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Immunoregulation in the testis is characterized by a balance between immuno-
suppression (or immune privilege) and the ability to react to infections and inflammation.
In this review, we analyze the phenotypes of the various immune cell subtypes present in
the testis, and how their functions change between homeostatic and inflammatory
conditions. Starting with testicular macrophages, we explore how this heterogeneous
population is shaped by the testicular microenvironment to ensure immune privilege. We
then describe how dendritic cells exhibit a tolerogenic status under normal conditions, but
proliferate, mature and then stimulate effector T-cell expansion under inflammatory
conditions. Finally, we outline the two T-cell populations in the testis: CD4+/CD8+ ab T
cells and CD4+/CD8+ Foxp3+ regulatory T cells and describe the distribution and function
of mast cells. All these cells help modulate innate immunity and regulate the immune
response. By improving our understanding of immune cell behavior in the testis under
normal and inflammatory conditions, we will be better placed to evaluate testis impairment
due to immune mechanisms in affected patients.
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INTRODUCTION

The mammalian testis is divided into two main compartments: the convoluted seminiferous tubules,
where spermatogenesis occurs, and the interstitial space where Leydig cells (LC) produce the male sex
hormones (androgens). During spermatogenesis, germ cells divide and mature in close association with
somatic Sertoli cells (SC) that extend from the basal membrane to the tubule lumen. Multiple highly
specialized cell junctions namely tight, adherens and gap junctions extend between neighboring SC to
form a blood-testis-barrier (BTB) that is permissive to the developing germ cells. Bordering the SC and
spermatogonia, a basement membrane containing extracellular matrix proteins and a contractile
peritubular cells (PTC, also known as myoid cells) sheet divides the seminiferous epithelium from
the interstitium. Organization of the PTC sheet varies by species; in rodents, only one PTC layer is seen
whereas in humans it typically consists of 5–7 layers (1). Immune cells in the testis are found exclusively
in the interstitium, in close association with either PTC or LC, as well as with lymphatic and blood
vessels (Figure 1). Some authors described that in rodents lymphatic vessels are restricted to the tunica
org September 2020 | Volume 11 | Article 5833041
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albuginea (2–4), while others reported irregular channels
incompletely bound by endothelial cells (5). In contrast, Kitadate
et al. (6) described in mice testis parietal lymphatic endothelial cells
(LE) that cover the surface of lymphatic space, mainly in the
peritubular area close to the PTC layer contributing to the
spermatogenic stem cell niche homeostasis through the supply of
fibroblast growth factor ligands secreted by LE cells (6). Telocytes, a
stromal cell type similarly localized as LE cells, have been recently
identified in rodent and human testis (7, 8). It has been suggested a
possible role of telocytes in the regulation of lymphatic capillary
function (9). The immunomodulatory factor secreted by immune
cells, and somatic cells (LC, SC, and PTC), in combination with
BTB, forms a unique immunological environment that: (i) protects
immunogenic germ-cell-specific neoantigens and transplants from
immune attack, and (ii) responds to invading pathogens by eliciting
a delicately balanced immune response to protect sensitive germ
cells (10, 11).

The functions of the BTB, SC, LC, and PTC in preserving the
immune privileged status of the testis has been described in
details in previous reviews (11, 12). As such, we rather describe
the different immune cells of the testis that maintain the immune
privileged status and contribute to the immune response against
inflammatory stressors.
MACROPHAGES

In the broadest sense, macrophages constitute an immune cell
population with phagocytic characteristics, ingesting foreign
Frontiers in Immunology | www.frontiersin.org 2
particles and invading pathogens such as bacteria, and clearing
cell debris. Given their essential role, macrophages are found in
all mammalian organs where they perform immune and
nonimmune functions (13). As is the case for other organs,
macrophages are by far the most abundant and heterogeneous
immune-cell population found in the testis (14, 15). The
heterogeneity of these tissue-resident macrophages has been
delineated based on cell surface marker expression, anatomical
localization, gene expression profiles, ontogeny, and post-natal
development. Under normal conditions, most testicular
macrophages (TM) express the core macrophage markers F4/
80, CD11b, AIF, and CX3CR1 (4, 16). The heterogeneity of the
macrophages is evidenced by the differential expression of
surface markers CD64 and major histocompatibility complex
class II (MHC II), besides their localization relative to other cells
within the testis (4, 16).

