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Natural killer (NK) cells, effector lymphocytes of the innate immunity, have been shown to
be altered in several cancers, both at tissue and peripheral levels. We have shown that in
Non-Small Cell Lung Cancer (NSCLC) and colon cancer, tumour associated circulating
NK (TA-NK) and tumour infiltrating NK (TI-NK) exhibit pro-angiogenic phenotype/
functions. However, there is still a lack of knowledge concerning the phenotype of
peripheral blood (PB) NK (pNK) cells in prostate cancer (PCa). Here, we phenotypically
and functionally characterized pNK from PCa patients (PCa TA-NKs) and investigated
their interactions with endothelial cells and monocytes/macrophages. NK cell subset
distribution in PB of PCa patients was investigated, by multicolor flow cytometry, for
surface antigens expression. Protein arrays were performed to characterize the
secretome on FACS-sorted pNK cells. Conditioned media (CM) from FACS-sorted PCa
pTA-NKs were used to determine their ability to induce pro-inflammatory/pro-angiogenic
phenotype/functions in endothelial cells, monocytes, and macrophages. CM from three
different PCa (PC-3, DU-145, LNCaP) cell lines, were used to assess their effects on
human NK cell polarization in vitro, by multicolor flow cytometry. We found that PCa pTA-
NKs acquire the CD56brightCD9+CD49a+CXCR4+ phenotype, increased the expression of
markers of exhaustion (PD-1, TIM-3) and are impaired in their degranulation capabilities.
Similar effects were observed on healthy donor-derived pNK cells, exposed to
conditioned media of three different PCa cell lines, together with increased production
of pro-inflammatory chemokines/chemokine receptors CXCR4, CXCL8, CXCL12,
reduced production of TNFa, IFNg and Granzyme-B. PCa TA-NKs released factors
able to support inflammatory angiogenesis in an in vitro model and increased the
expression of CXCL8, ICAM-1, and VCAM-1 mRNA in endothelial cells. Secretome
org January 2021 | Volume 11 | Article 5861261
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analysis revealed the ability of PCa TA-NKs to release pro-inflammatory cytokines/
chemokines involved in monocyte recruitment and M2-like polarization. Finally, CMs
from PCa pTA-NKs recruit THP-1 and peripheral blood CD14+ monocyte and polarize
THP-1 and peripheral blood CD14+ monocyte-derived macrophage towards M2-like/
TAM macrophages. Our results show that PCa pTA-NKs acquire properties related to the
pro-inflammatory angiogenesis in endothelial cells, recruit monocytes and polarize
macrophage to an M2-like type phenotype. Our data provides a rationale for a potential
use of pNK profiling in PCa patients.
Keywords: natural killer cell, myeloid cells, monocytes, macrophages, immune cell polarization, inflammation,
angiogenesis, prostate cancer
INTRODUCTION

Prostate carcinoma (PCa) is the one of most commonly
diagnosed cancer in males worldwide (1). Surgery and
radiation therapy (2) are still important treatment options, as
well as chemotherapy (3) and hormonal therapy (4). Recently,
immunotherapy came of age as a possible effective strategy for
PCa therapy (5). Several immunotherapeutic approaches have
been proposed for PCa, that include dendritic-cell based
vaccines, whole tumor cell vaccines, vector-based vaccines
and antibodies. Currently FDA-approved immunotherapy
approaches for PCa include the Sipuleucel−T (a dendritic-cell-
org 2
based agent) and pembrolizumab (a checkpoint inhibitor that
targets the PD-1/PD-L1 axis), while others are in clinical trials.

Evasion from immune system surveillance and induction of
an inflammatory microenvironment are among host-dependent
biological features, widely accepted as cancer hallmarks, as
defined by Hanahan and Weinberg (6) and which play a role
in prostate cancer. Based on their extreme cell plasticity,
inflammatory cells from innate and adaptive immunity can
acquire tumor-promoting phenotypes and functions in cancer
patients. Acquisition of a tolerogenic state, anergy/exhaustion
and induction of inflammatory angiogenesis are some of these
aberrant functions (7–11).
GRAPHICAL ABSTRACT | Representative cartoon illustrating the pro-angiogenic features of PCa pTA-NKs. (A) Direct effects of PCa pTA-NKs in supporting
angiogenesis by interacting with endothelial cells. (B) Proposed model for PCa pTA-NK pro-angiogenic activities via monocyte recruitment and macrophage
polarization.
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Natural killer (NK) cells are large granular lymphocytes
endowed with an inherent capability to kill virally infected and
malignant cells, also participating to the modulation of the
immune system, through their production of numerous
cytokines and chemokines.

NK cells have been included in the Type-1 Innate Lymphoid
cell group (ILC-1), based on their capability to produce IFNg,
following T-bet and EOMES expression by the ID2+ ILC precursor
(12). A study by the group of Eric Vivier, placed NK cells as cell
subset originating from a cell lineage different from ILC-1 (13).
While ILC-1 and NK cells share the ability to produce IFNg in a T-
bet dependent manner, NK cells functionally differ from ILC-1 for
their cytotoxic abilities, via IFNg and perforin production (13).

NK cells constitute approximately 5–15% of circulating
lymphocytes in healthy adults, representing one of the three
major lymphocyte population. Although lymphocytic in origin,
NK cells are considered part of the innate immune system, since
they do not require antigen presentation for target recognition.
They exert effector functions that include cytotoxic activity and
cytokine production, during antiviral and antitumor responses
(14). Similarly to several immune cells (7–11), NK cells have
been described to acquire a tolerogenic behavior and to be altered
in their cytotoxic activities in different cancer types (7, 9–11, 15–
20). However, pro-inflammatory, pro-tumor NK cells still
represent an under investigated cell type; only few studies
focused on the ability of polarized NKs to support cancer by
acquiring pro-angiogenic phenotypes and functions (7, 10, 15,
16, 18). Major mechanisms associated with impaired NK cell
function in cancer patients, are downregulation of lytic perforin
and granzyme production, accompanied with reduction of
Abbreviations: ADCC, antibody-dependent cellular cytotoxicity; ADK,
adenocarcinoma; ANG, angiogenin; ANGIOP1, angiopoietin 1; ANOVA,
analysis of variance; CCL, chemokine ligand (C-C motif); cDNA,
complementary DNA; CM, conditioned media; CRPC, castration-resistant
prostate cancer; CXCL, chemokine Ligand (C-X-C motif); DNAM-1, DNAX
accessory molecule 1; dNK cells, decidual Natural Killer cells; EBM, endothelial
cell basal medium; EGM, endothelial cell growth medium; FACS, fluorescence-
activated cell sorting; FBS, fetal bovine serum; FC, flow cytometry; FSC, forward
scatter; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GM-CSF,
granulocyte-macrophage colony-stimulating factor; HBV, hepatitis B virus; HC,
healthy control; HCC, hepato cellular carcinoma; HCV, hepatitis C virus; HIV,
human immunodeficiency virus; HUVEC, human umbilical vein endothelial cell;
ICAM, inter cellular adhesion molecule-1; IFN- g, interferon g; IHC, immuno
histo chemistry; IL-, interleukin-; I-TAC, interferon-inducible T-cell alpha
chemoattractant; mAbs, monoclonal antibodies; MCP-1/CCL2, monocyte
chemoattractant protein-1; MMPs, matrix metallo proteinases; MNCs, mono
nuclear cells; NK, natural killer; NKG2D, natural killer receptor group 2 D;
NSCLC, non-small cell lung cancer; PAI, plasminogen activator inhibitor; PB,
peripheral blood cells; PBMCs, peripheral blood mononuclear cells; PCa, prostate
cancer; PD-L1, programmed death receptor ligand 1; PGE2, prostaglandin E2;
PlGF, placental growth factor; PMA, phorbol merystate acetate; P/S, penicillin/
streptomycin; PTA-NKs, prostate tumor-associated natural killer cells; RANTES,
regulated upon activation, normal t cell expressed and presumably secreted; SSC,
side scatter; STAT, signal transducer and activator of transcription; TAMs, tumor-
associated macrophages; TGFb, transforming growth factor-b; TIMP, tissue
inhibitor of metallo-proteinase; TME, tumor microenvironment; TNF a, tumor
necrosis factor-a; Treg, T regulatory cells; uPAR, urokinase-type plasminogen
activator receptor; VCAM, vascular cellular adhesion molecule-1; VEGF, vascular
endothelial growth factor; VEGFR, vascular endothelial growth factor receptor.
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degranulation capabilities, together with reduction of NKG2D
(a relevant NK cell activation receptor) expression (21–23). The
ligands for NKp30 and NKp46 have been found to be expressed
in prostate cancer cell lines, and the blockade of the interaction
between the Natural Cytotoxicity Receptors (NCR) with their
ligand, can inhibit tumor cell growth (24).

