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Dratwa M, Wysoczańska B, Łacina P,
Kubik T and Bogunia-Kubik K (2020)

TERT—Regulation and Roles in
Cancer Formation.

Front. Immunol. 11:589929.
doi: 10.3389/fimmu.2020.589929

REVIEW
published: 19 November 2020

doi: 10.3389/fimmu.2020.589929
TERT—Regulation and Roles in
Cancer Formation
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Telomerase reverse transcriptase (TERT) is a catalytic subunit of telomerase. Telomerase
complex plays a key role in cancer formation by telomere dependent or independent
mechanisms. Telomere maintenance mechanisms include complex TERT changes such
as gene amplifications, TERT structural variants, TERT promoter germline and somatic
mutations, TERT epigenetic changes, and alternative lengthening of telomere. All of them
are cancer specific at tissue histotype and at single cell level. TERT expression is regulated
in tumors via multiple genetic and epigenetic alterations which affect telomerase activity.
Telomerase activity via TERT expression has an impact on telomere length and can be a
useful marker in diagnosis and prognosis of various cancers and a new therapy approach.
In this review we want to highlight the main roles of TERT in different mechanisms of
cancer development and regulation.

Keywords: telomerase reverse transcriptase, cancer progression, TERTp mutations, telomere maintenance
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INTRODUCTION

In most human cancers, telomerase is reactivated during carcinogenesis by expression of the
catalytic subunit telomerase reverse transcriptase (TERT). TERT plays a key role in cancer
formation, ensuring chromosomal stability by maintaining telomere length, and allowing cells to
avert senescence. It constitutes a limiting factor for formation of the telomerase complex in cancer
cells (1). TERT is one of two major components of the larger telomerase complex, which extends
telomeres by adding specific short repetitive DNA sequences. These tandem repeats are bound by
the shelterin complex, which is composed of six proteins: telomere repeat factor 1 and 2 (TRF1,
TRF2), protection of telomeres 1 (POT1), TRF1-interacting nuclear protein 2 (TIN2), tripeptidyl
peptidase I (TPP1), and repressor/activator protein 1 (RAP1) (Figure 1) (2). The Shelterin complex
plays a fundamental role in protecting chromosome ends and in telomere length regulation (3, 4).

The TERT gene is situated at chromosome 5p15.33 in humans, and is an integral and essential
part of the telomerase holoenzyme. TERT gene is 42 kb long and consists of 15 introns and 16 exons
with a 260 bp promoter core (5). The reverse transcriptase domain is encoded by 5–9 exons. The
TERT transcript can be spliced into 22 isoforms (6). TERT promoter (TERTp) region contains GC
org November 2020 | Volume 11 | Article 5899291
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boxes that bind the zinc finger transcription factor Sp1, which
increases TERT transcription, and E-boxes that bind both
transcriptional enhancers and repressors. TERTp lacks a TATA
box but it contains binding sites for many different transcription
factors (7).

Another major component of the telomerase complex is
telomerase RNA component (TERC). It is an RNA sequence,
which functions as a template for synthesis of telomeres by
TERT. These two main components of telomerase are
accompanied by a host of auxiliary proteins, including dyskerin
(DKC1), telomerase Cajal body protein 1 (TCAB1), non-histone
chromosome protein 2 (NHP2), nucleolar protein 10 (NOP10),
glycine arginine rich 1 (GAR1), heat shock protein 90 (HSP90) and
serine and arginine rich splicing factor 11 (SRSF11) (8). This
complex is essential for maintaining telomere homeostasis, which
is crucial in regulation of aging and cancer development (9).

Over 80% of tumors adopt various regulatory strategies, known
as telomere maintenance mechanisms (TMMs). They maintain
telomere length by reactivating telomerase, and therefore are
known as TERT canonical functions (10). Individual TMMs are
specific for cancer type, tissue histotype, and cell lines. The most
importantTMMsare (1)TERTgenerearrangementsandTERTand
TERC gene amplification, (2) TERTp somatic mutations, (3)
epigenetic alterations, (4) transcription factor binding, (5)
polymorphic variants within TERT gene body and TERTp, and
Frontiers in Immunology | www.frontiersin.org 2
(6) alternative splicing (Figure 1). Eachof thesemechanismswill be
described in detail in subsequent sections of this manuscript.