Under steady conditions, interstitial (iTM) and peritubular
(pTM) macrophages predominate (16). iTM are characterized by
CD64hiMHClo expression and are found adjacent to LC and
blood vessels (Figure 1) (4, 16). By contrast, pTM are
characterized by CD64loMHChi expression and are found
adjacent to the seminiferous tubules (Figure 1) (4, 16). Each
TM subpopulation also expresses a unique transcriptional
profile, which is indicative of functional specialization. For
example, CD64loMHChi pTM express high levels of antigen
presentation genes, such as genes encoding the MHCII —
H2Dmb, H2Eb1, and, H2K1. Conversely, CD64hiMHClopTM
express high levels of immunosuppressive genes, namely, IL10
and Marco (16).
FIGURE 1 | Immunoregulation of the testis is mediated by a combination of structural (blood- testis barrier) and cellular derived factors. Illustration shows in a rodent
testis, resident macrophages, tolerogenic dendritic cells, T cells and mast cells in the interstitium interacting with Leydig, Sertoli and peritubular cells releasing factors
to create an optimal microenvironment for germ cells. Under inflammatory conditions immune cells are able to respond to invading pathogens.
September 2020 | Volume 11 | Article 583304

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bhushan et al. Immunology of the Testis
A recent study used single-cell mRNA sequencing (scRNA-
seq) to identify two interstitial macrophage sub-populations of
the lung, which were also found in the testis: Lyve1loMHCIIhi

and Lyve1hiMHCIIlo. These two subpopulations are distinct in
localization, phenotype, and gene expression (17). Although TM
seem to comprise only two main subsets, in-depth analyses using
scRNA-seq and high powered confocal microscopy are needed to
characterize the extent of heterogeneity in detail.

Resident macrophages in the brain, liver, and lung that arise
embryonically either from the yolk sac or fetal liver; are
maintained locally by self-renewal in adult life without notable
contribution from blood monocytes (18). In other organs, such
as the intestine, dermis, and pancreas, macrophage populations
are maintained by replacement from blood monocytes (19–22).
However, the exact contribution of embryonic progenitors and
blood monocytes that give rise to tissue-resident macrophages in
adult life is still controversial. Moreover, the mechanism by
which adult tissue resident macrophages maintained in
adult life is not yet completely understood.We have made great
progress in recent years to unravel the ontogeny and functional
heterogeneity of macrophage population in different organs, the
origins of TM are still unclear. iTM are thought to originate
from embryonic progenitors, whereas pTM seem to arise
postnatally from bone marrow derived cells (16); however, the
relative contributions of embryonic progenitors to the adult TM
and the mechanisms of TM maintenance in adulthood
are undefined.

Although all tissue-resident macrophages arise from distinct
cellular origin, (23) upon organ entry, tissue-specific signals polarize
macrophages to endow them with tissue- specific functions (24).
For example, the intranasal transfer of progenitors from either the
yolk sac, fetal liver, or bone marrow to the lungs of Csf2rb-/- mice
lacking adult alveolar macrophages resulted in the polarization of
macrophage progenitors with functional and transcriptional
properties reminiscent of alveolar macrophages. These findings
suggest that intrinsic factors rather than cellular origins, might
imprint the resident macrophage phenotype (25). The testis
microenvironment contains numerous immunomodulatory
molecules — namely testosterone, prostaglandins, corticosterone,
activin, and 25 hydroxy-cholesterol (25HC) — that might govern
TM phenotype and function (Figure 1) (14, 26). Indeed, we found
that testosterone, prostaglandins, and corticosterone present in the
testicular interstitial fluid can polarize GM-CSF-derived
macrophages to immunosuppressive macrophages by inducing
CD163 and IL10 expression with concomitant low TNF-a
production (14). Other molecules, such as 25-HC and activin, are
also produced in large amounts in the testis (26, 27). Whether these
molecules can influence TM phenotype and function has not been
investigated, we speculate that they likely have a role.