However, studies on prostate cancer associated NK cell
phenotype and functions remain limited (20, 25, 26). Isolation
of tumour-infiltrating immune components is challenging, due
to the small size of prostate biopsies, and the absence of stromal
compartments. A study by Daniel Olive laboratory showed that
inherent and tumour-driven immune tolerance in the prostate
microenvironment impairs NK cell antitumor activity (20).
Interestingly, this study also showed enrichment of CD56bright

NK cells in tumor tissue, together with impaired NK cell
functions, both in tumor tissues and in the peripheral blood
(20). Here, we focused on peripheral blood NK cells in PCa
patients, with the aim to evaluate their different phenotype and
functional profiles in a perspective of a potential liquid biopsy-
based procedure.

Two major subsets of NK are mostly present in the peripheral
blood (pNK): the cytotoxic CD56dimCD16+ NK cell subset, (90–
95% of pNK) and the low cytotoxic, highly cytokine producing
NK cell subset, CD56brightCD16-/low (14).

Our research group has identified a new pro-angiogenic NK
cell subset in non-small-cell lung carcinoma (NSCLC), described
as CD56brightCD16-VEGFhighPlGFhighCXCL-8+IFNglow NK cells
(10, 16), supporting a role of NK cells in the inflammatory pro-
angiogenic switch in solid tumors. These NK cell population is
similar to a peculiar NK subset that has been found within the
developing decidua, the decidual NK cell (dNK). dNK cells
exhibit the CD56superbrightCD16-CD9+CD49a+ phenotype and
are closely linked with vascularization of the decidua and
embryo implantation, in both humans and mice (27, 28). dNK
cells produce VEGF, PlGF, and CXCL8, are poorly cytotoxic and
are associated with induction of CD4+ T regulatory (Treg) cells
(27, 28). We characterized pro-angiogenic NK cells also in the
peripheral blood (tumour associated NK cells, pTA-NKs) and
tissue infiltrate (tumour infiltrating NK cells, TI-NKs) in
colorectal cancer patients. These NK cells also display pro-
angiogenic features as those in NSCLC patients (16). NK cells
in the peripheral blood of NSCLC and CRC, in particular the
CD56brightCD16low/−, share some similarities with the respective
TI-NKs, and although they can be defined as decidual NK-like,
feature of pregnant women, a similar population is present in
both male and female cancer patients (10, 16, 29, 30). We
identified TGFb, a major immunosuppressive cytokine in the
tumour microenvironment (TME) (31, 32), as an inducer of the
inflammatory/pro-angiogenic switch of cytolytic NK, cells both
at tissue and peripheral levels (16). Also, we found that STAT3/
STAT5 activation regulates the polarization in CRC NK cells and
that STAT5 chemical inhibition, with the anti-psychotic agent
Pimozide, interferes with this process (15, 30).

Here, we show, for the first time, that NK cells isolated from
peripheral blood of patients with PCa (PCa pTA-NKs), acquire a
pro-inflammatory and pro-angiogenic phenotype, characterized
January 2021 | Volume 11 | Article 586126
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by increased expression of the surface antigens CD56, CD9, and
CD49a. Analysis of CM of FACS-sorted NK from PCa blood
samples, allowed the identification of pNK signatures,
characterized by up-regulation of cytokines and chemokines
with pro-inflammatory and pro-angiogenic (CXCL8/IL-8)
properties, as well as factors involved in the extracellular
matrix (ECM) remodeling cascade (MMP-1, MMP-9, uPAR);
pro-monocyte recruiting features (CCL1, CCL2, CCL5) and
properties involved in M2-like macrophage polarization (IL-
10). CM of FACS-sorted pNK cells from PB of PCa patients
were able to recruit THP-1 and peripheral blood CD14+

monocytes and to polarize THP-1 differentiated macrophages
and PB CD14+ place at apex monocyte-derived macrophages
towards M2-like/TAM, at transcript level.

Increasing evidence suggests that polarized NK cells are
present in the peripheral blood of patients with several types of
cancer (9, 10, 15, 16, 29, 30, 33) and their altered profile could be
a relevant feature. The idea that NK cells can be envisaged as
biomarkers for PCa have been previously explored (26, 34–36).
Also, a clinical trial is exploring the significance of circulating NK
cells in metastatic PCa (https://clinicaltrials.gov/ct2/show/
NCT02963155). Our results provided the characterization of
PCa pTA-NK cells, focusing on their polarization state, pro-
inflammatory and pro-angiogenic features, for possible NK cell
tracing and profiling in PCa patients.
MATERIALS AND METHODS

Sample Selection and Patient
Characteristics
Peripheral blood (PB) samples (15–20 ml of whole blood, EDTA)
were obtained from patients with prostate adenocarcinomas
(ADK, n = 35). Controls (HC, n=27) included peripheral blood
of healthy, tumor-free, male individuals. Patients with diabetes,
human immunodeficiency virus (HIV)/hepatitis C virus
(HCV)/hepatitis B virus (HBV) infection, chronic inflammatory
conditions, treated with chemotherapy or radiotherapy,
iatrogenically immunosuppressed or subjected to myeloablative
therapies, were excluded to the study. The study was approved by
the institutional review board ethics committees (protocol no.
0024138 04/07/2011 and protocol no.10 2 10/2011, within the
study PROSTATEST) and according to the Helsinki Declaration
of 1975 as revised in 2013. All patients enrolled in the study signed
the informed consent, in accordance to the Helsinki Declaration of
1975 as revised in 2013. Demographic features of the cohort of
PCa patients and controls are showed in Supplementary Table 1.
Monocytes used for migration studies and monocyte-derive
macrophages for polarization experiments were obtained from
mononuclear cells from 4 different healthy subjects.

