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Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature
myeloid cells that accumulate in tumor-bearing hosts to reduce T cells activity and
promote tumor immune escape in the tumor microenvironment (TME). The immune
system in the TME can be stimulated to elicit an anti-tumor immune response through
immunotherapy. The main theory of immunotherapy resides on the plasticity of the
immune system and its capacity to be re-educated into a potent anti-tumor response.
Thus, MDSCs within the TME became one of the major targets to improve the efficacy of
tumor immunotherapy, and therapeutic strategies for tumor MDSCs were developed in
the last few years. In the article, we analyzed the function of tumor MDSCs and the
regulatory mechanisms of agents targeting MDSCs in tumor immunotherapy, and
reviewed their therapeutic effects in MDSCs within the TME. Those data focused on
discussing how to promote the differentiation and maturation of MDSCs, reduce the
accumulation and expansion of MDSCs, and inhibit the function, migration and
recruitment of MDSCs, further preventing the growth, invasion and metastasis of tumor.
Those investigations may provide new directions for cancer therapy.

Keywords: cancer, tumor immunotherapy, tumor microenvironment, myeloid-derived suppressor cells,
inhibitory factors
INTRODUCTION

Myeloid-derived suppressor cells (MDSCs), a population of immature myeloid cells with
immunosuppressive roles in tumor-bearing models or patients with tumors, have been
recognized as the major suppressor of the anti-tumor response (1, 2). The underlying
mechanism and function of MDSCs in the TME have been studied by our team and other
scientists (3, 4). Clinical data revealed that the high-level circulating MDSCs in patients with cancers
correlated with clinical stage, metastatic burden, and the resistance to both chemotherapy and
immunotherapy. MDSCs were also recognized as one of the major obstacles in the treatment of
cancer, especially for tumor immunotherapy. Recently, epigenetic regulation of the biologic
behavior of MDSCs had emerged as a promising tool in cancer therapy (5). Multiple strategies
used to target these cells were investigated to determine if the immunosuppressive effects of MDSCs
org February 2021 | Volume 11 | Article 5852141
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can be decreased or eliminated in order to improve the efficacy of
anti-cancer immunotherapy. Even though no therapeutic drugs
specifically targeting MDSCs had been approved to be used
in clinical treatment, the effects of some agents had been
evaluated in tumor mouse models and patients with cancer (6–
9). Their roles were involved in promoting the differentiation
and maturation of MDSCs, reducing the accumulation and
expansion of MDSCs, preventing the migration and
recruitment of MDSCs into tumor sites or/and metastasis
areas, and impeding the suppressive function and activity of
MDSCs (9). In this review, we summarized the data about the
roles and functional mechanisms of those agents targeting
MDSCs, further providing novel therapeutic strategies for
clinical cancer treatment.

Origin and Phenotype of MDSCs
Myeloid precursor cells, derived from hematopoietic stem cells
(HSCs) in the bone marrow, developed into immature myeloid
cells (IMCs) under physiological conditions. IMCs were
differentiated into mature macrophages, dendritic cells (DCs),
and granulocytes further. The different progenitor cells that
formed the population, demonstrated a broad range of
morphology and functional capacity. In contrast, in
pathological conditions, such as inflammation, tumors,
infections, or autoimmune diseases, there was the dramatic
expansion of IMCs with the same phenotype and immune-
suppressive activity, resulting in the further differentiation of
IMCs into a large number of MDSCs in various tissues (10).
Those MDSCs with potent immune-suppressive activity acted as
negative regulators of those immune responses (11). Our data
illustrated that during chronic process when inflammation
transition into cancer, MDSCs downregulated anti-tumor
immune responses by modulating cytokine production of
macrophages and up-regulated the expression of immune-
suppressive factors, such as arginase 1 (Arg-1) and inducible
nitric oxide synthase (iNOS) (12, 13). Additionally, tumor
MDSCs also blocked T cell anti-tumor response through the
increase in the production of reactive oxygen species (ROS)/
nitrogen (RNS) (14).

