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Neoangiogenesis is a recognized hallmark of cancer, granting tumor cells to dispose of
metabolic substrates through a newly created vascular supply. Neoangiogenesis was also
confirmed in melanoma, where vascular proliferation is associated with increased
aggressiveness and poorer prognosis. Furthermore, melanoma cells show the so-
called vascular mimicry, consisting in the assumption of endothelial-like features
inducing the expression of pro-angiogenic receptors and ligands, which take part in the
interplay with extracellular matrix (ECM) components and are potentiated by the ECM
remodeling and the barrier molecule junction alterations that characterize the metastatic
phase. Although neoangiogenesis was biologically proven and clinically associated with
worse outcomes in melanoma patients, in the past anti-angiogenic therapies were
employed with poor improvement of the already unsatisfactory results associated with
chemotherapic agents. Among the novel therapies of melanoma, immunotherapy has led
to previously unexpected outcomes of treatment, yet there is a still strong need for
potentiating the results, possibly by new regimens of combination therapies. Molecular
models in many cancer types showed mutual influences between immune responses and
vascular normalization. Recently, clinical trials are investigating the efficacy of the
association between anti-angiogenetic agents and immune-checkpoint inhibitors to
treat advanced stage melanoma. This paper reviews the biological bases of
angiogenesis in melanoma and summarizes the currently available clinical data on the
use of anti-angiogenetic compounds in melanoma.
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INTRODUCTION

Melanoma is an aggressive cancer arising from melanocytic precursors, with high potential for
locoregional and metastatic spread. As a common hallmark of cancers, when the dimensions of the
primary tumoral mass of melanoma reach the threshold for nutrient diffusion, a cancer-specific net of
blood vessels is fundamental to provide substrates for cancer cell survival and growth (1). The newborn
neoplastic vasculature is aberrant and incomplete with distorted, dilated, and leaky vessels, insufficient
pericyte coverage, abnormal endothelial cell proliferation, an uneven distribution within cancer tissues,
org October 2020 | Volume 11 | Article 5849031
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and wide fenestrations that ultimately contribute to tumor cell
sprouting through the vascular flow (2–5). The process of
activation of quiescent vasculature by cancer cells is called
“angiogenic switch” and is sustained by a disequilibrium between
molecular activators and inhibitors of angiogenesis, in favor of
angiogenesis (6). Angiogenesis is essential in growth and
progression of cancers, including melanoma (7). Warren first
described angiogenesis in a melanoma graft animal model,
observing remarkable angiogenic capacity of melanoma tissue (8).
Since then, angiogenesis in melanoma has been furtherly
investigated to identify a possibly more complex and
heterogeneous behavior in the handling of blood vessels by this
neoplasm (9). First, melanoma cells induce the spread of new blood
vessels by pre-existing ones; secondly, melanoma cells recruit bone
marrow progenitors that reach hypoxic areas within the tumor
microenvironment, where they can induce vascular formation;
finally, melanoma cells themselves can acquire an endothelial-like
phenotype in the so-called vascular mimicry phenomenon, directly
taking part into the structure of blood vessels (9). So far, inhibitors of
angiogenesis have been used in oncology in other cancers including
renal, colorectal, and ovarian neoplasms, but data from clinical
melanoma research are lacking. The current therapies for advanced
stage disease in melanoma are based on the inhibition of either the
aberrantly activated BRAF/MEK pathway, or the immune
checkpoints PD1 and CTLA4. Despite obtaining previously
unexpected outcomes in patients with advanced disease, leading
to improved survival rates, these therapies still have potential for
further improvements. This paper summarizes the biological bases
of angiogenesis in melanoma matching to the most recent
development of treatments, and reviews the currently available
preclinical and clinical data on the use of anti-angiogenetic
compounds in patients with melanoma.
INSIGHTS CONCERNING THE
MOLECULAR MECHANISMS OF
ANGIOGENESIS