Cell Culture and Maintenance
The human prostate cancer (PCa) cell lines PC-3, DU-145,
LNCaP (all purchased by ATCC) were maintained in RPMI
1640 medium, supplemented with 10% Fetal Bovine Serum
(FBS) (Euroclone), 2 mM L-glutamine (Euroclone), 100 U/ml
penicillin and 100 mg/ml streptomycin (Euroclone), at 37°C, 5%
Frontiers in Immunology | www.frontiersin.org 4
CO2. Cells were routinely screened for eventual mycoplasma
contaminations. CM were collected following 72 h of starvation
in FBS free RMPI 1640 (Life Technologies), supplemented with 2
mM L-glutamine (Euroclone), 100 U/ml penicillin and 100 mg/ml
streptomycin (Euroclone), at 37°C, 5% CO2. PCa cell line CMs
were used for NK cell polarization as detailed below.

Human umbilical vein endothelial cells (HUVEC, Lonza)
were maintained in endothelial cell basal medium (EBM,
Lonza) supplemented with endothelial cell growth medium
(EGM™ SingleQuots™ , Lonza), 10% of FBS, 2 mM
L-glutamine (Euroclone), 100 U/ml penicillin and 100 mg/ml
streptomycin (Euroclone). HUVECs were used between the three
and five passages.

The human monocytic THP-1 cell line (ATCC) was cultured
in RPMI 1640 medium, supplemented with 10% FBS, 2 mM
L-glutamine (Euroclone), 100 U/ml penicillin and 100 mg/ml
streptomycin (Euroclone), at 37°C, 5% CO2. Differentiation of
adherent THP-1 macrophages was obtained following 48 h of
treatments with phorbol-merystate-acetate (5 ng/ml, PMA,
Sigma Aldrich) (37).

CD14+ monocytes were isolated from PB samples of healthy
controls and used as CD14+ monocytes or CD14+ monocyte-
derived macrophages, for cellular and molecular studies. Briefly,
total PBMCs were isolated by density gradient stratification with
Ficoll Histopaque-1077 (Sigma-Aldrich) and CD14+ cells were
immediately isolated using the CD14+ cell isolation kit (Miltenyi
Biotec). CD14+ monocyte-derived adherent macrophages were
obtained, following CD14+ monocyte culture in RPMI 1640
medium, supplemented with 10% Fetal Bovine Serum (FBS),
(Euroclone), 2 mM L-glutamine (Euroclone), 100 U/ml penicillin
and 100 mg/ml streptomycin (Euroclone), 50 ng/ml M-CSF
(Miltenyi Biotec), at 37°C, 5% CO2, for 7 days.
Natural Killer Cell Isolation
by FACS Sorting
pNK cells were isolated from peripheral blood mononuclear cells
(PBMCs) of PCa ADK and HC subjects. Whole blood was
diluted with PBS 1:1 (v/v), then subjected to a density gradient
stratification with Ficoll Histopaque-1077 (Sigma-Aldrich), at
500xg for 20 minutes. The white ring interface, composed of total
mononuclear cells (MNCs), was collected, washed twice in PBS,
then used for subsequent experiments or for pNK isolation. Total
MNCs were subject to cell sorting, using a BD FACS-AriaII
instrument. Following 30 min of staining with anti-human
FITC-conjugated CD45, anti-human PE-conjugated CD14,
anti-human PerCP-conjugated CD3 and anti-human APC-
conjugated CD56, NK cells was sorted as CD45+CD14- CD3-

CD56+ (gating strategy is showed in Supplementary Figure 1A).
For details of antibodies used, see Supplementary Table 2.

FACS-sorted NK cells (2 × 105 cells/ml) were used, following
24 h of culture in serum-free RPMI, for molecular analysis
(qPCR) and to collect conditioned media for functional and
secretome studies. Following 24 h, supernatants were collected,
centrifuged to remove residual dead cells and debris and
concentrated using Concentricon (Millipore) with a 3kDa
membrane pore cut-off, to obtain concentrated supernatants.
January 2021 | Volume 11 | Article 586126
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Cell Treatment with Conditioned Media
and Cytokines
For NK cell polarization, total PBMCs (1 × 106 cells/ml) were
polarized with 30% of PC-3 or DU-145 or LNCaP CMs (v/v), or
TGFb (10 ng/ml) or IL-6 (25 ng/ml), in RMPI 1640 (Euroclone),
supplemented with 10% FBS (Euroclone), 2 mM L-glutamine
(Euroclone), 100 U/ml penicillin and 100 mg/ml streptomycin
(Euroclone), 100 U/ml IL-2 (R&D), at 37°C, 5% CO2, for 72 h.
Cells were pulsed with fresh complete RPMI (30%, v/v), alone or
with CM or cytokines, at day 0 and at 48 h, during the
polarization schedule.

Conditioned media from FACS-sorted NK cells were used to
detect the production of pro-inflammatory factors by endothelial
cells. 2 × 105 HUVE cells were seeded into six well plates and
exposed for 24 h to CM (50 µg/ml of total protein) of PCa pTA-
NKs or pNK cell from HC. HUVECs were then harvested and
used for real-Time PCR analysis.

THP-1 or peripheral blood CD14+ monocytes were used to
detect PCa pTA-NK-induced migration, while THP-1
differentiated and peripheral blood CD14+ monocyte-derived
macrophages were used to investigate pNK-induced polarization,
via soluble factors. THP-1 differentiated or CD14+ monocyte-
derived macrophages were pulsed with CMs (50 µg of total
protein) from FACS-sorted pNK cells (either from PCa patients
of controls) for 72 h. Cells received CM at day 0 and 48 h of
stimulation. Expression of M1-like or M2-like/TAM markers,
following polarization, was detected by Real-Time PCR.

Phenotype Characterization of
Conditioned Media-Polarized Peripheral
Blood Natural Killer Cells and Prostate
Cancer pTA-NKs
The polarization state of either pNK cells exposed to PCa cell line
(PC-3, DU-145, LNCaP) conditioned media or pNK cells from
PCa patients (PCa pTA-NKs), was assessed by flow cytometry
for surface antigen expression. Briefly, 2.5 × 105 of total PBMCs
per FACS tube were stained for 30 min at 4°C with anti-human
monoclonal antibodies (mAbs) as follows: PerCP-conjugated
anti-CD3, APC-conjugated anti-CD56, FITC-conjugated anti-
CD16, PE-conjugated anti-CD9, PE-conjugated anti-CD49a, PE-
conjugated anti-NKG2D, PE-conjugated anti-PD-1, PE-
conjugated anti-TIM-3 (all purchased by Miltenyi Biotec).
Following Forward/Side Scatter setting, NK cells were
identified as CD3- and CD56+ cells (total NK cells). CD16 and
NKG2D expression was evaluated on CD3-CD56+ (total NK)
gated cells. Finally, CD56 brightness, the expression of the dNK
markers CD9, CD49a, expression of CXCR4 and the expression
of the exhaustion markers PD-1 and TIM3, were evaluated on
total CD3-CD56+NK cells. For details on antibodies used, see
Supplementary Table 2.