MDSCs lacked clear surface markers unlike monocytes,
macrophages and DCs. According to surface markers, MDSCs
were divided into two subsets, granulocytic/polymorphonuclear
MDSCs (G-MDSCs/PMN-MDSCs) which their phenotype and
morphology were similar to neutrophils, and the phenotype and
morphology of monocytic MDSCs (M-MDSCs) were similar to
monocyte. In tumor bearing-mice, MDSCs were characterized by
co-expression of CD11b and Gr-1, which were further divided
into two subtypes: CD11b+Ly6G+Ly-6Chigh monocytic MDSCs
(M-MDSCs) and CD11b+Ly-6G+Ly-6Clow polymorphonuclear
MDSCs (PMN-MDSCs), which were usually present in bone
marrow, peripheral blood, spleen, liver, lung or various organs
(14). In Human, M-MDSCs were defined as CD11b+CD14+HLA-
DR− / l oCD15− whi l e PMN-MDSCs were defined as
CD11b+CD14−CD15+ or CD11b+CD14−CD66b+ (4). Those
phenotypes and function of MDSCs had been shown in our
recent articles (3, 15). Both PMN-MDSCs and M-MDSCs had
different immunosuppressive mechanisms (16).
Frontiers in Immunology | www.frontiersin.org 2
Regulatory Mechanism of MDSCs Within
the TME
One of the main features of MDSCs was to exhibit
immunosuppression activity which was involved in multiple
mechanisms or/and factors including signal transducer and an
activator of transcription (STATs) (such as STAT1,STAT3, and
STAT6) (17), some cytokines (IFN-g, IL-10, IL-6, GM-CSF), and
special molecules (PGE2, S100 protein, and LPS, etc.) (18).
MDSCs also hindered the anti-tumor roles of many immune
cells in the immune system, such as Natural Killer (NK) cells, B
cells and T cells. And the inhibition of T cell function was most
important for evaluating the activity of MDSCs. In TME, MDSCs
depleted the essential nutrients of T cells through STAT/MyD88
signaling pathway to up-regulate metabolic enzymes e.g. Arg-1,
iNOS, which reduced the expression of L-arginin, a substance
necessary for T cell activation and proliferation (17) (Figure 1).
Thus, L-arginin metabolism played a key role in the
immunosuppressive activity of MDSCs by altering the mRNA
transcription (19). L-arginin was metabolized by inducible iNOS,
generating citrulline and NO to suppress T cell activation and
decrease MHC II molecular expression on antigen-presenting
cells (APCs), and further inducing T cell apoptosis (18). The
productions of ROS/RNS which MDSCs produced, were also
immunosuppressive necessary factors. The action of NO and O2−

produced peroxynitrite (PNT), which directly impaired T cell
activation by nitrating T cell receptors and reducing the
reactivity of MHC antigen complexes. PNT reduced the
integration of MHC I molecules with antigenic peptides on
tumor cells and nitrified T cell-specific chemokines to prevent
T cell migration (17, 19–21) (Figure 1).

Apart from the suppression roles on T cells, MDSCs also
induced T cells apoptosis and blocked T cell migration which was
essential for T cell responses. Galectin 9 expressed on MDSCs
bond to T cell immunoglobulin and mucin domain-containing
protein 3 (TIM3) on lymphocytes and induced T cell apoptosis
(19) (Figure 1). MDSCs directly down-regulated the expression
of CD62L on naïve T cells through the expression of TNF-a-
converting enzyme (TACE/ADAM17) on MDSCs to hamper the
homing of naïve T cells to lymph nodes, leading to the reduced
number of those cells (22).

