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Novel therapeutics against the global threat of multidrug-resistant Neisseria gonorrhoeae
are urgently needed. Gonococci possess several mechanisms to evade killing by human
complement, including binding of factor H (FH), a key inhibitor of the alternative pathway.
FH comprises 20 short consensus repeat (SCR) domains organized in a head-to-tail
manner as a single chain. N. gonorrhoeae binds two regions in FH; domains 6 and 7 and
domains 18 through 20. We designed a novel anti-infective immunotherapeutic molecule
that fuses domains 18–20 of FH containing a D-to-G mutation in domain 19 at position
1119 (called FH*) with human IgG1 Fc. FH*/Fc retained binding to gonococci but did not
lyse human erythrocytes. Expression of FH*/Fc in tobacco plants was undertaken as an
alternative, economical production platform. FH*/Fc was expressed in high yields in
tobacco plants (300–600 mg/kg biomass). The activities of plant- and CHO-cell produced
FH*/Fc against gonococci were similar in vitro and in the mouse vaginal colonization model
of gonorrhea. The addition of flexible linkers [e.g., (GGGGS)2 or (GGGGS)3] between FH*
and Fc improved the bactericidal efficacy of FH*/Fc 2.7-fold. The linkers also improved
PMN-mediated opsonophagocytosis about 11-fold. FH*/Fc with linker also effectively
reduced the duration and burden of colonization of two gonococcal strains tested in mice.
FH*/Fc lost efficacy: i) in C6−/− mice (no terminal complement) and ii) when Fc was
mutated to abrogate complement activation, suggesting that an intact complement was
necessary for FH*/Fc function in vivo. In summary, plant-produced FH*/Fc represent
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promising prophylactic or adjunctive immunotherapeutics against multidrug-
resistant gonococci.
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benthamiana, complement, factor H (FH)
INTRODUCTION

Gonorrhea is caused by the Gram-negative bacterium Neisseria
gonorrhoeae. Each year about 87 million new cases of gonorrhea
occur worldwide (1). Gonorrhea commonly manifests as
cervicitis, urethritis, proctitis, and conjunctivitis and can result
in serious sequelae in woman including infertility, ectopic
pregnancy, and chronic pelvic pain. Concomitant infection with
HIV and gonorrhea enhances the rate of HIV transmission (2–4).
Over the years N. gonorrhoeae has become resistant to almost
every antibiotic that has been used for treatment (5, 6). The recent
emergence of azithromycin-resistant isolates in several countries
(7–10) could render the first-line therapy, ceftriaxone plus
azithromycin, recommended by the Centers for Disease Control
and Prevention (https://www.cdc.gov/std/tg2015/default.htm),
ineffective in the near future.

In light of rapidly emerging multidrug-resistant N.
gonorrhoeae worldwide, development of safe and effective
vaccines and novel therapeutics against gonorrhea is a high
priority (11). An approach for developing new and effective
therapeutics against gonorrhea is to target key bacterial
virulence mechanisms. One of these is the ability of N.
gonorrhoeae to bind factor H (FH), a key inhibitor of the
alternative pathway of complement (12). FH comprises 20
short consensus repeat (SCR) domains that are organized as a
single chain (13). N. gonorrhoeae binds FH through domains 6
and 7 (14, 15) and the C-terminal domains 18 through 20 (12,
16). We previously designed a novel anti-infective
immunotherapeutic molecule combining the N. gonorrhoeae-
binding C-terminal domains 18–20 of FH, with a D to G
mutation at position 1119 in FH (termed FH*) to minimize
binding to human tissue while retaining binding to N.
gonorrhoeae, with human IgG1 Fc (the antibody-like effector
region of the modified molecule [termed FH*/Fc]) (17). We
showed that FH*/Fc possessed complement-dependent
bactericidal activity against gonococci in vitro and shortened
the duration and diminished bacterial loads in the mouse model
of vaginal colonization (17).