Degranulation Assay
NK cell degranulation ability, as detected by CD107a production,
was evaluated both in NK cells from PCa and HC clinical
samples or in HC NK cells pre-polarized by 72 h of exposure
to PC-3 and DU-145 cell conditioned media. Total MNCs (1 ×
Frontiers in Immunology | www.frontiersin.org 5
106 cells/ml), isolated from PCa patients and controls were
cultured, overnight, in RMPI 1640 (Euroclone), supplemented
with 10% FBS (Euroclone), 2 mM L-glutamine (Euroclone), 100
U/ml penicillin and 100 mg/ml streptomycin (Euroclone), 100 U/
ml IL-2 (R&D), at 37°C, 5% CO2.

2 × 105 MNCs were co-incubated with 2 × 105 K562 (E:T ratio
of 1:1), in the presence of anti-CD107a- FITC (BD Bioscience)
MNCs or K562 alone were used as controls for basal
degranulation activities on effector and target cells. Cells were
stimulated for 6 h with PMA (10 ng/ml) and ionomycin (500 ng/
ml) (both from Sigma), in the presence of GolgiStop plus
GolgiPlug (both from BD Biosciences), for 5 h. Finally, the
expression of CD107a was detected on CD3+CD56+ NK cells,
by flow cytometry. To determine the degranulation efficiency, the
basal levels of NK cell degranulation was subtracted from the NK
cells/K562 co-culture.

Intracellular Staining for Cytokine
Detection of Conditioned Media-Polarized
Peripheral Blood Natural Killer Cells
For intracellular cytokine detection, 2 × 106 PBMCs from PCa-
ADK patients or HC were cultured, overnight, in RPMI 1640
(EuroClone) supplemented with 10% FBS (Life Technologies,)
1% (v/v) L-Glutammine (Sigma), 100 U/ml penicillin, 100 µg/ml
streptomycin (Euroclone) and IL-2 (100 U/ml; R&D Systems) at
37°C and 5% CO2. For intracellular staining, the third day of
polarization, cells were stimulated for 6 h with PMA (10 ng/ml)
and ionomycin (500 ng/ml) (both from Sigma), in the presence
of GolgiStop plus GolgiPlug (both from BD Biosciences). Cells
were collected and stained for NK cell surface markers, as
previously described, washed with PBS and treated with
Cytofix and Cytoperm fixation and permeabilization kit (BD)
for 10 min at 4°C. Cells were then washed in PBS and stained
with PE-conjugated anti human CXCL8, CXCL12 (R&D
System), IFNg, TNFa, GranzymeB (Myltenyi Biotec) for 30
min. For indirect staining, cells were incubated for 1 h at 4°C
with primary unlabelled antibodies anti-human Angiopoietin 1,
anti-human Angiogenin, (all purchased from Abcam), washed
and then stained with secondary PE-conjugated antibody anti-
mouse IgG, for 30 min, at 4°C. Cytokines production was
detected by flow cytometry, using a BD FACS CantoII
analyzer. Isotype control and the secondary antibody alone
were used as staining controls. For details on antibodies used,
see Supplementary Table 2.

Secretome Analysis of Prostate Cancer
pTA-NKs
The secretome of conditioned media (50 µg of total protein) of
FACS-sorted pNK was assessed, using the Human Angiogenesis
Array C1000 (RayBiotech, Inc., Norcross GA) to detect cytokines
and chemokines release, as detailed before (30). A pool of
three ADK or HCCMs was used. Chemiluminescent signals
(revealed as black dots) were captured by membrane exposure
to Amersham Hyperfilm. Arrays were computer scanned using
the Amersham Imager 680 Analyzer and optical density was
determined using the ImageJ software.
January 2021 | Volume 11 | Article 586126
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Network Formation Assay on Endothelial
Cells
HUVEC cells (1.5 x104 cells/well) were seeded in a 96 well plate,
previously coated with 50 µL of 10 mg/ml polymerized Matrigel
(BD). After exposure to conditioned media (50 µg/ml total protein,
pools of CM from 3 different ADKs or HCs), in serum-free EBM
medium, HUVECs were then incubated at 37°C, 5% CO2 for 24 h.
The formation of capillary-like structures was detected by
microphotographs, using an inverted microscope (Zeiss). The
number of master segment and master segment length, as
indicators of tube formation efficiency, were determined, using
ImageJ software and the Angiogenesis Analyzer tool.
Detection of THP-1 Cell and Peripheral
Blood CD14+ Monocyte Recruitment by
Prostate Cancer pTA-NKs
Migration assay was performed using modified Boyden chambers.
5 × 104 THP-1 or CD14+ monocytes were resuspended in 500 ml
of serum-free RPMI and loaded into the upper compartment of
the Boyden chamber. The lower chambers were filled with 250 ml
of serum-free RMPI medium, supplemented with conditioned
media (50 µg/ml total protein, pools of CM from 3 different ADKs
or HCs), ADK or HC pNK cells. 5 mm pore-size polycarbonate
filters (Whatman, GE Healthcare Europe GmbH, Milan, Italy)
previously pre-coated with 2 mg/ml of fibronectin, were used as
interface between the two chambers. The Boyden chambers were
incubated for 6 h at 37°C. Filters were recovered, cells on the upper
surface mechanically removed with a cotton swab. Cells migrated
toward the filter surface, were fixed with ethanol at serial
percentage (70%, 100%), finally rehydrated in water. Filters were
stained with 10 µg/ml DAPI (Vectashield, Vector Laboratories,)
and incubated at room temperature, protected from light, for 10
min. Cells in the filters were counted in a double-blind manner in
five consecutive fields/filter, with a fluorescent microscope
(Nikon Eclipse).
Quantitative Real-Time PCR
Total RNA was extracted from HUVECs, THP-1 macrophages or
peripheral blood CD14+ monocyte-derived macrophages, exposed
to CM from FACS-sorted PCa pTA-NKs or HC pNK cells, using
the small RNA miRNeasy Mini Kit (Thermo Fisher) and
quantified by Nanodrop Spectrophotometer. Following genomic
DNA removal, by DNase I Amplification Grade (Thermo Fisher)
treatment, reverse transcription was performed on 500 ng of total
RNA using SuperScript VILO cDNA synthesis kit (Thermo
Fisher). Real-time PCR was performed using SYBR Green
Master Mix (Thermo Fisher) on QuantStudio 6 Flex Real-Time
PCR System Software (Applied Biosystems, Thermo Fisher
Scientific, USA). All reactions were performed in triplicate. The
GAPDH gene was used as housekeeping and results were showed
as 2^−DCt. HUVECs or THP-1 macrophages in their respective
basal medium alone, were used as baseline controls. Primer
sequences are provided in Supplementary Table 3.
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Statistical Analysis
Statistical differences between two datasets were determined
using two tailed t-test. For multiple datasets, analysis of
variance (ANOVA) followed by Tukey’s post-hoc test was
used. P values (p) ≤ 0.05 will be considered statistically
significant. Data were analysed using the GraphPad Prism8
(San Diego, CA). Flow cytometry data were analysed using the
BD FACS-Diva and FlowJo-v10 software.
RESULTS