MDSCs and regulatory T (Treg) cells are major components
of the TME. Both cell types expanded in tumor models or
patients with cancer and promoted T cell dysfunction that in
turn facilitated tumor progression (23). Recent studies revealed
that MDSCs promoted the development and induction of Treg
cells to enhance their suppressive roles on T cells (24). In Ret
transgenic mouse models (melanoma model), tumor M-MDSCs
also drove the recruitment of CCR5+ Treg cells through
producing chemokines such as CCL3, CCL4 and CCL5, further
accelerating tumor metastasis (25) (Figure 1).
Immunotherapy Through Targeting
Tumor MDSCs
The suppressive roles of MDSCs on both T cells response and the
functions of multiple types of cells are critical for the anti-tumor
immune response. MDSCs accumulated within the TME were
February 2021 | Volume 11 | Article 585214
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recognized as a major obstacle for tumor immunotherapy (3, 15).
Therefore, there are increasing evidences to show that it may be
novel therapy strategies for tumor to identify inhibitory factors
and find therapeutic ways on tumor MDSC. In the review, we
summarized recent data about therapeutic agents and methods
on tumor MDSCs, based on the functional characterization
of MDSCs.

Promote the Differentiation and Maturation
of MDSCs
Within the TME, more IMCs were differentiated into a large
number of MDSCs, whereas further differentiation of MDSCs
into mature macrophage or DCs was restrained. The agents that
promoted differentiation and maturation of MDSCs had been
investigated as potential therapeutic strategies to reduce or
eliminate MDSCs. Those agents, including all-trans retinoic
acid (ATRA), IL-12, RUNX1, and CpG oligonucleotides drove
MDSCs differentiation into mature myeloid cells (26–29).

Both Docetaxel and Paclitaxel treated breast cancer
effectively, as the two clinical representatives of the new class
of taxane drugs. Recent reports demonstrated that Docetaxel
promotedMDSCs differentiation into M1-like macrophages with
anti-tumor activity by reducing the phosphorylation levels of
STAT3 in 4T1 breast tumor-bearing mice (30). And Paclitaxel
promoted tumor MDSCs differentiation into mature DCs in a
TLR4-independent manner (31) (Table 1).
Frontiers in Immunology | www.frontiersin.org 3
The differentiation and function of MDSCs may be regulated
through microRNA (miRNAs), Long non-coding RNAs
(LncRNAs) and epigenetic modifying factors. Our recent data
demonstrated that the differentiation and maturation of tumor
MDSCs were mediated miRNAs which participated in regulating
cell proliferation, differentiation, and maturation (45). The
overexpression of miR-17 family members, such as miR-17-5p,
miR-20a, and miR-106a in human progenitor cells repressed
AML1 by binding to its promoter to down-regulate M-CSFR
which induced MDSCs differentiation. MiR-223 remarkably
prevented the differentiation of IMCs into MDSCs in the
presence of tumor-associated factors by targeting myocyte
enhancer factor 2C (MEF2C). MiR-142-3p could limit the
generation of MDSCs during tumor-induced myelopoiesis by
modulating STAT3 and CCAAT/enhancer-binding protein b
(C/EBPb) signal pathways (45, 46) (Figure 2).