One of the important variables that we considered when we
designed FH*/Fc is the choice of linker length and sequence (18–
20). Linkers may offer some advantages for the production of
fusion protein, such as improving biological activity and
increasing expression yield (19). One of the most commonly
used flexible linkers has the sequence of (Gly-Gly-Gly-Gly-Ser)n,
where “n” can be optimized to achieve appropriate separation of
the functional domains (18). We previously used a simple
AAAGG-containing linker between FH* and Fc domain (17).
In this work, we explored the role of different linker lengths in
the efficacy of protein by generating FH*/Fc with no linker,
AAAGG, (GGGGS)2, and (GGGGS)3. In addition, we expressed
org 2
these molecules in tobacco plants because of the ability for large
scale production, low cost and the absence of animal products
(21–24). We also compared the functions of these molecules to
CHO-cell-produced FH*/Fc.
MATERIALS AND METHODS

Bacterial Strains
Strains F62 (25), Ctx-r(Spain) (similar to strain F89) (26), H041
(also known as World Health Organization reference strain X)
(27, 28), MS11 (29), UMNJ60_06UM (NJ-60) (30), and FA1090
(31) have all been described previously. Strains Ctx-r(Spain),
H041, and NJ-60 are resistant to ceftriaxone. Opacity protein
(Opa)–negative mutants of FA1090 (32) (all opa genes deleted)
have been described previously.

Expression and Purification of FH/Fc
Fusion Proteins in Tobacco Plants
A nucleotide sequence encoding human FH SCR18-20 (GenBank
accession no. NP_000177) [aa 1048-1231, incorporating the
D1119G mutation (33)], designed to employ optimal codon
usage for expression in Nicotiana benthamiana, was synthesized
by GENEWIZ (South Plainfield, NJ). This sequence (and the
encoded protein fragment) was designated FH*.

The synthetic FH* sequence was cloned into the plant binary
expression vector pTRAkc (34) upstream and in-frame with codon-
optimized hinge, CH2 and CH3 domains from human IgG1 (hFc)
and downstream of the signal peptide of the murine mAb24 heavy-
chain (lph) (35). Additional clones encoding N-terminal amino acid
extensions to the FH* sequence or linkers between FH* and Fc were
made using overlap extension PCR. The molecular constructs that
were assembled are listed in Table 1. Throughout the text these are
referred to by Agrobacterium tumefaciens strain number.

Transient expression of recombinant proteins was
accomplished by whole-plant vacuum infiltration (36) of N.
benthamiana DXT/FT (37) using A. tumefaciens GV3101
(pMP90RK) (38) containing one of the binary expression
vectors, co-infiltrated with A. tumefaciens GV3101 (pMP90RK)
TABLE 1 | Description of plant-produced FH*/Fc molecules.

Strain Modifications Binary expression vector name

S2366 AAAGG linker pTRAk-c-lph-FH*-(AAAGG)-hFc
S2368 (GGGGS)2 [(G4S)2] linker pTRAk-c-lph-FH*-(GGGGS)2-hFc
S2370 (GGGGS)3 [(G4S)3] linker pTRAk-c-lph-FH*-(GGGGS)3-hFc
S2381 no linker pTRAk-c-lph-FH*-hFc
S2477 N-terminal TS pTRAk-c-lph-(TS)FH*-(G4S)2-hFc
S2493 N-terminal TS “complement-

inactive”
pTRAk-c-lph-(TS)FH*-(G4S)2-hFc
(D270A/K322A)
Octo
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containing the binary vector pTRAkc-P19, encoding the post-
transcriptional silencing suppressor P19 (39). Glycoproteins
produced in N. benthamiana DXT/FT contain almost
homogeneous N-glycan species without plant-specific b1,2-
xylose and a1,3-fucose residues (37). After infiltration, the
plants were maintained in a grow room under continuous light
at 25°C for 5–7 days prior to harvest and protein purification.

Leaves were collected 5–7 days after vacuum infiltration and
frozen at −80°C until use. Purification of FH*/Fc fusion proteins
was accomplished using a protocol previously used with another
plant-produced Fc fusion (40), which incorporates affinity
chromatography with Protein A-MabSelect SuRe (GE
HealthCare). Purified proteins were concentrated to ≥2 mg/ml
using 10 kDa cut-off centrifugal concentrators, buffer exchanged
into PBS, and rendered sterile by filtration through 0.22-mm PES
membrane filters. Protein concentrations were quantified using
absorption at 280 nm and extinction coefficients predicted from
the amino acid sequences.