pTA-NKs From Prostate Cancer Patients
Exhibit a Pro-inflammatory, Pro-
angiogenic, Exhausted Phenotype
We investigated whether pNK from PCa patients are
characterized by a pro-inflammatory and pro-angiogenic
phenotype. Flow cytometry analysis of CD56 and CD16
surface antigen expression revealed that the CD56+CD16+ NK
cells are the predominant subset in the peripheral blood in PCa-
ADK and HC samples (Supplementary Figure 1A). We found
increased frequency of CD56bright NK cells in the peripheral
blood of patients with PCa ADK (****p ≤ 0.0001) (Figure 1A).
Peripheral blood NK cells from PCa-ADK samples express also
higher levels of the decidual-like markers CD9 (Figure 1B)
(****p ≤ 0.0001), CD49a (Figure 1C) (***p ≤ 0.001), as
compared with those isolated from healthy controls. We also
found increased expression of CXCR4 on NK cells from PCa-
ADK samples (Figure 1D) (*p ≤ 0.05). We observed that PCa
pTA-NKs have reduced expression of the NKG2D activation
marker (*p ≤ 0.05), together with increased levels of the
exhaustion markers PD-1 (****p ≤ 0.0001) and TIM-3 (**p ≤
0.01), as compared to those from HC (Figures 2A–C). Also, PCa
TA-NKs exhibit reduced ability to degranulate against K562 cells
(****p ≤ 0.0001), as compared to those from HC (Figure 2D).

Real-time PCR results showed that TA-NKs cells, FACS-
sorted from PCa-ADK, have increased expression of mRNA
for the pro-inflammatory factors CXCL8 (**p ≤ 0.01), CXCL12
and PAI and confirmed the increased RNA expression of CXCR4,
as well as VEGF (****p ≤ 0.0001), as compared to NK isolated
form the peripheral blood of healthy controls (Figure 2E).

pTA-NKs From Prostate Cancer Patients
Exhibit a Secretome Profile Enriched in
Pro-Inflammatory, Pro-Angiogenic
Cytokines, and Chemokines Involved in
Monocyte Recruitment and Polarization
To investigate whether the acquisition of the pro-inflammatory
phenotype in PCa pTA-NKs would correlate with their capability
to release soluble factors involved in direct and indirect induction of
inflammatory-angiogenesis, we investigate the contents of CM from
PCa TA-NKs. We characterized the production of secreted proteins
from PCa TA-NKs using a commercially available angiogenesis-
membrane array kit. The overall secretome analysis (Supplementary
Figure 2) revealed signatures characterizing PCa-ADK pTA-NKs
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involved in inflammation and angiogenesis (CXCL8)
(Supplementary Figure 2, Figure 3A), tissue remodelling
(MMP-1, MMP-9, uPAR) (Supplementary Figure 2, Figure 3A),
monocyte recruitment (CXCL1, CCL2, as the most up-regulated)
(Supplementary Figure 2, Figure 4A) and M2-like macrophage
polarization (IL-10) (Supplementary Figure 2, Figure 4A).
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pTA-NKs From Prostate Cancer Patients
Functionally Support Inflammatory
Angiogenesis In Vitro
We further investigated whether PCa-ADK pTA-NKs, expressing
pro-inflammatory cytokines (also involved in angiogenesis),
chemokines and chemokine receptors, were also effectively able to
A

B

D

C

FIGURE 1 | pNK cell polarization in peripheral blood of PCa patients. PCa TA-NKs have increased numbers of CD56bright NKs as compared with those from HC
(A). Peripheral blood NK (pTA-NKs) from PCa patients significantly express higher levels of the dNK cell markers CD9 (B) CD49a (C) and CXCR4 (D), as compared
with those from HC. Every dot in dots/bars graph refers to single patients or control. Representative dot plots show the specific antigen expression (as % of total
pNK cells). Data are showed as mean ± SEM, t-student test, *p<0.05, ***p<0.001, ****p<0.0001. HC, healthy controls; ADK, prostate cancer adenocarcinoma.
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FIGURE 2 | pNK cell exhaustion and degranulation activities in peripheral blood of PCa patients. PCa pTA-NKs have decreased levels of the NKG2D activation
markers (A), increased expression of the PD-1 (B) and TIM-3 (C) exhaustion markers and impaired degranulation abilities against the K562 cells (D). panel D
shows NK cell degranulation capabilities, alone or co-incubated with K562 cells in PCa p-TA-NKs and NK cell from healthy controls. Every dot in dots/bars
graph refers to single patient or control. Representative dot plots show the specific antigen expression (as % of total pNK cells). pNK cells, FACS-sorted from
patients with ADK-PCa have increased expression of the pro-inflammatory factors VEGF, CXCL8, CXCR4, CXCL12, PAI (E). qPCR have been performed using
pNK cell from 3 PCa patients and 3 controls, in triplicate. Data are showed as mean ± SEM, t-student test, *p<0.05, **p<0.01, ****p<0.0001. HC, healthy
controls; ADK, prostate cancer adenocarcinoma.
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inducenetwork formation inHUVECs in vitro.We found thatCMof
pNK cells isolated PCa-ADK samples have higher contents of the
pro-inflammatory and tissue-remodelling factors CXCL8/IL-8
(****p≤0.0001), MMP-1 (*p≤0.05), MMP-9 (****p≤0.0001), uPAR
(****p≤0.0001) (Figure 3A, Supplementary Figure 2). To detect
whether conditioned media of inflammatory NK cells isolated PCa-
ADK samples were effectively able to induce network formation in
Frontiers in Immunology | www.frontiersin.org 9
HUVE cells, we treated HUVE cells with these conditioned media.
We found that conditioned media of pNK cells isolated from PCa-
ADK are able to induce the formation of capillary-like structures by
HUVE cells, on a matrigel layer (*p ≤ 0.05; **p ≤ 0.01), as a
consequence of their pro-inflammatory secretome (Figure 3B).
Real-time PCR results showed that HUVE cells, exposed for 24 h
to CM from PCa-ADK pTA-NKs have a pro-inflammatory
A