LncRNAs, more than 200 introns, were intergenic, intronic
and natural antisense transcripts, or transcribed from divergent
enhancers and promoters (47). They modified chromatin,
adjusted the networks of genetic and signal pathways in the
pathogenesis of cancer and played a critical role in the regulation
of the function and development of myeloid cells (48, 49). Some
of the pseudogene transcripts could function as LncRNAs to
regulate related gene expression by different mechanisms (50)
(Figure 2). Olfr29-ps1, a LncRNA pseudogene, expressed highly
in MDSCs, downregulated miR-214-3p to promote the
FIGURE 1 | Multiple MDSC-mediated immunosuppressive mechanisms. MDSCs suppressed T cell function through multiple mechanisms. Several factors were
involved in triggering signaling pathway, such as STAT1, STAT3, STAT6 and MyD88, which led to high expression level of immunosuppressive factors, such as Arg-
1, iNOS, ROS, NO, which suppress T cells response. C/EBPb was one of the family of CCAAT/enhancer-binding proteins (C/EBPs) which belonged to transcription
factors (TFs), which had three isoforms, LAP*, LAP and LIP. S100A8 and S100A9 along with gp91phox (also known as CYBB) were part of the NADPH oxidase
(NOX) complex that was responsible for the increased production of reactive oxygen species (ROS) in MDSCs. ADAM17, disintegrin and metalloproteinase domain
17; JAK, Janus kinase; STAT, signal transducer and activator of transcription; PNT, peroxynitrate; COX2, cyclooxygenase-2; APC, antigen-presenting cell; MMP9,
matrix metalloproteinase 9; MyD88, myeloid differential protein-88; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte-macrophage colony
stimulating; BCL-XL, B-cell lymphoma XL; GAL9, galectin 9; TIM3, T cell immunoglobulin and mucin domain-containing protein 3.
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differentiation of MO-MDSCs through IL6-mediated N6-
methyladenosine (m6A) modification manner (51). Metastasis
associated lung adenocarcinoma transcript 1 (MALAT1), as a
nuclear intergenic of LncRNA, whose expression was involved in
the differentiation of MDSC-like cells. The reduced expression of
MALAT1 in the patients with lung cancer led to the increased
proportions of MDSCs, indicating that MALAT1 could prevent
the differentiation of tumor MDSCs (52) (Figure 2). HOXA
transcript antisense RNA myeloid-specific 1 (HOTAIRM1), an
intergenic lncRNA localized between homeobox (HOX)A1 and
HOXA2 genes, was expressed preferentially in the myeloid
lineage and was a key regulator that targets HOXA1 during
myeloid cell development. HOTAIRM1 promoted the
maturation of MDSCs via inducing HOXA1 expression in
MDSCs to retard lung cancer growth (53). Therefore, multiple
agents were found to regulate the maturation and differentiation
of MDSCs (Figure 2).

Reduce the Accumulation and Expansion of MDSCs
MDSCs were not present in the circulatory system under normal
physiological conditions. However, these cells accumulated in
the individuals with cancer. Many agents participated in
Frontiers in Immunology | www.frontiersin.org 4
inducing the decrease of tumor MDSCs. The liver X receptor
(LXR) beta-agonist could diminish the populations of both
granulocytic and monocytic MDSCs in multiple mouse cancer
models by inducing MDSCs apoptosis, which was mediated
through the LXR target gene, ApoE, which bond to the LRP8
receptor on the surface of MDSCs (54).

AMP-activated protein kinase (AMPK), an important protein
kinase, regulated energy metabolism and innated adaptive
immunity by targeting the major signaling pathways. AMPK
activation could diminish the expansion and activation of
MDSCs through inhibiting multiple signaling pathways, such
as STATs and NF-kB pathways (55, 56), and alleviated the
nuclear translocation of STAT1 through the increased
expression of mitogen-activated protein kinase phosphatase-1
(MKP-1) (57, 58). AMPK also decreased the expansion of
MDSCs through attenuating NF-kB activation as well as
oxidative and endoplasmic reticulum (ER) stresses, since NF-
kB signaling played an important role in the expansion of
MDSCs in tumor initiation and progression (59). As a receptor
tyrosine kinase inhibitor, Sunitinib was approved by the FDA for
the treatment of metastatic renal cell carcinoma (RCC). Recently,
some scientists found that Sunitinib was also an immune-
TABLE 1 | The immunoregulatory agents target MDSCs within the TME.

Tumor types Agents Mechanisms/Functions Advantage Disadvantage Reference

4T1 breast cancer
(mouse model)

Docetaxel To polarize MDSC differentiation into M1-like
macrophages through the reduced
phosphorylation of STAT3.

Direct effect of
chemotherapeutic agents on
tumor and tumor MDSCs

N/A (30)

In vitro MDSC culture
model

Paclitaxel To promote MDSC differentiation into DCs, Ultra-low non-cytotoxic
doses of paclitaxel induces
MDSC differentiation

N/A (31)

Breast/colonic cancer;
renal carcinomas
(mouse models)

Sunitinib To reduce the number of MDSCs through
inhibition of STAT3 signal.

To target both cancer cells
and MDSCs

N/A (32)

Renal cell carcinoma
(patients)

Sunitinib Blockade of VEGF and c-KIT signal To diminish the number of
both MDSCs and Treg cells

No correlation between a change
in tumor burden and a change in
MDSCs/Treg

(33)

Melanoma (mouse
model)

DATS To abrogate number and
immunosuppressive activity of MDSCs.