Recent data primarily from in vitro studies suggest a role for
TM in maintaining the immune privileged state of the testis
(28, 29). Specifically, TM exhibit anergy to inflammatory
stimuli, which serves to protect developing germ cells from
the deleterious effects of pro-inflammatory cytokine. The
mechanisms underlying this subdued inflammatory response of
TM could be based on the low expression of toll like receptor
Frontiers in Immunology | www.frontiersin.org 3
(TLR) signaling genes and impaired ubiquitination and
degradation of the NF-ĸB inhibitor IĸBa that ultimately
inactivates the inflammatory NF-ĸB signaling pathway (28).

TM are immunoregulatory, secreting high levels of IL10, and
producing low levels of TNF-a and nitric oxide (NO) upon
stimulation with the TLR4 ligand, lipopolysaccharide (LPS) (28,
29). In addition, TM suppress T-cell proliferation and activation,
and induce naive T-cell differentiation into immunosuppressive
regulatory T cells (Tregs) (14, 29). The TM immunoregulatory
phenotype seems to be essential to preserve normal testis
homeostasis: high TNF-a production impairs LC function and
can breakdown the BTB, exposing the germs cell to cytotoxic
inflammatory cytokines that ultimately impairs spermatogenesis
(30). High NO production can also negatively affect LC function
and consequently, steroidogenesis (31).

Besides acting as immune sentinel cells, TM are also equipped to
perform testis-specific functions to maintain normal homeostasis,
including: (1) supporting steroidogenesis by producing 25HC,
(2) promoting spermatogenesis by expressing sp?A3B2 ?
>ermatogonial proliferation- and differentiation-inducing
factors such as colony stimulating factor 1 (CSF1) and
enzymes involved in retinoic acid (RA) biosynthesis, and (3)
guiding testis embryonic development by aiding blood vessel and
spermatic cord formation (4, 26).

The number of TM increases during testis inflammation, as
observed following acute LPS stimulation or in experimental
models of murine chronic autoimmune epididymo-orchitis
(EAO) induced by immunization with testis homogenate and
adjuvants or pathogen-induced (E. coli) inflammation
(epididymo-orchit is) (32–35) . During LPS-induced
inflammation, a transient influx of monocytes into the testis
occurs that resolves after 72 h; whereas no changes in the number
of TM was observed (32). Similarly, following E. coli-induced
epididymo-orchitis, inflammation in the testis quickly resolves
after the initial infiltration of immune cells and impairment of
spermatogenesis. However, without therapeutic intervention,
inflammation of the epididymis continues to remain (35).
These observations suggest that the testis has a remarkable
ability to resolve inflammation via mechanisms likely involving
TM. Now, further studies are required to investigate how TM
resolve inflammation and promote tissue repair.

We have gained mechanistic detail underlying the role of TM in
resolving inflammation from the experimental autoimmune
orchitis (EAO) model. Here, the number of TM subsets
CD68+CD163- and (CD68+CD163+) increases progressively from
the end of the immunization period to the severe orchitis stage,
withminor changes in the number of resident CD163+ TM (33). At
the same time, TM release large amounts of the pro-inflammatory
mediators TNFa, IL6, IFNg, and NO but not IL10 and GM-CSF
(33, 36, 37). Infiltrating macrophages, but not resident CD163+

TM, express IL6, upregulate MHCII and reduce TNFa expression
(33). Neither infiltrating (CD68+CD163-), intermediate
(CD68+CD163+) nor resident (CD68-CD163+) TM up-regulate
iNOS expression during EAO (37). The increase in NO production
by TM during EAO mainly results from the large percentage of
infiltrating and intermediate TM expressing iNOS; resident TM
September 2020 | Volume 11 | Article 583304
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contribute to NO production to a lesser extent. These events, as
well as changes in other immune and nonimmune cell functions,
ultimately disrupt testicular immune privilege and impair
spermatogenesis and steroidogenesis (38).

