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Minimal change disease (MCD) is a common cause of nephrotic syndrome. Treatment
with steroids is usually effective, but frequent relapses are therapeutic challenges. The
anti-CD20 antibody rituximab has shown promising results for treatment of steroid-
sensitive nephrotic syndrome. Since predictive biomarkers for treatment efficacy and the
accurate rituximab dosage for effective induction of remission are unknown, measurement
of CD19+ B cells in blood is often used as marker of successful B cell depletion and
treatment efficacy. A male patient with relapsing MCD was successfully treated with
rituximab, but developed relapse of proteinuria 1 year later, although no B cells were
detectable in his blood. B and T cell populations in the patient’s blood were analyzed
before and after treatment with rituximab using FACS analysis. Rituximab binding to B and
T cells were measured using Alexa Fluor 647 conjugated rituximab. We identified a
population of CD20+ CD19− cells in the patient’s blood, which consisted mostly of CD20+

CD3+ T cells. Despite the absence of B cells in the blood, the patient was again treated
with rituximab. He developed complete remission of proteinuria and depletion of CD20+ T
cells. In a control patient with relapsing MCD initial treatment with rituximab led to
depletion of both CD20+ B and T cells. Rituximab induces remission of proteinuria in
patients with MCD even if circulating B cells are absent. CD20+ T cells may play a role in
the pathogenesis of MCD andmight be a promising treatment target in patients with MCD.
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INTRODUCTION

Minimal change disease (MCD) is responsible for 10–25% of all cases of a nephrotic syndrome in
adults (1). The exact pathomechanisms of MCD remain elusive. However, a circulating factor, most
probably secreted by immune cells, is assumed to lead to effacement of podocyte foot processes,
leakage of the glomerular filtration barrier, and development of a nephrotic syndrome (2). T cells
have been suggested to contribute to the development of MCD (1). The role of the adaptive immune
org February 2021 | Volume 11 | Article 5860121
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system in MCD is also supported by the presence of functionally
impaired regulatory T cells in these patients (3, 4). In addition,
the association of reduced regulatory T cells in patients with
relapse of the disease (5–7) and the altered transcription
regulators reported in B and T cells of MCD patients (8)
suggest a role of the adaptive immune system in this disease.
This assumed immune-mediated pathogenesis of MCD is the
rationale why patients with this disease are treated with
immunosuppressive drugs (1, 9).

Steroids lead to remission of proteinuria in 75–80% of adult
MCD patients, but relapses occur in up to 56–76% of all cases (1,
10–12). Frequent relapses, steroid-dependence, or steroid-
resistance require repeated courses of treatment (9). Thereby,
high doses and long-term steroid treatments are needed,
frequently leading to adverse effects and toxicity (1, 13).
Therefore, alternative immunosuppressive treatments are applied
in these patients, including alkylating agents, calcineurin
inhibitors, mycophenolate mofetil, and rituximab (1, 10).
Rituximab is a mouse-human chimeric anti-CD20 antibody,
which induces direct cell death, complement dependent
cytotoxicity, and antibody-dependent cell-mediated cytotoxicity
in CD20 expressing cells (14, 15). The membrane protein CD20 is
a B cell marker and is expressed in human B cells at different stages
of their development (16, 17). On the other side, CD20 is not
expressed on human podocytes (18). Depletion of CD20
expressing cells using rituximab has shown promising results in
the treatment of MCD (10, 13, 19, 20), leading to the hypothesis
that B cells have a pathogenetic role in MCD. Nonetheless, the
precise mechanisms of action of rituximab in the treatment of
MCD are unknown (9, 21). Measurement of CD19+ B cells in the
blood is used to assess successful B cell depletion, but stable
remission has been observed in some patients despite
reconstitution of CD19+ B cells (22). Recently, the reconstitution
of memory B cells but not total CD19+ B cells has been shown to
correlate with a shorter time toMCD relapse (21). Deciphering the
role of both B and T cells in MCD is an ongoing challenge in the
understanding of the pathomechanisms of MCD.