To improve T cell anti-tumor
response.

N/A (34)

CLL (mouse model) Vitamin D To downregulate MDSC function as
negative regulator of miR155.

To easily enhance anti-tumor
activity

N/A (35)

Gastric/colonic cancer
(mouse models)

Curcumin To inhibit the functions of MDSCs by the
inactivation of STAT3 and NF-kB signaling

To interfere with the
interaction between cancer
cells and MDSCs

N/A (7)

Head/neck squamous
cell carcinoma
(patients)

Tadlafil Inhibitors of PDE5. To inhibit the activity of
iNOS and Arg-1to reduce both MDSCs and
Treg concentrations

To promote the activation of
CD8+ T cells at the tumor
site

Grade 1–3 adverse events (such
as back pain/myalgia)

(36)

Pancreas/lung cancer
(mouse models)

Entinostat To neutralize MDSCs through reduced
expression of Arg-1, iNOS, and COX2.

To enhances the antitumor
effect of PD-1

N/A (37, 38)

NSCLC (patients) JNJ-61610588 Anti-VISTA monoclonal antibody To inhibit the function of both
Treg cells and tumor MDSCs

To induce autoimmunity (39)

Metastatic melanoma/
breast cancer/NSCLC
(patients)

Pembrolizumab PD-1blocker To inhibit both tumor and
tumor MDSCs

To induce pneumonitis (40)

Melanoma (patients) Nivolumab
Lambrolizumab

Monoclonal antibodies targeting PD-1 To result in a high rate of
sustained tumor regression

Grade 1-2 toxic effects (including
diarrhea, nausea)

(41, 42)

Metastatic urothelial
carcinoma (patients)

Atezolizumab PD-L1 monoclonal antibody To inhibit PD-L1 positive cells
(tumor cells and MDSCs)

Grade 3–4 adverse events
(including pneumonitis/fatigue)

(43)

Metastatic melanoma
(patients)

Ipilimumab Human monoclonal antibody against
CTLA-4

To boost the body’s immune
response against cancer cells

To induce diarrhea (44)
February 2021 | Volume 11 | Art
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modulator, potently reversing tumor MDSC accumulation
through STAT3 or C-Kit signal (32, 33) (Table 1).

H2S was an endogenous signaling molecule with a plenty of
cellular and molecular targets, which were produced in various
mammalian cells and tissues by three principal enzymes:
cystathionine-b synthase (CBS), cystathionine-g lyase (CSE),
and 3-mercaptopyruvate sulfurtransferase (3-MST). In
melanoma bearing mice, administration of Diallyl Trisulfide
(DATS) — H2S donor and the activator of CSE, reduced the
number of MDSCs in spleen and blood through the reduction of
iNOS expression and NO production. The functional
mechanism was involved in the endogenous production of H2S
which up-regulated the expression levels of both CSE and CBS to
decrease the number of MDSCs in the TME. In addition, DATS
also induced MDSCs differentiating into mature APCs (34)
(Table 1).

The accumulation of tumor MDSCs was also mediated by
miRNA, such as miR-223 and miR-155 (60). miR-155, which
was processed from the B-cell integration cluster (BIC), triggered
the differentiation of CD4+ T cells into the Th1, Th2, and Th17
pathways and was required for CD8+ T cell responses to acute
viral and bacterial challenges (61–63). In the TME, miR-155
promoted the accumulation of functional MDSCs through the
SOCS-1 repression, facilitating tumor growth (64). In chronic
lymphocytic leukemia (CLL), MDSC accumulation upregulated
by exosome miR-155 was disrupted by vitamin D, one negative
regulator of miR155, which enhanced anti-tumor activity (35)
(Table 1).