The recent evolution of melanoma treatment has led to a primary
role of targeted and immune therapy both in the adjuvant and the
metastatic setting. Interestingly, the molecular architecture of
melanoma microenvironment is far more complex than
previously thought, and a strong cross-talk has been clearly
demonstrated between the angiogenic and the immune
components of cancer stroma, with mutual influences in the
molecular compartments that are involved in response to
systemic treatments. Angiogenic factors are produced by tumor
cells, stromal cells including cancer-associated fibroblasts (CAFs),
and inflammatory cells like lymphocytes and macrophages. The
hyperproduction of pro-angiogenetic factors is induced by several
mechanisms, primarily the activation of the hypoxia-induced
HIF1a pathway, the oncogene-induced transcription of Vascular
Endothelial Growth Factor (VEGF), and the loss of oncosuppressor
genes including p53, which both stimulates the production of
antiangiogenic factors like thrombospondin-1 and inhibits the
expression of proangiogenic factors (10, 11).
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Vascular Endothelial Growth Factor (VEGF)
VEGF-A is the archetype and most biologically relevant among
proangiogenic factors, with a strong effect on endothelial survival
and migration (12), and on vasculogenic mimicking properties in
melanoma cells (13). VEGF-A is upregulated by HIF-1a and
oncogene signaling pathways (14–16). Remarkably, VEGF-A has
also shown immunosuppressive capacity. In particular, the
increased production of VEGF-A in cancer leads to inhibition
of T cells in several ways: 1) reducing the activity of functional T
cells both directly (17) and indirectly through the endothelial
PGE2-mediated suppressive action on T cells (18); 2) decreasing
neoantigen presentation to lymphocytes by inhibiting the
maturation of dendritic cells (DCs) (19), mainly interfering
with NF-kB activation (20); 3) recruiting immunosuppressive
T regulatory cells (Tregs) into the tumor microenvironment
(21, 22); 4) limiting endothelial cytokine response and
adhesion molecule expression, hence affecting vascular
functional permeability to leukocytes and their peripheral
recruitment to cancer microenvironment (23, 24). Relevantly
for immunotherapy, VEGF pathway activation also enhances
T cell exhaustion mediated by immune checkpoints like
PDL1, CTLA4, TIM3, and LAG3 (25). While lowering the
immunogenic compartment of immunity, VEGF potentiates
the counteracting immunopermissive microenvironment (26)
both by recruiting immune-suppressive Tregs (27) and
myeloid derived stromal cells (MDSCs) (28), and activating
tumor-associated macrophages (TAMs) at the tumor site (29).
To confirm this role of VEGF, the anti-VEGF antibody
Bevacizumab induces DC maturation and a reduction in Tregs
andMDSCs recruitment to cancer sites (22, 30, 31). VEGF can be
produced by cancer cells and immune cells from tumor
microenvironment, mostly from Tregs and in smaller
proportions from TAMs, MDSCs and DCs (32), creating
cellular communications that either directly or indirectly
convey on the inhibition of cytotoxic T lymphocytes (33).
Angiopoietin-2 (ANG-2)
ANG-2 is an antagonist cytokine of the Angiopoietin-1/Tie2
pathway that acts as a facilitator of VEGF-dependent
angiogenesis (34). ANG-2 has long been considered an
exclusive product of endothelium, but more recently Pari and
colleagues demonstrated that it can also be produced by
melanoma (35). ANG-2 levels in sera are increased in stage III
and IV melanoma patients, but not in stages I and II (36).
Consistently with this evidence, ANG-2 is produced by
melanoma cells themselves, especially by metastatic sites (35).
Differently from the stromal-derived ANG-2, melanoma-derived
ANG-2 was not shown to increase the microvessel density of
melanoma microenvironment but rather showed a protection of
tumor cells from oxidative stress and a role in reactive oxygen
species associated metastatization to the lungs in a mouse model
(35). High serum ANG-2 levels were correlated with worse overall
response rate to immunotherapy in melanoma (37). ANG-2
contributes to immune microenvironment composition, by
acting on the Tie-2 expressing subpopulation of circulating
monocytes, that are recruited by ANG-2 and converted to
October 2020 | Volume 11 | Article 584903

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Quaresmini and Guida Angiogenesis in Melanoma
M2-like macrophages (38) and secrete IL10, which is a known
promoter of Treg expansion and inhibitor of effector T cell
activity (39).