Here, we present the case of a patient with MCD, who
developed relapses of proteinuria and was successfully treated
with rituximab, despite having no detectable CD19+ B cells in the
peripheral blood. CD20+ T cells, which were present in the blood
of this patient prior to rituximab treatment and were depleted
afterwards, might account for the therapeutic impact of
rituximab in this patient.
MATERIAL AND METHODS

Diagnostic Laboratory Results
Proteinuria was quantified by photometric measurement of
urinary excreted protein in 24 h urine samples and the urinary
protein excretion rate (PER; g/24 h) was calculated. Nephrotic-
range proteinuria was defined as PER >3.5 g/24 h according to
the Kidney Disease: Improving Global Outcomes (KDGIO)
nomenclature (23).
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Isolation of Peripheral Blood Mononuclear
Cells (PBMC)
EDTA blood was obtained from the index MCD patient and a
control MCD patient before and after rituximab treatment. Blood
from a healthy donor was used as a control. PBMC were freshly
isolated by Ficoll’s protocol and stored in liquid nitrogen until
further use. Briefly, EDTA blood was diluted 1:3 in PBS and
layered upon Biocoll separating solution 10 mM HEPES
(Biochrom, Berlin, Germany). After gradient centrifugation at
1,000 g for 25 min at 20°C, the PBMC layer was carefully
removed and washed twice with cold PBS. Lysis of erythrocytes
was performed by hypotonic shock. Afterwards PBMC were
stored until further use in 10% DMSO (Sigma Aldrich, St. Louis,
MO, USA), 30% FCS (Thermo Fisher Scientific, Waltham, MA,
USA), and 60% RPMI1640 (Thermo Fisher Scientific) in liquid
nitrogen. The study was approved by the local ethics committee of
the chamber of physicians in Hamburg (PV4806) and conducted
in accordance with the ethical principles stated by the Declaration
of Helsinki. An informed consent was obtained from patients and
the healthy donor prior to study inclusion.

Conjugation of Rituximab
Rituximab was conjugated to the fluorophore Alexa Fluor 647
using the Alexa Fluor 647 Protein Labeling Kit (Thermo Fisher
Scientific) according to the manufacturer’s instructions. Briefly,
450 µl of rituximab (1.6 mg/ml) were incubated with 50 µl of
AF647 reaction dye and 50 µl sodium bicarbonate (1 M) at room
temperature for 70 min. Afterwards, matrix column purification
was performed to separate excess fluorochrome from labelled
rituximab molecules (RTX-AF647). RTX-AF647 was stored at
4°C until use. For all FACS experiments, RTX-AF647 was used at
a final dilution of 1:100 in PBS.

FACS Analysis
All FACS measurements were conducted using a FACS Celesta (BD
Biosciences, Franklin Lakes, NJ, USA). PBMC were thawed rapidly
at 37°C. After washing with cold PBS, cells were counted using a
Neubauer counting chamber and diluted to desired concentrations.
For FACS analysis, PBMC were blocked with human serum for
30 min at 4°C and incubated with a pre-titrated antibody cocktail
including RTX-AF647 as well as AF750 (Thermo Fisher Scientific),
for live-dead staining. For FACS analysis, in each sample at least
200,000 cells were regularly acquired. If not otherwise indicated, all
antibodies were obtained from BioLegend (San Diego, CA, USA).
The following antibodies and fluorophores were used: V450 anti-
CD27 (clone: M-T271), V500 anti-IgD (clone: IA6-2), BV650 anti-
CD3 (clone: OKT3), BV785 anti-CD45 (clone: HI30), FITC
anti-CD38 (clone: HIT2; BD BioSciences), PE anti-IgM (clone:
MHM-88), PerCP anti-CD4 (clone: L200), PE-Cy7 anti-CD19
(clone: HIB19), AF700 anti-CD8a (clone: HIT8a). PBMC were
washed twice and measured using a FACS Celesta (BD
BioSciences). Graphical analysis was performed using FlowJo
version 10.6.1 (FlowJo, Ashland, OR, USA). Of note, in contour
plots not all cells are depicted as single dots. For gating strategy
see supplemental information (Figure S1).
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Histology and Immunohistochemistry
PAS staining and electron microscopy were performed following
standard protocols. For immunohistochemical staining for IgG
and CD20, 1–2 µm thin slices from formalin-fixed, paraffin-
embedded renal biopsies were deparaffinized and pretreated for
15 min at pH6 and 117°C in the autoclave (for CD20) or with
proteinase (protease P-8038, Sigma-Aldrich, St. Louis, MO,
USA) at 40°C for 15 min (for IgG) followed by incubation
with normal serum (Vector S2000, CA, USA) for 10 min.
Primary antibodies for IgG (1:7,500) (mouse monoclonal
antibody, 209-005-088, Dianova, Hamburg, Germany) and
CD20 (1:2,000) (DAKO M0755, CA, USA) were added for
30 min at 40°C. Bound antibodies were then visualized
manually using a standard APAAP protocol.
RESULTS