Purified protein samples were analyzed using standard
methods. Samples were subjected to SDS-polyacrylamide gel
electrophoresis (under reducing and non-reducing conditions)
on 4%–20% Mini-PROTEAN® TGX Stain-Free™ Protein Gels
(Bio-Rad, Hercules, CA). Gel images were obtained using a Bio-
Rad Gel Doc EZ imaging system.

Expression and Purification of FH/Fc
Fusion Proteins in CHO Cells
Cloning, expression in CHO cells and purification from cell
culture supernatants of a chimeric protein comprising human
FH (HuFH) domains 18–20 (D1119G) fused to the hinge, CH2
and CH3 domains of human IgG1 (hFc) has been described
previously (17). Protein concentrations were determined using
absorption at 280 nm and the BCA protein Assay kit (Pierce);
mass was determined by Coomassie Blue staining of proteins
separated by SDS-PAGE.

Human Complement
IgG- and IgM-depleted normal human serum (human
complement) was purchased from Pel-Freez.

Antibodies
Anti-human IgG–FITC was from Sigma-Aldrich and was used at
a dilution of 1:100 in HBSS containing 0.15 mMCaCl2 and 1 mM
MgCl2 (HBSS++) and 1% BSA (HBSS++/BSA) in flow cytometry
assays. Goat anti-human FH, alkaline phosphatase conjugated
anti-human IgG (Southern Biotechnology), and donkey anti-
goat IgG were used in Western blots a dilution of 1:1,000 in PBS
with 5% non-fat dry milk.

Flow Cytometry
Binding of FH*/Fc to bacteria was measured by flow cytometry
as described previously (17). Data were acquired on a BD LSR II
flow cytometer, and data were analyzed using FlowJo software.

Serum Bactericidal Assay
Serum bactericidal assays using bacteria grown in gonococcal
liquid media supplemented with CMP-Neu5Ac (2 µg/ml) were
Frontiers in Immunology | www.frontiersin.org 3
performed as described previously (17, 41). Approximately,
2,000 colony forming units (CFUs) of N. gonorrhoeae were
incubated with 20% human complement [IgG and IgM
depleted normal human serum (Pel-Freez)] in the presence or
the absence of the FH*/Fc fusion protein (concentration
indicated for each experiment). The final volume of the
bactericidal reaction mixture was 150 µl. Aliquots of 25µl
reaction mixtures were plated onto chocolate agar in
duplicate at the beginning of the assay (t0) and again after
incubation at 37°C for 30 min (t30). Survival was calculated as
the number of viable colonies at t30 relative to t0.

Opsonophagocytosis Assay
Opsonophagocytic killing of gonococci with freshly isolated
human polymorphonuclear leukocytes (PMNs) was performed
as described previously (15, 17). Briefly, heparinized venous
blood was obtained from a healthy adult volunteer in
accordance with a protocol approved by the Institutional
Review Board. PMNs were isolated using Mono-Poly Resolving
Medium (MP Biomedicals) according to the manufacturer’s
instructions. Isolated PMNs were washed and suspended in
HBSS without added divalent cations, counted, and diluted to
1 × 107/ml in HEPES-buffered RPMI 1640 medium
supplemented with L-glutamine and 1% heat-inactivated FBS.
To measure survival of gonococci in the presence of PMNs, Opa-
negative mutant of N. gonorrhoeae strain FA1090 was added to
1 × 106 PMNs at a multiplicity of infection of 1 (two bacteria to
one PMN). Opa-negative (Opa−)N. gonorrhoeaewas used because
select Opa proteins serve as ligands for human carcinoembryonic
Ag–related cell adhesion molecule 3 (CEACAM3) that is
expressed by PMNs and results in phagocytosis (42). FH*/Fc
was added at different concentrations, followed by 10% human
complement (Pel-Freez). The reaction mixtures were incubated
for 60 min at 37°C in a shaking water bath. Bacteria were
serially diluted and plated at 0 and 60 min on chocolate agar
plates. Percentage survival of gonococci in each reaction was
calculated as a ratio of CFU at 60 min to CFU at the start of the
assay (0 min).