The consequences of perturbed TM function are evident in
infertile patients with hypospermatogenesis and Sertoli cell-
only syndromes. Namely, patients present with an increased
level of the TM-derived pro-inflammatory cytokines TNFa,
IL1a, and IL1b (39, 40). Interstitial infiltration of activated
macrophages and TNFa production is also a common feature
in other models of testicular damage, such as testicular torsion
(41), and in two models of transgenic male mice, one
ectopically expressing humanP450 aromatase (AROM+), and
the Tyro3, Axl and Mer (TAM) receptor tyrosine kinase triple
knockout (42).
DENDRITIC CELLS

Dendritic cells (DC) are “professional” antigen-presenting cells
and a cellular component of the adaptive immune system. DC
constitute a heterogeneous population that includes classical DC,
plasmacytoid DC, and monocyte-derived DC originating from
hematopoietic stem cells in the bone marrow. DC are found in
lymphoid and nonlymphoid tissues and have a role in T-cell
activation and tolerance induction, both of which depend onmany
environmental signals (43). We found that normal rat testis and
testicular draining lymph nodes (TLN) contain CD103+ DC that
express MHCII and B7 costimulatory molecules. However,
functional data from in vitro assays revealed that these DC are
unable to stimulate naïve T-cell proliferation (36, 44, 45). This
finding suggests that DC support the immune privilege status of
the testis as they adopt a tolerant status in the physiological
testicular microenvironment.

DC isolated from normal testis also express the chemokine
receptor CCR2, which is a marker of immature resident DC. Gao
et al. showed that Sertoli cells may promote the differentiation of
these immature DC into tolerogenic DC since mice prepuberal
Sertoli cell-conditioned of mice DC down-regulate the
expression levels of costimulatory molecules and decrease
T-cell priming (46).

During EAO, CD103+ MHCII+ CD80+ CD86+ DC isolated
from the testis and TLNs can activate T cells and produce
IL12p70 (44, 45). Bioactive IL12p70 can bias activated T cells
in favor of an inflammatory Th1 response (47). Moreover, DC
isolated from EAO testes show an upregulation of chemokine
receptor CCR7 expression, which directs DC migration to the
TLN (45). In fact, mature CD103+ DC accumulate in the lymph
nodes (LN) that drain the EAO testis (44).

Based on our knowledge in the rat model thus far, we
propose a putative model by which CD103+ DC promote the
induction and progression of orchitis. In the LN draining the
immunization site, DC present orchitogenic antigens on their
surface in the context of MHCII, then prime naïve T cells and
polarize them toward effector functions. DC-sensitized T cells
migrate to the testis, where they are attracted by local
Frontiers in Immunology | www.frontiersin.org 4
chemokines (CCL2 and CCL3) secreted by antigen presenting
cells and somatic cells and contribute to testicular
inflammation causing tissue damage (48, 49). Testicular DC
take up spermatic antigens from the impaired seminiferous
tubules to undergo immunogenic maturation, and subsequently
travel to the TLN via the lymphatic system; alternatively, they
might prime naïve T cells in situ. Consequently, this process
would increase manifold in response to inflammatory signals
leading to chronic orchitis.
LYMPHOCYTES

Depending on environmental signals, T cells commit to effector
or regulatory lineages with opposing functions leading to
inflammation or dominant immunologic tolerance (50). Flow
cytometric analysis of the leukocytes present in the normal rat
testis showed that nearly 25% of these cells are CD3+ T cells, and
that the percentage of CD8+ T cells is 4-fold greater than that of
CD4+ T cells. Most CD25+ T cells are found within the CD8+

subset (51). Both subsets express proinflammatory mediators,
such as TNFa, IFNg, and FasL. A similar percentage of cells
within the CD4+ and CD8+ T cell subsets express IFNg; however,
CD8+ T cells are the main producers of FasL and TNFa.
Testicular T cells expressing IL4 are occasionally observed
under normal conditions (52, 53).

The presence of Foxp3+ Tregs in the normal testis is well
established (54–56). In the rat testis, ~2% of the cells within the
CD4+ and CD8+ T-cell subsets express CD25 and Foxp3 (51).
This percentage rises to 4% in the TLN (57). Most of these cells
show a memory phenotype and produce TFG-b. Functional
analysis of CD4+CD25+Foxp3+ Tregs isolated from the TLN
showed that these cells produce a potent proliferative response
toward spermatic antigens and exert suppressive effects that
prevent conventional T-cell proliferation (57). These results
support that Tregs are activated in vivo by antigens from the
seminiferous tubules. In fact, Tung et al. demonstrated that non
sequestered germ cell antigens egressed from seminiferous
tubules, enter the interstitium, and induce Tregs challenging
the long-standing dogma that all germ cell neo-antigens are
sequestered from the immune system (58). These phenomena
elicit the expansion of Tregs in the TLN, where they may exert a
basal and permanent suppression of auto-reactive T cells,
thereby maintaining the tolerogenic environment (57, 58).