Clinical Case
A 70-year-old male patient presented at our outpatient clinic with
nephrotic syndrome. A kidney biopsy revealed the diagnosis MCD
(Figure 1). Treatment with steroids resulted in complete
remission of proteinuria. However, the patient developed
frequent relapses. The first relapse appeared a few months after
Frontiers in Immunology | www.frontiersin.org 3
the initial treatment, while steroids were being withdrawn. Because
the patient also had diabetes mellitus type 2 and severe
osteoporosis, re-treatment with steroids had to be avoided. He
was alternatively treated with rituximab and developed complete
remission of proteinuria. In the next 8 years the patient had eight
relapses of the nephrotic syndrome, which were all successfully
treated with rituximab and the patient went again into complete
remission. One year after the last treatment with rituximab, the
patient presented again in our outpatient clinic with a relapse of
nephrotic syndrome and proteinuria of 8.3 g/24 h. Peripheral
blood CD19+ B cells were still depleted with a cell count of 1 B cell/
µl (normal range 80–500 B cells/µl). Serum creatinine and total
leukocyte count in the peripheral blood were within the normal
range (1.1 mg/dl and 4,500 cells/µl, respectively). The patient was
treated with 1 g rituximab, combined with 60 mg/day
prednisolone for 3 days, which was tapered over a time period
of 4 weeks, leading to a complete remission of proteinuria within
21 days (proteinuria 0.3 g/24 h).

Characterization of Peripheral Blood Cells
Bound by Rituximab
Because of the effect of rituximab treatment on proteinuria in the
absence of CD19+ B cells in the blood, we aimed to better
understand the potential underlying mechanism how
rituximab unfolds its effect in this patient. We hypothesized
FIGURE 1 | Histological findings in the kidney biopsy of the patient. (A) PAS staining, (B) IgG staining, and (C) electron microscopy confirm the diagnosis of minimal
change disease with no IgG positivity, no electron dense deposits, and diffuse loss of podocyte foot processes. (D) Only very few CD20 positive cells were
detectable, mostly in the area of tubular atrophy and interstitial fibrosis.
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that rituximab targets and depletes CD19− circulating blood cells.
Therefore, we first assessed rituximab binding to CD19− blood
cells. For this purpose, rituximab was conjugated to the
fluorophore AF647 (RTX-AF647) and used to stain circulating
CD20+ cells. Staining of peripheral CD45+ lymphocytes from a
27-year-old male healthy donor with RTX-AF647 led to the
identification of CD19+ B cells (blue) and a population of CD19−

CD20+ cells (Figure 2A, left panel). A majority (59.6%) of
CD19− CD20+ cells expressed the T cell receptor associated
marker CD3 on the surface. These cells were considered a T
cell population (red; Figure 2A, right panel) and showed a
similar CD3 expression as RTX-AF647- T cells (green), but
were enriched for CD8+ T cells (Figure 2B). RTX-AF647+ T
cells did not express B cell markers, such as CD19 and surface
IgD (Figure 2B). CD27 expression was present in 76.1% of RTX-
AF647+ T cells and 78.5% of RTX-AF647− CD3+ T cells,
respectively (Figure 2B).