Mouse Strains
Human FH and C4b-binding protein (C4BP) (FH/C4BP)
transgenic mice) in a BALB/c background have been described
previously (43). FH/C4BP Tg mice express levels of FH and
C4BP that are comparable to those found in human serum and
show similar responses to a variety of stimuli as wild-type (wt)
BALB/c mice (43). Wild-type C57BL/6 mice were purchased
from Jackson laboratories. Construction and characterization of
C6−/− mice (C57BL/6 background) have been described
previously (44).

Mouse Vaginal Colonization Model of
Gonorrhea
Use of animals in this study was performed in strict accordance
with the recommendations in the Guide for the Care and Use of
Laboratory Animals by the National Institutes of Health. The
protocol was approved by the Institutional Animal Care and
Use Committee at the University of Massachusetts Medical
October 2020 | Volume 11 | Article 583305

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Shaughnessy et al. FH/Fc Fusion Protein Against Gonorrhea
School. Female mice 6–8 weeks of age in the diestrus phase of
the estrous cycle were started on treatment with 0.1-mg
Premarin (Pfizer; conjugated estrogens) in 200 ml of water
given s.c. on each of 3 days: −2, 0, and +2 (2 days before, the
day of, and 2 days after inoculation) to prolong the estrus
phase of the reproductive cycle and promote susceptibility
to N. gonorrhoeae infection. Antibiotics (vancomycin and
streptomycin) ineffective against N. gonorrhoeae were also
used to reduce competitive microflora (45). Mice were
infected on day 0 with either strain H041 or FA1090
(inoculum specified for each experiment). Mice were treated
daily with 1 or 10 mg FH*/Fc intravaginally from day 0 until the
conclusion of the experiment or were given a corresponding
volume of PBS (vehicle controls).

Statistical Analysis
Concentration-dependent complement-mediated killing by FH/
Fc across strains was compared using two-way ANOVA.
Experiments that compared clearance of N. gonorrhoeae in
independent groups of mice estimated and tested three
characteristics of the data (15, 17, 46): time to clearance,
longitudinal trends in mean log10 CFU, and the cumulative
CFU as area under the curve (AUC). Statistical analyses were
performed using mice that initially yielded bacterial colonies on
days 1 and/or 2. Median time to clearance was estimated using
Kaplan-Meier survival curves; times to clearance were compared
between groups using the Mantel-Cox log-rank test. Mean
log10 CFU trends over time were compared between groups
using two-way ANOVA and Dunnett’s multiple comparison test.
The mean AUC (log10 CFU versus time) was computed for each
mouse to estimate the bacterial burden over time (cumulative
infection). The means under the curves of two groups were
compared using the nonparametric Mann-Whitney test because
distributions were skewed or kurtotic. The Kruskal-Wallis
equality-of-populations rank test was also applied to compare
more than two groups in an experiment.
RESULTS

Production of FH*/Fc Molecules in
Nicotiana benthamiana
We cloned a plant codon-optimized FH* DNA sequence upstream
and in-frame with sequences encoding the hinge, CH2 and CH3

domains (Fc) of human IgG1 in a plant expression vector, then
produced the FH*/Fc using a rapid N. benthamiana expression
system. One variant (S2366) included an AAAGG linker between
FH* and Fc, resulting in the same protein that had previously been
expressed in CHO cells (17).We also produced three new FH*/hFc
variants containing either no linker (S2381) or two or three copies
of a GGGGS (G4S) linker (S2368 and S2370, respectively). Yield of
these proteins following Protein A affinity chromatography ranged
from 300 to 600 mg per kg plant fresh weight (Figure 1A).
Characterization of the plant produced proteins by protein
staining of SDS-PAGE gels and western blotting with anti-
human FH is shown in Supplemental Figure S1.
Frontiers in Immunology | www.frontiersin.org 4
Effect of Linkers on Efficacy of FH*/Fc
We initially characterized four FH*/Fc molecules made in
tobacco plants: FH*/Fc without a linker, or with AAAGG, two
G4S or three G4S linkers (called (G4S)2 and (G4S)3, respectively).
FH*/Fc with AAAGG linker made in CHO cells was used as a
control. As we expected, since all proteins possessed the same
FH* sequence they showed similar binding to N. gonorrhoeae
strain H041 when tested at dilutions ranging from 1.1 to 30 µg/
ml (Figure 1B). In human complement-dependent bactericidal
assays using N. gonorrhoeae strain H041, S2368 and S2370 (FH*/
Fc with (G4S)2 and (G4S)3, respectively) showed improved
bactericidal activities compared to S2366 (FH*/Fc with
AAAGG) or S2381 (FH*/Fc without a linker) (Figure 1C). The
concentrations required for 50% bactericidal activity (BC50) were
lower for S2368 and S2370 than for S2366 and S2381 (BC50 of 2.1
µg/ml with S2368 and S2370 vs. 5.9 and 7.2 µg/ml with S2366
and S2381, respectively). FH*/Fc with AAAGG generated in
CHO cells or tobacco plants (S2366) showed similar bactericidal
activity (BC50 of 6.3 and 5.9 µg/ml, respectively). S2381 (no
linker) showed the least killing.