B

C

FIGURE 3 | Pro-inflammatory activities of pTA-NKs from PCa patients on endothelial cells. Conditioned media (CM) form FACS-sorted PCa pTA-NKs are enriched in
pro-inflammatory and tissue-remodelling factors, such CXCL8, uPAR, MMP-1, MMP-9 (A) and functionally support the formation of capillary like structures in human
umbilical-vein endothelial cells (HUVEC) on matrigel (B). HUVE cells exposed to conditioned media of PCa pTA-NKs express higher levels of pro-inflammatory factors
like VEGF, VEGF-R2, CXCL8, CXCR4, CXCL12, ICAM-1, VCAM-1, IL1-a, as compared to those exposed to conditioned media released by healthy control NK cells
(C). Capillary like-structure formation and qPCR on HUVECs have been performed using CM of pNK cell from 3 PCa patients and 3 controls, in triplicate, on 4
different HC. Data are showed as 2^-DCt values, mean ± SEM, ANOVA, *p<0.05, **p<0.01, ****p<0.0001. The condition HUVEC (black bar) stands for HUVE cells
alone, as baseline condition. HC, healthy controls; ADK, prostate adenocarcinoma.
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FIGURE 4 | Effects of PCa pTA-NKs on monocyte recruitment and polarization. Conditioned media from PCa pTA-NKs are enriched with factors involved in
macrophage recruitment (GM-CSF, CXCL1/GRO, CXCL11/I-TAC, CCL1/I-309, CCL2/MCP-1, CCL5/RANTES, CCL7/MCP-3, CCL13/MCP-4, and polarization (IL-
10) (A) and can recruit THP-1 and CD14+ monocytes as compared with those from heathy controls (B, C), as revealed by the migration assay (Boyden Chambers).
Exposure to conditioned media of pNK from PCa patients for 72 h result in THP-1 ability to express higher levels of M2-like/TAM markers (CD206, Arg-1, IL-10,
ARG1, CXCL8, TGFb) and reduced expression of IL-12 (M1-like marker) (C). Data from THP-1 were extended, using a larger gene panel (CD206, Arg-1, CD80,
CD86, IL-10, IL-12, TNFa, IFNg, TGFb, CXCL8, VEGF, IL-1b) on peripheral blood CD14+ monocyte derived macrophages (D). CMs were pooled from pNK cells
FACS sorted from 3 different PCa patients or controls. Arrays were performed in duplicates. q-PCR were performed using CMs pooled from pNK cells FACS sorted
from 3 different PCa patients or controls, and used for 4 different experiments (THP-1) and for 4 different donors of peripheral blood CD14+ monocyte-derived
macrophages, in triplicate. Data are showed as mean ± SEM, ANOVA, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. HC, healthy controls; ADK, prostate
adenocarcinoma; naive indicates THP-1 cells in control medium.
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phenotype with increased mRNA expression of VEGF (*p ≤ 0.05),
VEGF-R2, CXCL8 and of factors involved in vascular inflammation
and immune cells mobilization, such asCXCR4 (*p ≤ 0.05),CXCL12
(**p≤ 0.01), ICAM-1 (**p≤ 0.01),VCAM-1, togetherwith induction
of IL-1a (***p ≤ 0.001) (Figure 3C).

pTA-NKs From Prostate Cancer Patients
Can Recruit Monocytes and Induce an
M2-Like/TAM Features In Vitro
Secretome analysis revealed that conditioned media of pNK cells
isolated PCa-ADK samples are enriched in soluble factors
Frontiers in Immunology | www.frontiersin.org 11
involved in macrophage recruitment and polarization
(Supplementary Figure 2, Figure 4A) such as GM-CSF (*p ≤
0.05), CXCL1/GRO (****p ≤ 0.0001), CXCL11/I-TAC (*p ≤
0.05), CCL1/I-309 (**p ≤ 0.01), CCL2/MCP-1 (****p ≤
0.0001), CCL5/RANTES (****p ≤ 0.0001), CCL7/MCP-3 (**p
≤ 0.01), CCL13/MCP-4 (*p ≤ 0.05) and IL-10 (***p ≤ 0.001)
(Figure 5A). Based on these results, we functionally investigated
PCa-ADK NK cells ability to recruit THP-1 or CD14+

monocytes, via soluble factors. We observed that CM from
PCa pTA-NK cells, FACS sorted from the peripheral blood of
PCa-ADK patients, promote the recruitment of THP-1
A B

D

E

C

FIGURE 5 | Effects of TGFb and IL-6 on NK cell polarization. NK cells from healthy donors, following 72 h of exposure to TGFb (10 ng/ml) or IL-6 (25 ng/ml) were
analyzed for their polarization state, by multicolor flow cytometry. TGFb induced the CD56brightCD9+CD49a+NKG2Dlow phenotype in cytolytic NKs (A–D). The same
effect was not observed on cells polarized with IL-6 (E). Polarization experiments were performed on seven different healthy donors for TGFb and four different
healthy donors for IL-6. Data are shown as mean ± SEM, ANOVA, *p<0.05, **p<0.0. NT, not-treated cells.
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monocytes (***p ≤ 0.001) as compared to CM of NK cells
isolated from healthy controls (Figure 4B). A similar trend
was observed in peripheral blood CD14+ monocytes, exposed
to CM from PCa pTA-NK as compared to CM of NK cells
isolated from healthy controls (Figure 4C). We also observed
that THP-1 differentiated macrophages, following 72 h of
exposure to PCa pTA-NK CMs, displayed increased
expression of the M2-like/TAM factors, such as CD206/
Mannose receptor, Arg1 (*p ≤ 0.05), IL-10 (**p ≤ 0.01),
TGFb, CXCL8 (***p ≤ 0.001) and decreased expression of the
M1-like cytokine IL-12 (*p ≤ 0.05) (Figure 4C). We extended
this analysis on peripheral blood CD14+ monocyte-derived
macrophages, using a larger gene candidate panel, exposed
for 72 h to CMs from FACS-sorted PCa pTA-NK or those
from HC (Figure 4D). While data on CD206 and Arg1
expression seems to not reflect those observed in THP-1
macrophages, we observed decreased levels of CD80 (*p ≤
0.05) and CD86 (M1-like markers). Results on IL-10 (M2-
like) and IL-12 (M1-like), TGFb and CXCL8 (both M2-like),
show a trend similar to that observed in THP-1 macrophages
(Figure 4D). In addition, we found that peripheral blood
CD14+ monocyte-derived macrophages, exposed for 72 h to
CMs from FACS-sorted PCa pTA-NK or those from HC, have a
trend in increased VEGF (M2-like) transcript, together with
decreased expression of TNFa , IFNg and IL-1b pro-
inflammatory (M1-like) cytokines (Figure 4D).

TGFb and IL-6 Effects on Natural Killer Cell
Polarization
Since TGFb and IL-6 have been found to be abundant in serum
and plasma levels of PCa patients, we investigated TGFb and IL-
6 abilities to polarized cytolytic NK cells from heathy donors. We
found that, following 72 h of TGFb (10 ng/ml) exposure, NK
cells increase the surface expression of CD56 (**p ≤ 0.01) (Figure
5A), decreased NKG2D expression (**p ≤ 0.01) (Figure 5B) and
increased surface expression of CD9 (**p ≤ 0.01) and CD49a (*p
≤ 0.05) (Figure 5C-D). In contrast, IL-6 (25ng/ml), was not able
to induce a similar effect (Figure 5E).