Rituximab Treatment Depletes RTX-
AF647+ T Cells
Next, we analyzed the B and T cell populations in PBMC from
the index MCD patient before and after rituximab treatment by
flow cytometry. Interestingly, only CD19− RTX-AF647+ cells and
no CD19+ B cells were detected in the blood of the index MCD
patient prior to rituximab treatment (Figure 3A, left, Figures S1
Frontiers in Immunology | www.frontiersin.org 4
and S2A). These CD19− RTX-AF647+ cells consisted mostly of
CD3+ T cells (64.9% of RTX-AF647+ CD19− cells; Figure 3A,
right panel). The RTX-AF647+ T cell population in the blood of
the patient consisted of 55.1% CD4+ T cells and 30.6% CD8+ T
cells (Figure 3B), and was therefore enriched for CD8+ T cells
compared to the total circulating RTX-AF647− T cell population
in the same sample, which consisted of 68.4% CD4+ T cells and
11.4% CD8+ T cells (Figure 3C). Noteworthy, in healthy
controls, CD4+ T cells and CD8+ T cells account for 23–52%
and 13–40% of the circulating lymphocytes respectively (24).
Double negative T cells were found in a lower frequency of 8.16%
of RTX-AF647+ T cells (Figure 3B), while they comprised 15.4%
of total RTX-AF647− T cells (Figure 3C).

Before rituximab treatment, 0.12% of CD3+ T cells of the
index MCD patient were bound by RTX-AF647 (Figure 4A, left
panel). After rituximab treatment, the frequency of RTX-AF647+

T cells was reduced by 91.7 to 0.01% (Figure 4A, right panel).
Next, we aimed to confirm that rituximab treatment leads to

depletion of a subpopulation of CD3+ T cells in a control patient
with relapsing MCD. We performed an identical FACS analysis
in a second patient with MCD (control MCD patient). This
patient was a 43-year-old female, who was treated for the first
time with rituximab. She had both circulating B and T cells prior
to rituximab treatment (Figure S2B). In the blood of the control
MCD patient, we detected RTX-AF647+ T cells at a frequency of
A

B

FIGURE 2 | (A) FACS analysis of PBMC from a healthy donor gated on CD45+ lymphocytes (left panel) shows a population of CD19− RTX-AF647+ cells, 59.6% of
which expresses the T cell marker CD3 (right panel). (B) The expression patterns of RTX-AF647, CD3, CD4, CD8, CD27, CD19, and IgD were assessed in equal
counts of CD19+ B cells (blue), RTX-AF647+ CD3+ cells (RTX-AF647+ T cells, red), and RTX-AF647− CD3+ cells (RTX-AF647− T cells, green). RTX-AF647+ T cells
(red) express CD3, CD4, CD8, and CD27 at a similar fluorescence intensity as RTX-AF647− T cells (green) and lack the expression of the B cell markers CD19 and
surface IgD. For gating strategy see supplemental data (Figure S1). Event counts for each gate are indicated in italic below the frequency (bold).
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1.67% of CD3+ T cells prior to rituximab treatment (Figure 4B,
left panel). After rituximab treatment of the control MCD
patient, the frequency of RTX-AF647+ T cells was reduced by
70.7 to 0.49% (Figure 4B, right panel). Similar findings were
made when RTX-AF647+ CD19− cells were analyzed. Their
frequencies decreased after rituximab from 0.11 to 0.01% in
the index MCD patient (Figure S2A) and from 1.31 to 0.21% in
the control MCD patient (Figure S2B), respectively. In the
control MCD patient, CD19+ B cells were also depleted to a
non-detectable level following rituximab treatment, while as
shown before, in the index MCD patient CD19+ B cells were
non-detectable even prior to rituximab treatment (Figure S2).