We next evaluated the effect of linkers on opsonophagocytic
activity. We have shown previously that FH*/Fc made in CHO
cells enhanced complement-dependent killing by PMN (17). In
this experiment, we used an Opacity protein negative (Opa-)
mutant derivative of N. gonorrhoeae strain FA1090, where all 11
opa genes have been inactivated, to eliminate Opa-CAECAM3
induced uptake of gonococci by PMNs (42). As shown in Figure
1D, S2368 and S2370 enhanced PMN-mediated killing
significantly more than S2366 or S2381 (BC50 of 2.3 and 2.6
µg/ml with S2368 and S2370 vs. 27.4 and 19.1 µg/ml with S2366
and S2381, respectively).

Collectively, the data above showed that S2368 and S2370 [(G4S)2
and (G4S)3 linkers, respectively] improved bactericidal and PMN-
mediated opsonophagocytic killing about 2.7- and 11- fold,
respectively, compared to S2366. We chose S2370 for further
bactericidal testing using five additional gonococcal strains
(Figure 1E) and observed killing of four of the six strains tested
[H041, NJ60, F62, and MS11, but not FA1090 or CTX-r(Sp)]. These
six strains showed the same pattern of susceptibility to FH*/Fc with
the AAAGG linker produced in CHO cells (17).

Efficacy of S2370 Against N. gonorrhoeae
in the Mouse Vaginal Colonization Model
We next evaluated the efficacy of S2370 againstN. gonorrhoeae in
the mouse vaginal colonization model of gonorrhea using FH/
C4BP transgenic mice. We used two strains that differed in their
susceptibility to killing in the human complement-dependent
bactericidal assay; sensitive strain H041 and resistant strain
FA1090 (Figure 1E).

As shown in Figure 2, S2370 given daily intravaginally at
doses of either 1 or 10 µg/d significantly attenuated both the
duration and the burden of gonococcal vaginal colonization
compared to vehicle control treated groups, when challenged
with either 106 (Figure 2A) or 107 CFU (Figure 2B) of strain
H041. Overall, there were no significant differences in clearance
between the 1 or 10 µg doses. S2370 was also efficacious against
October 2020 | Volume 11 | Article 583305
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strain FA1090 in FH/C4BP transgenic mice when administered
intravaginally at a dose of 10 µg/d (Figure 3).

Capping the N-terminal Cys in FH*/Fc
Improves Protein Yields and Retains
Function
We observed that concentration and sterile filtration of all
variants of FH*/Fc resulted in dramatic losses of protein; close
to 50% versus the ~20% loss seen with other plant-produced Fc
fusions (40, 47). A distinctive feature of FH*/Fc is the presence of
an N-terminal cysteine. Proteins with N-terminal cysteines are
able to undergo a reaction called native chemical ligation,
whereby the cysteine reacts with free thioester groups (48, 49).
We suspected this might be responsible for the protein loss
during concentration. We therefore designed, expressed, and
purified a new FH*/Fc (S2477) with two additional amino acids
(TS) that are normally N-terminal to the cysteine in the native
FH sequence, which overcame the previously noted loss during
purification. As shown in Figure 4A, S2477 showed fewer
degradation products after purification compared to S2370.