Toll-Like Receptors (TLRs)
TLRs are a family of pattern recognition receptors involved in
antimicrobial immunity, apoptotic cell clearance, and cancer.
Among all family members, TLR-4 is expressed in 90% of primary
and 93% of metastatic melanomas, where it plays a role in the
aggressive behavior of cancer cells (40). TLR-4 signaling involves
the activation of signal transducer and activator of transcription 3
(STAT3), which on turn promotes melanoma growth and
aggressiveness associated features including angiogenesis and
epithelial to mesenchymal transition (41). During melanomagenesis,
ultraviolet radiation recruits and activates neutrophils in a TLR4-
mediated mechanism, inducing an inflammation that facilitates
angiogenesis and favors melanoma angiotropism (40). Moreover,
STAT3 has also been associated to immunosuppression in
melanoma (42).
IMMUNE CELLS IN MICROENVIRONMENT
AND ANGIOGENESIS

In cancer microenvironment, there is a constant dynamic cross-
talk between all resident cells which is far beyond the mere activity
of cancer cells alone: the dynamic interaction between all cell
components is responsible for the biological behavior of cancer.
Accordingly, angiogenesis in cancer is not only induced by cancer
cells themselves: the immune cells in tumor microenvironment can
sustain angiogenesis in cancer (43). Globally, tumor cells can
influence immune infiltrates towards an immune permissive
phenotype. VEGF, for example, is produced by TAMs, tumor-
associated neutrophils, regulatory DCs, myeloid derived
suppressor cells, NK cells, and gdT17 cells (43). VEGF-R1 and -2
are expressed on DCs, which can promote angiogenesis (44).
Neutrophils and TAMs secrete proangiogenic factors including
VEGF, TNFa, IL8, and chemokines (45), together with matrix
metalloproteases, which are essential to remodel the extracellular
matrix during angiogenesis andmetastatization (46). In an analysis
on mouse models of breast cancers, extended to some of TCGA
databases excluding melanoma, Tian et al. (47) demonstrated that
the activation of vessel normalization (pericyte coverage, reduced
vascular leakage, improved blood perfusion) is one of the effects of
immune checkpoint inhibitors (ICIs) mediated by the activation of
CD4+ T lymphocytes, in particular IFNg producing Th1 cells (47).
In particular, the authors postulated the existence of a positive
feedback loop, according to which Th1 cells localize proximal to
tumoral vessels and change the local tumor microenvironment via
CKs like IFNg, which induces a reduction in VEGF-A production
and an increase in Th1- and pericyte-recruiting chemokines
CXCL9, CXCL10, CXCL11 (47). Such finding would confirm the
evidence that inhibition of IFNg signaling is associated to
secondary resistance to immune checkpoint inhibitors (48).
Furthermore, after interacting with DCs, T cells can acquire
neurophilin-1 which is a ligand of VEGF-A that promotes
Frontiers in Immunology | www.frontiersin.org 3
angiogenesis (49). Endothelial cells, formerly considered passive
lining cells of blood vessels, are actively responsible of the intense
reciprocal cellular interaction consisting in the so-called angiocrine
signaling that is essential in normal organ development (50)
and can be exacerbated in cancer. Tumor cells can then induce
endothelial activation mediated by CKs including Angiopoietin-2,
which are responsible for the autocrine induction of STAT3
signaling in the endothelium, followed by the expression of
chemokines (CCL2) and adhesion molecules (ICAM1) that
recruit CCR2+ macrophages to the cancer site (37). Endothelial
cells take part in granulocyte differentiations in physiology and
pathology, given the common developmental origin between
endothelial cells and hematopoietic cells (37): the endothelium
secretes CKs (SCF, CXCL12) that contribute to the quiescence of
hematopoietic cells in the bone marrow, but can also promote
granulopoiesis in case of inflammation (51). The hypoxia-regulated
Endothelin B receptor on tumor endothelium acts as an obstacle to
T cell adhesion and has been identified in some cases of resistance
to immune therapy (52).
MANIPULATION OF ANGIOGENESIS BY
THERAPEUTIC AGENTS IN MELANOMA