The frequency of CD3+ T cells did not significantly change in
both the index MCD patient and the control MCD patient after
rituximab treatment (Figure 4C). The frequency of RTX-AF647+

T cells was reduced by 91.7 and 70.7% in the index MCD and
control MCD patient, respectively (Figure 4D). We further
characterized the RTX-AF647+ T cell subsets before and after
rituximab treatment in both patients. In the index MCD patient
CD4+ RTX-AF647+ T cells were reduced by 91.2% (Figure 4E)
and CD8+ RTX-AF647+ T cells were completely depleted (Figure
4F). In comparison, in the control MCD patient CD4+ RTX-
Frontiers in Immunology | www.frontiersin.org 5
AF647+ T cells were reduced by 63.9% and CD8+ RTX-AF647+ T
cells by 88.5% after rituximab treatment.
DISCUSSION

Frequent relapsing and steroid-dependent MCD patients
represent a therapeutic challenge. This is due to the toxicity of
long-term steroid treatment. Rituximab is a treatment option for
these patients, however, biomarkers to guide therapy are lacking.
The B cell marker CD19 is commonly used to predict whether a
B cell depleting therapy is a rationale in treating patients with
autoimmune kidney diseases. Despite showing no CD19+ B cells
circulating in the blood, the presented index MCD patient
developed a relapse of nephrotic syndrome. Moreover, he
developed a complete remission of proteinuria within 3 weeks
of treatment with rituximab and steroids. Remission of
proteinuria lasted almost 1 year, similar to the remission
phases during the last 8 years of treatment with rituximab. As
CD19 and not CD20 is commonly used as a B cell marker to
follow the depletion of B cells after rituximab, we investigated
whether CD19− CD20+ cells were present in the patient’s blood,
which could be targeted by rituximab and might play a role for
disease induction. We were able to characterize a population of
CD19-− RTX-AF647+ cells in the blood of the patient, which
consisted mostly of CD3+ T cells.

After rituximab treatment, proteinuria resolved and CD20+ T
cells were depleted. There are several potential explanations for
the relapse of the nephrotic syndrome in the absence of B cells
and the successful induction of remission following rituximab
treatment. Firstly, pathogenic B cells could have reconstituted
without being detectable in the patient’s circulation. Such CD20
positive cells may be resident in the tissue and thus are not
detected in the blood. The depletion of these potentially
pathogenic B cells may have contributed to the remission of
proteinuria. Relapses of nephrotic syndrome have been shown to
be associated with reconstitution of memory B cells, which
reappear only after naïve B cells are detectable in the
circulation (21). In our patient, however, neither naïve nor
memory B cells were detected in the blood at the time of
relapse. Therefore, cryptic reconstitution of memory B cells
seems unlikely. Secondly, B cells could have reconstituted but
escaped detection due to technical limitations. However, CD19+

B cells were detected successfully in the blood of the control
MCD patient and a healthy control using our method of
detection. Thirdly, RTX-AF647+ T cells could play a role in the
relapse of a nephrotic syndrome and the depletion of these
CD20+ T cells following rituximab treatment may be a relevant
therapeutic mechanism.

Contrary to B cells, circulating CD20+ T cells were detected at
the time of relapse in a low frequency (0.12% of T cells) in the
blood of the index MCD patient. In the blood of healthy controls,
the mean frequency of CD20+ T cells usually varies between 1.6
and 3.8% of CD3+ T cells (25, 26). This shows that in our index
MCD patient CD20+ T cells had already reconstituted after the
A

B C

FIGURE 3 | (A) FACS analysis of PBMC from the index MCD patient gated
on CD45+ lymphocytes (left panel) shows a population of RTX-AF647+ CD19−

cells and no CD19+ B cells prior to rituximab treatment. CD3 is expressed on
64.9% of RTX-AF647+ CD19− cells (A, right panel). (B) CD4 and CD8
expression of RTX-AF647+ CD3+ cells (RTX-AF647+ T cells). (C) CD4 and
CD8 expression of RTX-AF647− CD3+ cells (RTX-AF647− T cells). In the
blood of the index MCD patient, RTX-AF647+ T cells (B) are enriched for
CD8+ T cells and show a reduced frequency of CD4+ T cells and double
negative T cells in comparison to RTX-AF647- T cells (C).
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previous rituximab treatment, in contrast to B cells. As RTX-
AF647+ T cells were depleted after rituximab treatment in both
the control MCD patient as well as the index MCD patient, we
conclude that rituximab binds specifically to CD20+ T cells and
depletes them in vivo.