A comparison of the bactericidal activity of S2370 and S2477
against six strains of N. gonorrhoeae [H041, NJ-60, F62, MS11,
FA1090, and Ctx-r(Sp)] grown in media containing CMP-
Neu5Ac to sialylate LOS showed that S2477 has slightly better
Frontiers in Immunology | www.frontiersin.org 5
activity than S2370 (Figure 4B). The efficacy of S2477 against
another ceftriaxone-resistant isolate, NJ60, was also confirmed
(BC50 of 1.5 µg/ml) (Figure 4C). By comparison, S2493 [a
derivative of S2477 that contained D270A and K322A in Fc,
abrogating C1q binding (50)] was included as a negative control
and showed no killing (Figure 4C).

S2477 Requires an Intact Terminal
Complement Pathway for Efficacy
C1q engagement by Fc is critical for the activity of CHO cell-
produced FH*/Fc (15), suggesting that the classical complement
pathway is required for efficacy of FH*/Fc. To determine whether
complement alone acting through killing by membrane attack
complex (MAC) insertion was necessary and sufficient for
efficacy of FH*/Fc, we used C6−/− mice (44). C6 is the second
step in the formation of the C5b-9 MAC pore. While C6−/− mice
lack the capacity to form MAC pores, they can generate
C5a, which is important for chemotaxis of PMNs and
opsonophagocytic killing of Neisseriae (51, 52). Wild-type
C57BL/6 control mice or C6−/− mice (n = 6/group) were
infected with H041 and treated with either S2477 or S2493
(each given at 5µg intravaginally daily, starting on day 0,
through day 7) or PBS vehicle control (Figure 5). Although
S2477 was efficacious in WT C57BL/6 mice, all efficacy was lost
A

B

D E

C

FIGURE 1 | Effect of linkers in efficacy of FH/Fc produced in N. benthamiana against N. gonorrhoeae in vitro. (A) Yields and stability of the four human IgG1 Fc
variants produced in tobacco plants. (B) Binding of FH*/Fc fusion proteins to sialylated N. gonorrhoeae H041. CHO cell-produced FH*/Fc that was used in previous
studies was used as a comparator. (C) Bactericidal activity of the FH*/Fc fusion proteins against N. gonorrhoeae H041. S2368 [(G4S)2 linker] and S2370 [(G4S)3
linker] show improved activity. (D) Comparison of the opsonophagocytic activity of S2368, S2370 and S2381 (no linker) against N. gonorrhoeae FA1090. Presence
of the G4S linker improves function. (E) Activity of S2370 against six sialylated strains of N. gonorrhoeae.
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in C6−/− mice. FH*/Fc that lacked the ability to activate
complement (S2493) was inactive in both C6−/− and wt mice.
Taken together, these data show that complement alone is
necessary and sufficient for efficacy of FH*/Fc in the mouse
vaginal colonization model of gonorrhea.
Frontiers in Immunology | www.frontiersin.org 6
DISCUSSION

N. gonorrhoeae has developed resistance to almost every antibiotic
used for treatment and poses an urgent threat to human health
worldwide. The “Global action plan to control the spread and
FIGURE 3 | Efficacy of S2370 (FH/Fc with (GGGGS)3 linker) against N. gonorrhoeae FA1090 in human FH/C4BP transgenic mice. Premarin®-treated 6 week-old
human FH/C4BP transgenic mice (n = 8/group) were infected with 4 × 107 CFU N. gonorrhoeae strain FA1090. Mice were treated daily (starting 2 h before infection)
intravaginally either with PBS (vehicle control) or with 10 µg of FH*/Fc molecule S2370. Left graph: Kaplan Meier curves showing time to clearance, analyzed by the
Mantel-Cox (log-rank) test. Middle graph: log10 CFU versus time. X-axis, day; Y-axis, log10 CFU. Comparisons of the CFU over time between each treatment group
and the respective saline control was made by two-way ANOVA and Dunnett’s multiple comparison test. ***P < 0.001; ****P < 0.0001. Right graphs: bacterial
burdens consolidated over time (area under the curve [log10 CFU] analysis). Comparisons were made by Mann-Whitney’s non-parametric test.
A

