NaN3 in PBS, pH 7.4, immune complexes were labeled
with R-PE-conjugated donkey F(ab′)2 fragment anti-rat IgG for
30min at 4◦C. Cells were then washed, and they were fixed using
1% paraformaldehyde in PBS, pH 7.4. Ten thousand cells per
sample were analyzed using a FACSCalibur (BD Biosciences).

HDAC and HAT Activity Tests
HDAC and HAT activities were quantitated in nuclear extracts
from infected and non-infected RAW264.7 cells stimulated with

IFN-γ for 0–21 h. To this end, after collection, monocytic cells
were incubated for 15min at 4◦C in hypotonic lysis buffer
(10mM HEPES, pH 7.8, 10mM KCl, 2mM MgCl2, 1mM DTT,
0.1mM EDTA, 0.1mM PMSF, 0.1mMNa3VO4). They were then
disrupted by adding 0.6% Nonidet P-40, vigorous mixing and
passage through a 26G needle. Complete cell lysis was assured
microscopically after trypan blue staining. After centrifugation at
10,000× g and 4◦C for 1min, the pellet was washed in hypotonic
lysis buffer (as above), before being extracted in 50mM HEPES,
50mM KCl, 300mM NaCl, 1mM DTT, 0.1mM EDTA, 0.1mM
PMSF, 0.1mM Na3PO4 and 10% glycerol for 20min at 4◦C.
Soluble nuclear proteins were collected after centrifugation at
14,000× g for 5 min.

HDAC activity was determined using the Fluor de Lys R©-
Green fluorometric test kit as recommended by the manufacturer
(Enzo Life Sciences, Lörrach, Germany). Briefly, 10 µl of nuclear
extracts originating from ∼2 × 104 RAW264.7 cells each were
incubated in duplicate with 200µM of Fluor de Lys R© substrate
in HDAC assay buffer for 15min at 37◦C. In some experiments,
1µM of HDAC inhibitor trichostatin A or 3mM of NAD+

were added in parallel in order to confirm specificity of the
test or to determine the impact of sirtuin-type HDACs on
deacetylation, respectively. After addition of Fluor de Lys R©

developer containing 2µM of trichostatin A, fluorescence was
measured at excitation and emission wavelengths of 485 and
535 nm, respectively, in a Victor3 Vmulti-label microplate reader
(Perkin Elmer).

HAT activity was quantitated using the HAT assay kit as
recommended (Upstate, Lake Placid, NY). Briefly, 0.1 µg each
of biotin-conjugated histone H3 or H4 peptides per well were
incubated overnight at 4◦C in streptavidin-coated microtitre
plates. After blocking unspecific binding sites with 3% BSA
in Tris-buffered saline (TBS) for 30min at 30◦C, 10 µl/well
(histone H4; ∼2 × 106 RAW264.7 cells) or 20 µl/well (histone
H3; ∼4 × 106 RAW264.7) of nuclear extracts, 100µM acetyl-
CoA, in 50mM Tris, pH 8.0, 10% glycerol, 0.1mM EDTA and
1mM DTT were incubated in duplicate for 60min at 30◦C.
Plates were then extensively washed, and acetylated peptides
were consecutively labeled with 40 ng/well of rabbit IgG anti-
acetyl-lysine and HRPO-conjugated anti-rabbit IgG. Bound
antibodies were colorimetrically quantitated at 450 nm using a
microplate reader.

Statistical Analyses
Results are expressed as means ± S.E.M. of at last three
independent experiments unless stated otherwise. Significant
differences between means of two or more variables were
identified by Student’s t-test or by ANOVA with Bonferroni post-
hoc test, respectively using Statistica 13 (Dell, Round Rock, USA).
P-values of <0.05 were considered significant.
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