Under inflammatory conditions, pathogenic T cells can
overwhelm the suppressive mechanisms of Tregs by altering
the balance in favor of an autoimmune response (51).
For example, during EAO, CD4+, and CD8+ T cells producing
TNF-a, IFNg, and FasL infiltrate the testis. Th1 and Th17 subsets
serve as co-effector cells that govern the early stages of the disease
whereas CD8+ T cells producing Th1 and Th17 cytokines are
relevant to establish chronic inflammation (51–53). Although
Tregs accumulate in the testis and in the TLN, and despite that
Tregs from the TLN are more effective at suppressing T-cell
proliferation than their normal counterparts, these Tregs are
unable to prevent germ cell attack. One proposal for this
September 2020 | Volume 11 | Article 583304
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paradigm is that cytokines in the inflammatory milieu might
inhibit Tregs in vivo, compromising their function at
inflammation sites (56, 57).
MAST CELLS

Mast cells (MC) are tissue resident immune cells with
heterogeneous phenotypes localized within the subalbuginea
area near blood vessels in rodents and/or in the interstitial
compartment in humans (Figure 1). MC derive from CD34+

hematopoietic progenitor cells, differentiating initially in the bone
marrow and then locally in the specific organ that they have
migrated to under the influence of estrogens (59). MC have
diverse roles in innate immunity, tissue homeostasis and
remodeling, and adaptive immunity. Pre-synthesized substances
such as histamine, chymase, tryptase, carboxipeptidase A, and
TNFa are stored in granules and are released immediately after
MC activation (60). TNFa, IL6, and IL1b are synthesized de novo
after MC activation (61). Direct interactions with autoreactive
T cells may activate MC, inducing degranulation, and
cytokine production.

During inflammation (such as in patients with defective
spermatogenesis, varicocele, infertility, or EAO and testis torsion
models) the number of MC increases. Here, the serine protease
tryptase enhances fibroblast proliferation and collagen synthesis,
inducing fibrosis of the seminiferous tubules (62). MC might also
regulate fibrosis by activating matrix metalloproteinases (MMP)
and tissue MMP inhibitors (63).

In the EAO model, MC mainly accumulate around the ST and
especially the surrounding granulomas (64). Tryptase released by
these MC activates proteinase-activated receptor-2 (PAR2) that is
expressed by peritubular cells and TM to induce cell proliferation
and cytokine production (64). Moreover, PAR2-derived peritubular
cells drive an increase in the expression of inflammatory mediators
MCP1, TGFb2, and cyclooxygenase COX2.

Analyses of human testis biopsies from infertile patients
found an increase in the number of MC within the walls of the
seminiferous tubules; many of these cells were active and
expressing tryptase (65). These MC were often localized near
to spermatogonia and Sertoli cells, suggesting that MC might
Frontiers in Immunology | www.frontiersin.org 5
affect spermatogonia that express PAR2, possibly via their
secreted products (65).
CONCLUSIONS AND FUTURE
PERSPECTIVES

Immune cells have essential roles in maintaining testicular
homeostasis by dampening the inflammatory response and
supporting normal physiological functions. The attenuated
inflammatory response of testicular immune cells, particularly
TM, is essential as the testis is an immune privileged organ. Any
inflammatory response can severely damage testicular function
— namely steroidogenesis and spermatogenesis. Although
substantial progress has been made in understanding testicular
immune cell function, more detailed investigations are now
required to delineate the interactions between these immune
cells and neighboring nonimmune cells. The mechanisms
underlying how immune cells help to resolve inflammation
and promote tissue repair are to be studied in depth. Advances
in this area will improve our understanding of male infertility
problems and will pave the way for the development of
innovative therapeutics.
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