Abrogate MDSC Immunosuppression
The inhibition of MDSC immunosuppression function is the
major therapeutic target to re-establish T cell activity in cancer
immunotherapy. One of the well-known pathways was the JAK-
STAT3 signaling pathway which played the crucial role in the
regulation of immune responses and induction of the immune
escape of tumors through regulating the expression of cytokines
and growth factors, further regulating the function of MDSCs
(65) (Figure 3). Both STAT3 and NF-kB signaling were essential
for the attenuation of Curcumin on the functions of MDSCs (7).
AMPK activation phosphorylated the protein to block the
Frontiers in Immunology | www.frontiersin.org 5
activity of Janus kinase 1 (JAK1) to suppress STAT3-
dependent gene expression directly, further dampening the
suppressive function of MDSCs (66).

Besides reducing the accumulation and expansion of MDSCs,
AMPK activation also attenuated the immunosuppressive function
of tumor MDSCs through TLR4/Myd88 pathway (67–69).
FIGURE 2 | Multiple agents regulated the maturation and differentiation of MDSCs. The differentiation and maturation of MDSCs were regulated by multiple agents,
such as RUNX1, ATRA, IL-12, CCL5, and CpG oligonucleotides as well as miRNA, lncRNA. ATRA, all-trans retinoic acid (ATRA).
FIGURE 3 | Resistance mechanisms to MDSC immunosuppression. AMPK
activation inhibited the TLR4/Myd88 pathway as well as STATs and NF-kB
pathways to attenuate the immunosuppressive function of tumor MDSCs;
miR-15 family including miR-15a, miR-15b, miR-16, miR-195, and miR-503,
down-regulated the suppressive function of MDSCs and/or Tregs within the
TME through blocking PD-L1/PD-1 signaling pathway; miR-155 regulated
tumor MDSC via the repression of SOCS-1 in MDSCs; Nrf2 activation
reduced intracellular ROS production to abrogate MDSC
immunosuppression; DATS, as H2S donors and an activator of CSE reduced
the number of MDSCs in spleen and blood through the inhibition of iNOS
expression and NO production; Lnc-C/EBPb mastered suppressive functions
and differentiation of MDSCs by binding to C/EBPb (specifically to the LIP
isoform). AMPK, AMP-activated protein kinase; C/EBPs, CCAAT/enhancer-
binding proteins; miRNA, MicroRNA; LncRNAs, long non-coding RNAs;
MALAT1, metastasis associated lung adenocarcinoma transcript 1; DATS,
diallyl trisulfide.
February 2021 | Volume 11 | Article 585214
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Metformin, one anti-diabetes drug broadly used for the
treatment of type 2 diabetes, might act as a new anti-cancer
drug since it reduced the immunosuppressive activity of MDSCs
by triggering the activation of AMPK (70, 71) (Figure 3).
Metformin down-regulated the function of G-MDSCs through
AMPK/STAT3 pathways, delaying tumor progression in CT-26
cell colon cancer mouse model (71). In patients with ovarian
cancer (OC), Metformin suppressed hypoxia-inducible factor-a
(HIF-1a) which blocked CD39/CD73 expression in MDSC to
impair MDSC function (72) (Figure 3).

MDSCs upregulated the expression of immune suppressive
factors such as ROS, iNOS and Arg-1 to reduce T cells anti-
tumor activity. Thus, those factors above became important
therapeutic targets. Nuclear factor erythroid 2-related factor 2
(Nrf2) modulated the expression of antioxidant enzymes,
including NADPH, NQO1, Hem oxygenase to confer
cryoprotection against oxidative stress (73). Selective activation of
Nrf2 reduced intracellular ROS production to abrogate MDSC
immunosuppression, further reducing tumor metastasis. The
promising anticancer drugs had been tested in Phase 1 clinical
trials of patients with tumors (73–75). Moreover, Tadalafil was
found to reduce activity of iNOS and Arg-1 on both MDSCs and
Tregs todisrupt their roles inpatientswithhead/neck squamous cell
carcinoma (HNSCC), even though there were low grade of adverse
events (such as back pain/myalgia) (36). Entinostat, as class I
histone deacetylase inhibitor (HDAC), neutralized MDSCs
through reducing the expression of both Arg-1 and iNOS in
mouse models of pancreas/lung cancer (37, 38) (Table 1).