Prostate Cancer Cell Lines Conditioned
Media Polarize pNK Cells Toward Pro-
Inflammatory Angiogenic, Exhausted
Natural Killer Cells
To verify the results obtained from PCa pTA-NKs, we used an in
vitro model mimicking the interaction of the secretome of PCa
cells with normal PBMC of healthy donors. Mononuclear cells
from peripheral blood were exposed to soluble factors (CM)
collected from three different PCa cell lines (PC-3, DU145,
LNCaP) and assessed for their expression of decidual and pro-
inflammatory, pro-angiogenic markers and polarization state.
We found that pNK cells from healthy controls, following 72 hs
of exposure to the CM of three different PCa cell lines (PC-3, DU-
145, LNCaP) showed increase expression of the CD9, CD49a of
CXCR4 (*p ≤ 0.05, **p ≤ 0.01) (Figures 6A, B).We also found that
72h of stimulationwithCMfromthe threePCa cell lines resulted in
pNK enhanced ability to produce pro-inflammatory and pro-
Frontiers in Immunology | www.frontiersin.org 12
angiogenic factors, such as Angiogenin, Angiopoietin-1, CXCL8
(**p ≤ 0.01) and CXCL12 (*p ≤ 0.05, **p ≤ 0.01), and decreased
ability to produce IFNg, TNFa and Granzyme-B (*p ≤ 0.05, **p ≤
0.01, ***p ≤ 0.001), as detected by flow cytometry (Figures 6C, D).
Finally,weobserved that pNKcells fromhealthy controls, following
72 h of exposure to the CM of PC-3 and DU-145 cell lines are
exhausted, as revealed by the trend of increased levels of PD-1 and
TIM-3, together with decreased degranulation capabilities against
K562 cells (*p ≤ 0.05) (Figures 6E, F).
DISCUSSION

Although immunotherapy has emerged as the “next generation”
cancer treatment (38), it is not always successful in the treatment
of patients with PCa, for whom the preferential therapeutic
options still remain radiotherapy, chemotherapy and androgen
deprivation therapy (3, 39–41). This clearly suggests that, to
address more efficient immune therapeutic approaches against
PCa, a better understanding of how the PCa is able to subvert the
host immune system, still remains a major issue and a clinical
unmet need. Preclinical and clinical evidences suggest that
chronic inflammation plays a crucial role in multiple stages of
prostate cancer development (42–44).

The polarization of the immune inflammatory cells in
peripheral blood is directed by specific chemokines and
cytokines that can shape their state and make them acquire
altered phenotype and functions, depending on tumour scenario
(7, 10, 11, 45–47).

NK cells have been found to be compromised in several
cancers (7, 10, 11, 14–17, 19, 22, 23, 29, 30, 48). Skewed NK cell
contribution to tumour progression goes beyond tumour escape
and immunosuppression (7, 10, 15, 16, 29, 30). We demonstrated
that NK cells in NSCLC cancer (16), colorectal cancer (7) and in
malignant pleural effusions (29), acquire pro-angiogenic, pro-
inflammatory phenotype and functions, identified as
CD56brightCD16−VEGFhighCXCL8+IFNglow and share several
features and behaviours with the highly pro-angiogenic
decidual NK (dNK) cells. This was observed also by other
groups in breast and colon cancers (49).

NK cell scenario in PCa is less investigated. Here, we
characterized pNK cells isolated from the PB of patients with
PCa, in the framework of approved clinical protocols. We found
that PB NK cells from PCa patients (PCa pTA-NKs) show a pro-
inflammatory and pro-angiogenic polarization, by acquiring the
CD56brightCD9+CD49a+CXCR4+ phenotype. Our results on
increased CD56bright frequency are in line with those showed by
Pasero et al. in prostate cancer tissues (20). Similar to these results,
we observed that PCa pTA-NKs, have impaired degranulation
capabilities. In addition, we also found that PCa pTA-NKs exhibit
down-regulation of NKG2D and increased markers of exhaustion,
such as PD-1 and TIM-3, as compared with those from healthy
controls. Increased expression of PD-1 and TIM-3 have been
reported as markers of NK cell exhaustion also in other cancer
types (50–55). We found that circulating PCa pTA-NKs were able
to express larger amount of the pro-inflammatory and pro-
angiogenic factors VEGF, CXCL8, CXCL12, PAI, as compared
January 2021 | Volume 11 | Article 586126
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to those from controls, introducing a new scenario for the possible
pro-inflammatory and pro-angiogenic activities of circulating NK
cell in PCa.

Based on these first results, we investigated whether soluble-
related factors, released by PCa pTA-NKs, might support pro-
inflammatory and pro-angiogenic-like behaviour, acting on
endothelial cells and cellular components of the innate immune
system, such as monocyte or macrophages. NK cells can interact
with most of the innate and adaptive cellular components of the
immune system (7, 11, 15, 56, 57). Monocytes are the second most
represented phagocytes in circulation and in established
progressing tumours, were they display an M2-like/TAM
phenotype (58–60). M2-like macrophages, induced in vitro, have
Frontiers in Immunology | www.frontiersin.org 13
been shown to decrease the susceptibility of tumour cells to NK
cell cytotoxicity, with increased PD-L1 and decreased NKG2D
ligands in castration-resistant prostate cancer cells (61).

Here, we analysed the PCa pTA-NK production of pro-
inflammatory/pro-angiogenic factors, using commercially
available protein membrane arrays. We found elevated release
of CXCL8/IL-8 by PCa pTA-NK, which can be responsible for
the PCa pTA-NK soluble-factor mediated induction of HUVEC
capillary-like structures on matrigel. These results support the
hypothesis that PCa pTA-NK can potentially promote
inflammatory angiogenesis. A number of studies have linked
higher serum levels or expression of CXCL8/IL-8 with aggressive
prostate cancer. Elevated CXCL8/IL-8 has been reported to
A B
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C

FIGURE 6 | Effects of prostate cancer cell line conditioned media (CM) on pNK cell polarization and functions. NK cells from healthy donors, following 72 h of
exposure to conditioned media (CM) from PC-3, DU-145 and LNCaP PCa cell lines, exhibit a pro-inflammatory angiogenic decidual-like phenotype, as revealed by
the increased levels of the dNK-like markers CD9, CD49a, CXCR4 (A, B), enhanced production of pro-inflammatory factors (angiogenin, ANG; angiopoietin-1,
Angiop1; CXCL8) and reduced production of cytolytic factors (granzyme B, GRZ-B; TNFa; IFNg) (C, D), as revealed by flow cytometry analysis. Experiments were
performed using peripheral blood samples of 5-to-9 independent healthy donors. NK cells from healthy donors, following 72 h of exposure to conditioned media
(CM) from PC-3, DU-145 cell lines increase the expression of PD-1 and TIM-3 exhaustion markers (E), together with decreased degranulation capabilities against
K562 cells (F). Experiments were performed using peripheral blood samples of 3 independent healthy donors. Data are shown as mean ± SEM, ANOVA, *p<0.05,
**p<0.01, ***p<0.001. CM, conditioned media/conditioned media from 72 h of SFM PCa cell lines.
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correlate with high Gleason score and with AR loss in metastatic
disease (62–65). Interestingly, CXCL8/IL-8 was the most
abundant factor that we found to be released by PCa pTA-NK.

We also found that PCa pTA-NK can produce factors involved
in tissue remodelling and metastasis, such as MMP-1, MMP-9,
uPAR. Other studies reported that MMP-1, MMP-9, uPAR play
important roles in tissue remodelling with prognostic implication
in PCa (66–68). In previously published results, we have shown
that MMP-9 is upregulated in peripheral blood NK cells of colon
cancer patients and the TIMP-1/MMP-9 axis, as well as uPAR, are
altered, as compared to normal circulating NK cells (30).

The crosstalk between NK cells and M1 macrophages plays a
crucial role in the protection against infections and tumour
development (69–71). In hepatocellular carcinoma (HCC),
tumour-derived monocytes have been found to induce
dysfunctions in NK cells that were impaired in their ability to
produce TNFa and IFNg (71). CM of M2 type macrophages have
been found to decreases the susceptibility of tumour cells to NK
cell cytotoxicity, as a result of increased PD-L1 and decreased
NKG2D ligands in prostate cancer cells. This has been reported
to be mediated through the IL-6 and STAT3 pathway (61).