B

FIGURE 2 | Efficacy of S2370 against N. gonorrhoeae H041 in human FH/C4BP transgenic mice. Premarin®-treated 6- to 8-week-old human FH/C4BP transgenic
mice (n = 6/group) were infected with either 106 CFU (A) or 107 CFU (B) N. gonorrhoeae strain H041. Mice were treated daily (starting 2 h before infection)
intravaginally either with PBS (vehicle control) or with 1 µg or 10 µg of FH*/Fc molecule S2370. Left graphs: Kaplan Meier curves showing time to clearance, analyzed
by the Mantel-Cox (log-rank) test. Significance was set at 0.017 (Bonferroni’s correction for comparisons across three groups). Middle graphs: log10 CFU versus
time. X-axis, day; Y-axis, log10 CFU. Comparisons of the CFU over time between each treatment group and the respective saline control was made by two-way
ANOVA and Dunnett’s multiple comparison test. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. Right graphs: bacterial burdens consolidated over time (area
under the curve [log10 CFU] analysis). The three groups were compared by one-way ANOVA using the non-parametric Kruskal-Wallis equality of populations rank
test. The c2 with ties were 12.12 (P = 0.0002) and 11.94 (P = 0.0002) for the graphs in panels (A, B), respectively. Pairwise AUC comparisons across groups was
made with Dunn’s multiple comparison test.
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impact of antimicrobial resistance in N. gonorrhoeae” emphasizes
the need for novel approaches to prevent and treat gonorrhea (53).
The complement system is a critical component of innate immune
defense that is central to controlling bacterial infections. N.
gonorrhoeae have evolved several strategies to escape
complement, including binding of FH, a key inhibitor of the
alternative pathway of complement (12, 54). Sialylation of
Frontiers in Immunology | www.frontiersin.org 7
gonococcal LOS occurs in humans (55) and also during
experimental infection of mice (56). Loss of the ability to
sialylate its LOS is associated with a significant decrease in the
ability of gonococci to colonize mice (56, 57). Targeting a
gonococcal virulence factor has a distinct advantage over
conventional antibiotics because resistance, if it were to develop,
would result in a less fit organism due to loss of the virulence factor.
A B C

FIGURE 4 | Improved stability and efficacy of FH*/Fc bearing two amino acids (TS) at the N-terminus (S2477) in vitro. (A) S2477 shows fewer degradation products
compared to S2370. Western blot of purified S2477 (lane 1) and S2370 (lane 2) using anti-human IgG alkaline phosphatase as the detection reagent. Note that
irrelevant lanes between lanes 1 and 2 have been excluded. MW, molecular weight (kDa). (B) S2477 (TS-FH*-(G4S)2/Fc) and S2370 (FH*-(G4S)3/Fc) (concentrations
indicated on the X-axis) were incubated with sialylated strains H041, NJ-60, F62, MS11, FA1090, and Ctx-r(Sp) and complement and survival at 30 min (relative to
0 min) was measured in a bactericidal assay. Comparisons were made by two-way ANOVA. *P < 0.05; **P < 0.01; ****P < 0.0001. (C) Complement-dependent
bactericidal efficacy of S2477 against N. gonorrhoeae strain NJ-60. Negative controls included bacteria incubated with complement alone (open bar on left) and
bacteria incubated with 8 µg/ml S2493 (TS-FH*-(G4S)2/Fc-D270A/K322A (complement-inactive Fc mutations); hatched bar on right).
FIGURE 5 | Terminal complement is required for efficacy of FH/Fc against N. gonorrhoeae H041 in vivo. The activities of S2477 (TS-FH*/Fc with (G4S)2 linker) and
S2493 (the corresponding FH/Fc molecule with D270A/K322A mutations in Fc that abrogates complement activation) were tested in C6−/− mice or wt C57BL/6
control mice. Mice (n = 7/group) were infected with 4.2 × 106 CFU N. gonorrhoeae H041 and treated daily (starting 2 h before infection) with 5 µg of the indicated
FH/Fc protein intravaginally; control animals received PBS. Left graph: Kaplan Meier curves showing time to clearance, analyzed by the Mantel-Cox (log-rank) test.
Significance was set at 0.005 (Bonferroni’s correction for comparisons across five groups). Middle graph: log10 CFU versus time. X-axis, day; Y-axis, log10 CFU.
Comparisons of the CFU over time between each treatment group and the respective PBS control was made by two-way ANOVA and Dunnett’s multiple
comparison test. ***P < 0.001; ****P < 0.0001. Right graph: bacterial burdens consolidated over time (area under the curve [log10 CFU] analysis). The five groups
were compared by one-way ANOVA using the non-parametric Kruskal-Wallis equality of populations rank test. The c2 with ties was 17.15 (P = 0.0018). Pairwise
AUC comparisons across groups was made with Dunn’s multiple comparison test.
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Gonococcal surface antigens show extensive antigenic and
phase variability (58, 59). Thus, the identification of protective
epitopes that are shared by a wide array of strains has been
challenging. To overcome this obstacle, we designed an
immunotherapeutic molecule combining the gonococcal-
binding C-terminal domains 18, 19, and 20 of FH with human
IgG1 Fc. This molecule has the advantage of targeting a broad
array of gonococcal isolates. Introducing a D-to-G mutation at
position 1119 in FH domain 19 (FH*) abrogated lysis of human
RBCs that was seen when unmodified FH domains 18–20 were
fused to Fc, while retaining binding to and activity against
gonococci in vitro and in vivo (17).