Checkpoints were divided into stimulatory and inhibitory
forms, which precisely regulated T cell activation. Its balance-
maintained self-tolerance and prevented autoimmunity. The
upregulation of inhibitory checkpoints led to T cell exhaustion by
inhibiting TCR and interactions between co-stimulatory molecules
and ligands present on APCs (39). The inhibitory checkpoints
included cytotoxic T lymphocyte–associated antigen 4 (CTLA-4),
programmed death 1 (PD-1), andV-domain Ig suppressor of T cell
activation (VISTA) etc.CTLA-4were expressedonTcells andbond
to CD80/CD86 to mediate the inhibition of Tregs.) (76). PD-1
regulated T cell activation through binding to its ligands,
programmed death ligands 1 (PD-L1, B7-H1, or CD274) or 2
(PDL-2, B7-DC, or CD273). The immunotherapy of PD-L1/PD-1
on tumor has been broadly applied. Therewere increasing evidence
that immunosuppression function ofMDSCswasmediated by PD-
L1 (77). PD-L1was constitutively expressed and inducible in tumor
cells and tumor MDSCs, and bond to PD-1 to suppress T cell
activation as an inhibitory ligand. Inmouse bladder cancers, PD-L1
expression on tumor-associated MDSCs was associated with the
expression of cyclooxygenase-2 (COX2), microsomal
prostaglandin E (mPGES1), and prostaglandin E2 (PGE2), as well
as their capacity to induce apoptosis of CD8+ T cells (78). The
expression of PD-L1 on MDSCs was upregulated in response to
multiple microenvironment signals, including hypoxia viaHIF1a,
and IFN-g via the STAT1/IRF1 axis (79). In addition, the
interaction between PD-L1/PD-1 and miRNAs was required for
the function of tumorMDSCs (77). Our recent report revealed that
five members of the miR-15 family, including miR-15a, miR-15b,
Frontiers in Immunology | www.frontiersin.org 6
miR-16, miR-195, and miR-503, down-regulated the suppressive
function ofMDSCs and/orTregs in theTME throughblocking PD-
L1/PD-1 signaling pathway (45). The expression of PD-L1 on
tumor MDSCs was modulated by the miR-93/106b miRNA
cluster of miR-17 family through the STAT3 pathway. Those PD-
L1 expression levels onMDSCs could be reduced significantly after
the treatment ofmiR-93mimics (9, 45). Thus, these PD-1/miRNA/
STAT3 pathways provided a new idea of treatment idea for
hindering MDSC-associated tumor metastasis (80) (Table 1).

VISTA, another negative checkpoint regulator in the B7
family, enhanced Treg maturation and inhibited T cell
activation and hence contributed to the TME (81–83). Its
blockade led to the decreases of both Treg cells and MDSCs in
the TME, activated DCs, inducing tumor regression in AML
mouse models (84–86) and human oral squamous cell carcinoma
(OSCC) (87, 88). Recently, the drugs targeting CTLA-4, PD-1,
PD-L1, and VISTA were approved to inhibit tumor growth and
metastasis, even though these drugs had adverse events for
patients with cancer during the treatment (40–44) (Table 1).

LncRNAs also participated in regulating the function ofMDSCs
through mediating gene transcription. Multiple LncRNAs have
been described in myeloid derive cells. Recently, Lnc-C/EBPb was
identified to master suppressive functions of MDSCs by binding to
C/EBPb (specifically to the LIP isoform). C/EBPb was one of the
families of C/EBPs—a group of transcription factors (TFs), which
had three isoforms, LAP*, LAP, and LIP, with the former one
mainly functioning as transcriptional activator of the expression of
immunosuppressive genes such as Arg-1, NOS2, NOX2, or COX2
(89). After exogenous Lnc-C/EBPb treatment, these
immunosuppressive factors above were decreased in quantity,
indicating that Lnc-c/EBPb may play a negative regulatory role in
the immunosuppressive function of MDSCs (90) (Figure 3).
LncRNA Pvt1 expression in G-MDSCs was upregulated under
hypoxia which was a typical feature within the TME. LncRNAPvt1
knockdown led to the decreased suppressionofG-MDSCs, partially
restoring T cell antitumor responses (91). In humans, the
overexpression of LncRNA PVT1 was tightly associated with a
variety of cancer types, including hepatocellular carcinoma, gastric
cancer, esophageal cancer, and acute myeloid leukemia (92–97)
(Figure 3).