Antiangiogenics are a class of kinase inhibitors that bind either
angiogenic factors or their receptors. The first antiangiogenic agent
to be developed was Bevacizumab, an anti-VEGF monoclonal
antibody, which is still indicated in the treatment of cancers
including colorectal, ovarian, or uterine carcinomas. Many other
agents were synthesized furtherly, presenting a wider spectrum of
pharmacodynamic targeting, including Sunitinib, Pazopanib,
Ramucirumab, Regorafenib, Sorafenib, Aflibercept, being so far
approved in daily practice either alone or in combination.
Antiangiogenic agents model the irregular and leaky vessels of
cancer to create an almost normalized intratumoral vascular
network, at least transiently. Such improved vascular efficiency of
cancer microcirculation is thus the main responsible for a more
efficient transport of chemotherapic agents to cancer cells, and also
the molecular background to the association of antiangiogenic
therapies with traditional chemotherapies (53). Part of the
effects of antiangiogenics in cancer may also be attributed to
the modulation of immune cell composition in tumor
microenvironment, triggered by the reduction in the tissue
hypoxia that is associated with the immature cancer vasculature.
The response to hypoxia favors the polarization of the tumor
microenvironment towards an immune-suppressive phenotype in
terms of increase in Tregs and M2-TAMs, reduction of DC activity,
and increase in PDL1 expression on endothelial cells, TAMs, DCs,
and cytotoxic lymphocytes (33). Antiangiogenics can then interfere
with both CD8+ T cells trafficking and TAMs repolarization,
inducing an immunostimulatory milieu (37). Anti-VEGF-A
agents also improve immune responses (54). In a preclinical
model of antiangiogenic-driven vascular normalization in
melanoma and other primary cancers, Schmittnaegel et al.
demonstrated that the administration of a bispecific anti-VEGF-
ANG2 antibody was associated with increased recruitment and
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activation of CD4+ and CD8+ T cells at the areas with normalized
vessels (55). In the cross-talk between adaptive and innate
immunity, IFNg from CD4+ and CD8+ T cells then stimulates
M1-TAMs to angiostatic activity and antagonize endothelial cell
proliferation (56). In a preclinic mouse model with multiple cancer
cell lines including melanoma, DeAlmeida and Colleagues
demonstrated that therapy with anti-VEGFA targeting agent
induces the HIF1a-mediated activation of intratumoral CD8+
cells resulting in an increase in IFNg and TNFa production (57).
Unfortunately, the response is usually transient (58) and short in
duration (59), due to mechanisms of escape that include the
activation of metabolic stress responses in cancer cells; the
activation of alternative angiogenic pathways like the ANG-2
pathway; the participation to new vessel growth according to the
vascular co-option mechanism; the normalization of cancer vessels
(56). In renal cell carcinoma, two different molecular subsets
have been identified: the angiogenic subset, characterized by
upregulation of angiogenesis-associated genes and responsiveness
to antiangiogenic therapy, and the inflammatory subset, presenting
an upregulation in immune-related genes and refractoriness to
antiangiogenic therapy (60). In contrast, no similar dichotomy
has been identified in melanoma, for which resistance to
antiangiogenic therapies may be intrinsically associated to its
biology: as evidenced by Donnem, melanoma primary and
metastatic lesions strongly rely on vessel co-option for their
vascular supply, as an alternative to angiogenesis (61). In
melanoma, the mutation of the BRAF gene has primary
importance, since mutations at the codon 600 are druggable and
clinically associated with significant responses. The constitutive
activation of BRAF kinase is not only a driver mutation in
melanoma, but also has effects on melanoma microenvironment
composition (62). In particular, BRAFmutations are associated with
an increased density of Treg infiltrate (63), and a reduction in T cell
activity by the indirect secretion of IL-1a and IL-1b from CAFs
(64). PDL1 expression in immune infiltrate is also more prevalent in
BRAF mutated tumor specimens (65). Finally, BRAF mutated cells
also have angiogenic capacity (66), since they can induce other
cancer cells and microenvironmental cells to secrete CXCL8 and
CCL2, two pro-tumorigenic chemokines, leading to cancer cell
proliferation and macrophage-mediated angiogenesis (62).
Furthermore, the pathway of VEGFR-1 has recently been
identified as an escape mechanism to the BRAF-inhibitor
Vemurafenib (67). As evidenced by Aztori and colleagues,
melanoma cell lines express higher VEGF-receptors when
transformed into Vemurafenib-resistant, and silencing of such
receptors can prolong the maintenance of sensitivity to
Vemurafenib (67). Together with targeted therapy for BRAF
mutated patients, the backbone of treatment in advanced
melanoma is represented by the immune therapy with either anti-
CTLA4 or anti-PD1 agents, that remove immune checkpoint
inhibition to potentiate the immune response to melanoma.
Despite an overall improvement in the outcomes of treatment,
still immune therapy is often associated to secondary resistance and
progression and, yet more rarely, to early resistance. Among the
possible mechanisms underpinning these resistances, recent
evidence also identified some vascular-related mechanisms. In
Frontiers in Immunology | www.frontiersin.org 4
particular, high serum ANG-2 levels correlated with worse overall
response rate to ICI therapy in melanoma, possibly because ANG-2
can recruit monocytes and induce PDL1 expression in M2-
macrophages (37). Wu and colleagues identified a subset of
melanoma patients characterized by a significant tumor
infiltration of CD68+ macrophages that particularly responded to
treatment with Ipilimumab and Bevacizumab with a neat decrease
in ANG-2 expression (68). Allen and colleagues demonstrated that
the combination therapy of antiangiogenics and anti-PD1 agents
induced an increase in intratumoral high endothelial venules
responsible for selective leukocyte infiltration and for the switch
of microenvironment towards immunosensitive features (69). A
bispecific anti-VEGFA and anti-ANG2 was also shown to
potentiate the efficacy of an anti-PD1 treatment (55).
DISCUSSION: EVIDENCE FROM CLINICAL
TREATMENT OUTCOMES AND POSSIBLE
PERSPECTIVES