In this study, we examined the efficacy of tobacco plant-
produced FH*/Fc. Tobacco plants have been used for over three
decades to produce antibodies and proteins (60). The tobacco plant
expression system has advantages over mammalian cells because of
the scalability of production, the potentially low costs and the
absence of animal viruses or prions (22). FH*/Fc molecules were
expressed in high yields in tobacco plants (>300 mg/kg biomass).
Plant-produced FH*/Fc showed activity against N. gonorrhoeae
that was comparable with CHO cell-produced FH*/Fc.

Linkers between the binding domain and Fc can positively
impact production and/or function of fusion proteins (19, 20, 61).
Accordingly, insertion of (G4S)2 and (G4S)3 flexible linkers between
FH* and Fc improved the functional efficacy of FH*/Fc, evidenced
by approximately 3- and 11-fold increases in bactericidal activity
and PMN-mediated killing, respectively, compared to FH*/Fc with
an AAAGG linker. The (G4S)3 linker-containing FH*/Fc was
efficacious in mice against ceftriaxone-resistant isolate H041
when given topically at a dose as low as 1 µg/d.

Complement is a central arm of innate immune defenses
against Neisserial infections. Defects of terminal complement
components (C5 through C9) are associated with increased risk
from invasive Neisserial infections, including disseminated
gonococcal infection (62–68). We used mice deficient in
complement C6 (C6−/− mice) to assess the role of terminal
pathway in enabling FH*/Fc to clear N. gonorrhoeae. The
opsonophagocytic activity in C6−/− mice is intact because they
can generate C5a, a chemotaxin shown to be important for killing
of N. meningitidis in blood where C7 function was blocked (52).
FH*/Fc lost activity inC6−/−mice, suggesting terminal complement
was required for FH*/Fc activity. The lack of FH*/Fc activity in
C6−/− mice was not because of species incongruity between
(human) Fc and (mouse) FcR; human IgG1 binds to all mouse
FcgRs and can mediate Ab-mediated cellular cytotoxicity (ADCC)
and Ab-dependent cellular phagocytosis (ADCP) with mouse
effector cells in a manner similar to human cells (69). FH*/Fc
with the complement-inactivating D270A/K322A Fc mutations
was also ineffective in mice. Taken together with our prior
observation of loss of FH*/Fc activity in C1q−/− mice (15), these
data reiterate the role of classical pathway activation for FH*/Fc
activity in vivo. A different C6−/− mouse constructed by back-
crossing the naturally C6-deficient Peru-Coppock strain into the
C3H/He background (70) and subsequently backcrossing the C3H/
He C6−/− mice into the C57BL/6 background (71) showed
impaired PMN function including defective phagocytosis and
Frontiers in Immunology | www.frontiersin.org 8
generation of reactive oxygen species (72). Whether the function
of phagocytes in our C6−/− mice that were created by targeted
deletion of C6 directly in the C57BL/6 background is compromised
remains to be determined. Nevertheless, collectively our data
suggest that the classical and terminal pathways of complement
were necessary for FH*/Fc function.

In summary, we have designed novel FH/Fc fusion proteins,
expressed in tobacco plants, that show promising activity both in
vivo and in vitro against N. gonorrhoeae. The modification of
flexible linkers between FH* and Fc improves the potency of
FH*/Fc. Intact classical and terminal complement pathways are
required for FH*/Fc activity.
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