While macrophage-NK cell crosstalk has been investigated in
different cancers (69, 70, 72–74), less studies have investigated the
crosstalk in the opposite direction. We assessed the ability of PCa
TA-NKs to recruit THP-1 and CD14+ monocytes in vitro. We
found that PCa pTA-NKs have increased ability to stimulate
migration of THP-1 and CD14+ monocytes, as compared to pNK
cells from healthy controls. We also tested whether the PCa pTA-
NK released products may impact on macrophage polarization
state. We found that THP-1-differentiated and peripheral blood
CD14+ monocyte-derived macrophages, exposed for 72 h to
conditioned media from PCa pTA-NK cells, acquire increase the
expression of M2-like/TAM genes (CD206, ARG-1, IL10, TGFb,
CXCL8, VEGF), while decreasing the expression of M1-like factors
CD81, CD86, IL-12, TNFg, IFNg. These results provide the rational
to propose that pro-inflammatory, pro-angiogenic activities byPCa
pTA-NKs may also act by shaping monocyte and macrophage
polarization and functions.M2-likemacrophages/TAMshave been
associated with increased tumour angiogenesis and poorer survival
in PCa patients (75–77).

IL-2 priming of NK cells from patients with PCa, has been
reported to result in distinctNKcell phenotypes and correlateswith
differentNKcytotoxic activities (48).Once again, these cited results,
together with our study, point out the important role of the
phenotype and functions of NK cells in PCa patients, that could
be used, in the future, for immune-profiling of NK cells in PCa.

Based on our previous studies (16, 30), we tested, in vitro, the
possible contribution of major cytokines, TGFb and IL-6 in
supporting the pro-inflammatory and pro-angiogenic
polarization of NK cells from healthy controls.

TGFb has been largely reported as an inducer of
immunosuppression and immune cell escape in diverse cancers
(31), including PCa (78). TGFb is largely present in plasma/serum
samples of PCa patients (78). We found that TGFb induced the
CD56brightCD9+CD49a+NKG2Dlow phenotype in healthy donor
derived NK cells.
Frontiers in Immunology | www.frontiersin.org 14
IL-6 has been reported to be produced by several cancer
types, including PCa (79), endowed with pleiotropic effects
(80). IL-6 has been reported to impair NK cell functions by
activating the STAT3 pathway (80–82). Also, inhibition of
IL-6-JAK/STAT3 signalling result in the enhancement of NK
cell-mediated cytotoxicity via alteration of PD-L1/NKG2D
ligand levels, in castration-resistant prostate cancer cells (82).
In our study, we found that IL-6 was not able to induce the
CD56brightCD9+CD49a+NKG2Dlow phenotype in healthy donor
derived NK cells.

We validated our findings from clinical samples using an in
vitro model, mimicking the interaction of PCa soluble factors on
cytolytic NK cells, by exposing NK cells from healthy donors to
conditioned media of different PCa cell lines (PC-3, DU-145,
LNCaP). Pasero et al previously showed that the PC-3 cell line can
alter the expression of activation receptors in NK, such as NKG2D,
DNAM-1, NKp46, NKp30, together with decreased degranulation
capabilities (20). Using three different PCa cell lines, PC-3, DU-
145 and LNCaP, respectively, we observed that their conditioned
media were able to induce the CD56brightCD9+CD49a+CXCR4+

phenotype in NK cells derived from healthy controls, together to
the capability to produce Angiogenin, Angiopoietin-1, CXCL8,
CXCL12. We confirmed that CM from PCa cell lines induce
anergy in healthy donor derived NK cells, with reduced capability
to produce the anti-tumour cytokines IFNg, TNFa and the
cytotoxic factor granzyme-B. As a further proof anergy, PC-3
and DU-145 CM-polarized NK cells increase the expression of
the PD-1 and TIM-3 exhaustion markers and exhibit reduced
degranulation activities.
CONCLUSIONS

Limited data are available of PCa pTA-NKs. A pivotal study by
Pasero et al. showed enrichment of CD56bright NK cells in
tumour tissue, together with impaired NK cell functions both
in tumour tissues and in the peripheral blood (20). Here, we
focused on the characterization and phenotyping of peripheral
blood NK cells from PCa patients, with the aim to evaluate their
different phenotype and functional profiles, as compared to those
from heathy controls.

We show that PCa pTA-NKshave a pro-inflammatory and pro-
angiogenic phenotype, are endowed with the ability to support
angiogenesis, in vitro, stimulating endothelial cell activation and
functions, are able to recruit monocytes and polarize macrophages
via soluble factors. Since obtaining PB NK cells is a relatively easy
and poorly invasive procedure, our data provide a rationale for the
future use of the pNK profiling in PCa patients to monitor NK cell
polarization state and for designing approaches to restore pNK lytic
activity in PCa patients.
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SUPPLEMENTARY FIGURE 1 | Gating strategy and expression of CD16 in PCa
pTA-NKs and controls. (A) Gating strategy used for NK cell FACS sorting. (B) pTA-
NKs from PCa patients share similar pNK cell subset frequency (CD56+CD16+ and
CD56+CD16- cells) as those from peripheral blood samples of healthy controls (A).
Data are showed as mean ± SEM, t-test student, **p<0.01. HC: healthy controls;
ADK: prostate adenocarcinoma.

SUPPLEMENTARY FIGURE 2 | Secretome profiling of PCa pTA-NKs.
Secretome profiling, using an antibody membrane array showed that conditioned
media from pNK cells of PCa patients are enriched in several factors directly and
indirectly associated with induction of angiogenesis, immunosuppression, M2-like
polarization, macrophage recruitment, ECM/tissue remodelling. (A) Representative
heatmap; (B) bar histogram showing the fold change for every modulated factor
PCa over HC; (C, D) scan acquisition for the angiogenesis antibody-array (C1 and
C2), showing overall dots, following exposure to conditioned media (CM) from
FACS sorted pNK cells of PCa-ADK patients and controls. Green tables, to identify
dots position for array C1 and C2, is provided. CMs were pooled from pNK cells
sorted from 3 different PCa patients or HC. Arrays were performed in duplicates.
Data are showed as mean ± SEM, t-test student, *p<0.05, **p<0.01, ***p<0.001,
****p<0.0001. ADK, prostate adenocarcinoma; HC, healthy controls.

SUPPLEMENTARY TABLE 1 | Demographic and clinical features of our cohort
of PCa patients and controls. Table summarizing the features of our cohorts of
patients, with relative sample size. Average of age is showed as mean ± SD. N:
sample size, ADK, prostate adenocarcinoma; HC, healthy controls.

SUPPLEMENTARY TABLE 2 | Antibodies used in flow cytometry experiments.
The table summarizes the antibodies (primary conjugated, primary not-conjugated,
secondary conjugated) used in flow cytometry analysis.

SUPPLEMENTARY TABLE 3 | Primer sequences for oligos used for Real-time
PCR. Sequences for forward and reverse oligos used for real-time PCR are showed.
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