The first trials involving antiangiogenetic drugs in melanoma date
back to early experiences two decades ago, when chemotherapy
was the only available treatment for advanced stage disease, with
palliative intent and dramatically poor outcomes. Most of these
studies are phase 1 or 2 trials for stage III unresectable or stage IV
melanoma, either in single or double arm of treatment, with small
cohorts of recruited patients, usually 20–30 (Table 1). Despite
preclinical data suggesting the advantage of a more regular
vascular network in the distribution of chemotherapics to cancer
cells, these trials did not provide satisfying results from the
association of antiangiogenics with common chemotherapics,
showing no statistically significant improvement in the
outcomes of traditional chemotherapy schedules, therefore they
have never been investigated in wider phase 3 clinical trials and
have never been adopted in everyday practice. More recently,
immune therapy became the new gold standard for systemic
therapy, together with anti-BRAF and anti-MEK targeted
therapy for BRAF mutated patients, and was tested in the
association with antiangiogenic agents, given the evidence of
efficacy from the combination of antiangiogenics with ICIs not
only in preclinical, but also in the clinical settings for other cancers
including renal clear cell or non-small cell lung cancer. Hodi and
colleagues performed an investigational phase I trial in 46 patients
with advanced melanoma without brain metastases receiving a
first (37%) or second (63%) line treatment with Ipilimumab and
Bevacizumab: the best overall response rate (ORR) was 19.6% with
a disease control rate of 67.4% and a median time to progression of
9 months (78). The immunohistochemical analysis of serial
biopsies of target lesions revealed changes in melanoma-
associated endothelium with increased expression of E-selectin
(78). In a more recent phase IB/II trial, Taylor and colleagues
treated patients with advanced solid tumors including melanoma
with the association of Pembrolizumab and Lenvatinib, an
inhibitor of multiple kinases including VEGFR. Among the 21
patients of the melanoma subcohort, the ORR was 33% and also
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included 1 complete response, while the disease control rate was
81% (79). Recently, Arance and colleagues presented the
preliminary results of the phase 2 LEAP004 trial investigating
the association of Lenvatinib and Pembrolizumab in 103 patients
with advanced melanoma progressing on immunotherapy in
second or further line of treatment. The median progression-
free survival was 4.2 months with a median overall survival of 13.9
months and a 21.4% response rate, supporting a possible role in
overcoming resistance to immunotherapy by Lenvatinib (80).
Frontiers in Immunology | www.frontiersin.org 5
These encouraging data are now furtherly being investigated in
a randomized phase III trial specifically dedicated to advanced
melanoma. Moreover, other studies are currently ongoing, mostly
still in the recruitment phase, for treatment associations of
antiangiogenics with anti-PD1 (Nivolumab or Pembrolizumab)
or anti-PDL1 (Avelumab) inhibitors (Table 2). As previously
described, angiogenesis plays a major role in the natural history
of melanoma, from its intrinsic aggressiveness to some forms of
resistance to systemic therapy. Despite widely intertwined
TABLE 1 | Clinical trials of the association of antiangiogenic treatments with old drugs in advanced melanoma.