MCD has been considered a T cell mediated disease (27, 28),
while the role of B cells remains unclear (21). Nonetheless, CD20
targeted antibody therapies have shown promising results in the
Frontiers in Immunology | www.frontiersin.org 6
treatment of relapsing MCD (7, 10, 19, 29, 30). The removal of
autoreactive T cells has been proposed as a therapeutic mechanism
of rituximab (31) and treatment of MCD patients with rituximab
leads to the depletion of CD4+ CD45RO+ CXCR5+ T cells, invariant
natural killer T cells and CD4− CD8− T cells (7, 32). The depletion
of CD20+ T cells may represent a link connecting the successful
application of anti-CD20 antibody treatment and the role of T cells
in the pathogenesis of MCD.
A

B

C D

E F

FIGURE 4 | RTX-AF647+ CD3+ T cells of the index MCD patient (A) and the control MCD patient (B) before (left panel) and after (right panel) rituximab treatment.
(C) Frequency of CD3+ T cells as percentage of lymphocytes and (D) frequency of RTX-AF647+ cells among CD3+ T cells, (E) CD4+ T cells, and (F) CD8+ T cells
before (black) and after (white) rituximab treatment in the index MCD patient and the control MCD patient.
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Whether T cells are capable of expressing CD20 has been
controversial since the first description of CD3+ T cells co-
expressing CD20 (33). Several studies were able to show the
expression of CD20 in T cells on a single cell level by imaging
flow cytometry (34, 35), confocal microscopy (36), and
immunohistochemistry (37). Together with the endogenous
transcription of CD20 mRNA in CD20+ T cells (25, 26, 34,
35), this supports the view of endogenous synthesis of CD20 in a
subset of T cells. Accordingly, CD20 antibody treatment depletes
CD20+ T cells in the blood along with B cells (25, 26, 34–36, 38–
42). CD20 expressing T cells have been described in several
autoimmune diseases, e.g. multiple sclerosis (25, 35, 39, 41, 42),
rheumatoid arthritis (26, 36, 43), primary Sjögren’s syndrome
(38), and psoriasis (40), as well as HIV infection (34). Our patient
is the first case where these cells are reported in an immune-
mediated nephrotic glomerular disease.

Clinical data describing the role of CD20+ T cells in
autoimmune disease are scarce. In patients with psoriasis,
frequency of circulating CD20+ T cells producing IL-17, IL-21,
and TNFa correlates with disease activity (40). Recently, it has
been suggested, that CD20+ T cells contribute to the
pathogenesis of multiple sclerosis and depletion of CD20+ T
cells may play a role in the therapeutic mechanism of anti-CD20
antibody treatment (42, 44, 45). In patients with relapse of
multiple sclerosis, it was shown that after anti-CD20 antibody
treatment B cells were hardly detectable in the blood at a time
when CD20+ T cells were already replenished (25). This finding
has similarities to our index MCD patient, who showed
reconstitution of CD20+ T cells while B cells were still depleted
at the time when proteinuria relapsed. Other studies have also
shown that CD20+ T cells reconstitute months before B cells
reappear in the circulation after rituximab treatment (25, 35).

This is the first report describing CD20+ T cells in the context
of a frequent relapsing nephrotic syndrome in a patient with
MCD. Rituximab combined with a short steroid treatment
induced remission of proteinuria despite undetectable B cells.
We found CD20+ T cells in the blood of the patient at the time of
relapse, which were depleted after re-treatment with rituximab.
Rituximab successfully induced complete remission of
proteinuria despite of the absence of CD19+ B cells. Patients
with relapse of nephrotic syndrome may benefit from rituximab
treatment irrespective of the frequency of CD19+ B cells.
Therefore, low or absent CD19+ B cells in the blood might not
be used as disconfirming evidence for the effectivity of rituximab
for relapse of nephrotic syndrome. More studies are needed to
decipher the role of CD20+ T cells in autoimmune kidney
diseases. This may help to guide clinical decisions for the use
of CD20 antibody treatment in kidney autoimmune diseases and
may lead to a better understanding of the pathogenesis of MCD.
Frontiers in Immunology | www.frontiersin.org 7
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