Prevent the Migration and Recruitment of MDSCs
MDSCs exhibited their immunosuppressive activity mainly within
the TME. Therefore, the intensive investigations were also
conducted to block the migration of MDSC to the tumor sites.
PGE2 was involved in tumor angiogenesis and progression via the
recruitment ofMDSCs (98–100). The inactivation ofCOX‐2/PGE2
signaling succeeds in reducing MDSC recruitment to retard tumor
growth (101). CSF‐1R, a tyrosine kinase receptor, was also involved
in themigrationofMDSCs (8).Treatments targeting the receptor or
its ligandCSF‐1R/CSF‐1were found to preventMDSC recruitment
to the tumor site to improve T‐cell activity. In addition, anti-glycan
antibodies designed to target the receptor for advanced glycation
end products (RAGE) were revealed to prevent the recruitment
of MDSCs to cancer areas through the S100A8/A9 feedback
loop (8).
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The chemokines and chemokine receptors played important
roles in the migration of tumor MDSCs. The chemokine receptors
on MDSCs as therapeutic targets have been used to prevent the
recruitment of MDSCs to the tumor sites or metastatic areas.
MDSCs were driven into the TME through the chemokines
receptor CCR5 expressed on MDSCs with the help of the ligands
CCL3, CCL4, and CCL5 (102). In melanoma mouse models and
human patients, MDSCs that expressed CCR5 were found to have
more potent immunosuppressive effect compared to those that did
not express CCR5. Blattner et al. demonstrated that the blockade of
CCR5 dampened the recruitment and immunosuppressive activity
ofMDSCs and improved survival rate (103). Elevated level of CCL2
and CCL5 were present in the TME to recruit MDSCs through
chemokine receptor CXCR2 (104, 105). CXCR2+ MDSCs
promoted tumor expansion and metastasis in breast cancer (106).
By targeting CXCR2, MDSCs were diminished to block tumor
metastasis, promoting T‐cell infiltration into the tumors and
extending survival in pancreatic cancer (107). Metformin reduced
CXCL1 secretion in esophageal squamous cell carcinoma (ESCC)
cells through enhancing AMPK phosphorylation and inducing
Dachshund homolog 1 (DACH1) expression. Knockdown of
both AMPK and DACH1 blocked the effect of metformin on
MDSC chemotaxis, indicating that AMPK-DACH1-CXCL1 axis
played a significant role in Metformin-regulated migration of
MDSCs (70). In summary, targeting chemokine receptors on
MDSCs could be applied to prevent the migration and
accumulation of MDSCs in the TME.
CONCLUSION AND PERSPECTIVES

Tumor MDSCs were recognized as a major obstacle for tumor
immunotherapy, As those results, many scientists continue
looking for the inhibitory products targeting tumor MDSCs
Frontiers in Immunology | www.frontiersin.org 7
and evaluating their effects to develop new therapeutics that
improve the efficacy of cancer immunotherapy strategies. While
many of the cancer immunotherapies focus on the manipulation
of T cells, the therapy targeting MDSCs may provide another
idea for anti-tumor treatment.

MDSCs are major functional cells in the TME through
multiple mechanisms to facilitate the harnessing of anti-tumor
response. The radiolabeled MDSCs imaging approach to
visualize MDSCs migration and tumor homing in vivo is used
to further analyze the effects of cancer therapies and immune-
therapeutics on MDSC migration and their capacity to infiltrate
tumors (108). In addition, MDSCs from patients with tumor are
quantified as one marker to differentiate patients with active vs
inactive cancer-including radiation necrosis, using liquid
biopsies (109). Those results indicated that MDSCs may also
one useful clinical biomarker for evaluating radiotherapy effect
and identifying tumor metastasis.
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