Reference Phase Clinical setting Line of
treatment in
metastatic
setting

Arm 1 Arm 2 Primary endpoints Secondary
endpoints

Further
analyses

Del Vecchio
et al. (70)

II Stage IV
cutaneous
melanoma.

1st line Bevacizumab
+ Fotemustine
(20 pts)

None CR 1/20
PR 2/20
SD 10/20

TTP 8 m
OS 20 m
G3 toxicity 14/20 pts

Reduction of
VEGF levels
post-therapy

Tarhini et al.
(71)

II Stage III
unresectable or
stage IV
cutaneous
melanoma.
No active brain
metastases.

1st line or
further

Aflibercept
(40 pts)

None ORR 7.5% PFS 4 m
Os 16 m

Hypertension
correlated with
OS

Von Moos
et al. (72)

II Stage IV
cutaneous
melanoma.
No brain
metastases.

1st line Bevacizumab
+
Temozolomide
(62 pts)

None SD 52% ORR 16%
PFS 4 m
OS 10 m

OS higher in
BRAF wt 12 vs
9 m

Kim et al. (73) II
randomized

Stage IV
melanoma.
No brain
metastases.

1st line Carboplatin +
Paclitaxel
+ Placebo
(71 pts)

Carboplatin
+ Paclitaxel
+
Bevacizumab
(143 pts)

PFS 4 vs 5 m OS 9 vs 12 m
OR 11/67 vs 36/141
DOR 8 vs 7 m
G3-G5 toxicity 57 vs
45%

Schuster et al.
(74)

II Stage IV
melanoma. No
brain metastases.

2nd line Bevacizumab
(35 pts)

None DCR 31% PFS 2 m
OS 9 m
Toxicity 7/11 pts who
had disease control
developed
hypertension

Minor et al.
(75)

II Stage IV
melanoma.
No active brain
metastases.
cKit mutated.

2nd line or
further. No prior
immunotherapy.

Sunitinib
(10 pts)

None ORR 3/4 in mutated
cKIT pts; 1/6 in amplified
or overexpressed cKIT
pts.

Mahalingam
et al. (76)

II Stage III
unresectable or
stage IV
cutaneous
melanoma.
No active brain
metastases.

2nd or 3rd line Bevacizumab
+ Sorafenib
(14 pts)

None ORR 0%
SD 21%

PFS 8 m
G3-G4 toxicity 43%

Low VEGF
values
correlated with
longer PFS

Ferrucci et al.
(77)

II Stage IV
cutaneous
melanoma. No
brain metastases.

1st line Bevacizumab
+ Dacarbazine
(40 pts)

None ORR 19% TTP 5 m
Discontinuation 92%
G3-G4 toxicity 22%

NCT02158520 II
randomized

Stage IV
melanoma.
No brain
metastases

1st line or
further

Nab-Paclitaxel
+
Bevacizumab
(12 pts)

Ipilimumab
(12 pts)

PFS 129 vs 94 days OS 18 vs 27 m
ORR (2 vs 0 CR; 1 vs
1 PR)
G3-G4 Toxicity (9 vs
7)

Recruitment
completed.
(24 enrolled
pts vs 176
initially
designed)
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mechanisms between angiogenesis and immunity, the efficacy of
antiangiogenic therapies is currently insufficient. Hence, much
interest is addressed to the ongoing clinical trials of combined
antiangiogenic and immune therapies, to pursue better outcomes
in the therapy of advanced melanoma.
Frontiers in Immunology | www.frontiersin.org 6
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