Approximately 10–15% of tumor cells acquire immortality
through a telomerase-independent mechanism, namely
alternative lengthening of telomeres (ALT) (11). On the other
hand, the so called non-defined telomere maintenance
mechanism (NDTMM) are activated when both telomerase (or
TERT) expression and ALT are absent (10, 12). While telomere
lengthening is considered amajor functionof telomerase, it can also
modulate expression of various genes, such as nuclear factor k-
light-chain-enhancer of activated B cells (NF-kB) and Wnt/b-
catenin signaling pathway genes (13, 14). Such alternative, non-
telomere-related roles are known as non-canonical functions of
TERT. They will be presented in the last two chapters of this review
(Figure 1), together with potential consequences of TERT
telomere-unrelated functions for the development of anti-cancer
strategies andapplicationsofTERTasapotential therapeutic target.
CHROMOSOMAL REARRANGEMENTS

Chromosomal rearrangements are a type of mutation that results
in a change in chromosome structure. They may involve
duplications, amplifications, insertions, interchromosomal
changes, inverted orientations, or deletions (15). A concept
FIGURE 1 | Telomerase reverse transcriptase (TERT) is the most important telomerase subunit and plays a major role in telomerase activity and in other telomere-
unrelated processes in cancer development. Telomerase is a complex reverse transcriptase that comprises, besides TERT, an RNA template for telomere repeats
(TERC), and a group of proteins called shelterin complex (upper panel). While the primary function of TERT is telomere lengthening (canonical function, lower panel,
on the right), there are also other, telomere-unrelated functions (non-canonical functions, lower panel, on the left).
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associated with chromosomal rearrangements is copy number
variation (CNV). CNV describes the fact that some sections of
the genome may be repeated and the number of these repeats
may be different between individuals. CNVs involve 50 bp to
over 1,000,000 bp fragments of gene regulatory regions (16).
They are associated with gene expression and phenotype by
affecting gene copy number (17). Chromosomal rearrangements
may affect TERT gene copy number and are a known TMM.
They may involve insertion of active enhancers close to the TERT
gene and increasing TERT expression. A common process is TERT
amplification, which can arise from telomere dysfunction (18). It
results from a dysfunctional telomere, promoting fusion of
chromosome ends, and subsequently forming a dicentric
chromosome (19). Several studies showed that chromosomal
rearrangements at the TERT locus may be associated with cancer
development and aswas observed, e.g., in the case of neuroblastoma
(20–22). Furthermore, a major study specifically focusing onTERT
gene amplification found it to occur in many cancers, such as
esophageal, ovarian cancer, and squamous cell carcinoma (12). In
addition, other authors found telomerase activity to be the highest
in tumors with TERT amplification (22, 23). Gay-Bellile et al.
observed increased number of TERT gene copies in breast cancer
cells, and upregulation of TERT gene was associated with worse
prognosis in breast cancer, thyroid carcinoma, and lung
adenocarcinoma (24). This suggests that TERT rearrangement
could be a critical step in cancer development.
TERT PROMOTER HOT-SPOT
MUTATIONS

TERT somatic mutations are the most common non-coding
mutations in human cancer cells. While they are documented
to occur in the coding region, they are far more common in the
promoter region. Some TERTp mutations were shown to affect
TERT expression, telomere length and telomerase activity by
abrogating telomerase silencing (25). TERTp mutations occur in
specific clinical and phenotypic subtypes of various cancers and
cell lines, and recurrent mutations have been identified in 19% of
cancers (26). In cancer cells, TERTp mutations are generally
associated with higher TERT expression level.

The two most common TERTpmutations are C>T transitions,
located at -124 bp, and -146 bp from the transcription start site
(TSS). They are also referred to as C228T and C250T, respectively
(27, 28). These mutations result in an 11 bp nucleotide fragment
providing a new consensus binding site for E-twenty-six (ETS)
transcription factors (29). Many other somatic mutations were
detected that occur in theTERTp in cancer, although less frequently
than C228T and C250T and they also may contribute to increased
TERT transcription. A group of CC>TT substitutions, located at
−124/−125 and −138/−139 bp relative to the TSS, result in an ETS
binding site in skin cancers (30). In melanoma patients, the −138/
−139 mutation correlated withmore adverse survival (31). In basal
cell carcinoma,Maturo et al. observed additionalTERTp alterations
other than the recurrent TERTp hotspot mutations (32).

TERTp mutations were found in several tumor types with
different frequencies. Generally, two types of tumors can be
Frontiers in Immunology | www.frontiersin.org 3
distinguished: those with low and high proliferative potential
(33). Tumors with high levels of TERTp mutation, such as,
melanoma, glioblastoma, bladder cancer or hepatocellular
carcinoma (somatic mutation levels of 64–80%, ~84%, ~65%, and
32–45%, respectively) are characterized by low proliferative
potential (28, 33–36). Tumors with low or undetectable level of
TERTp mutation have high proliferative potential, e.g., breast
cancer 0.9% (37), testicular cancer 3% (38), intestinal cancer (34)
and acute myeloid leukemia and non-Hodgkin’s lymphoma (39,
40). It is important tonote thatTERTpmutationwas not detected in
hematological cell lines cultured in vitro (41), aswell as in a group of
patients with hematological malignances, with the exception of
mantle cell lymphoma patients (42). In the case of cancers with low
proliferative potential, TERTp mutation is considered a late
tumorigenic event (33). In some other cancers, e.g., basal cell
carcinoma, TERTp mutations may appear as a result of
environmental factors, such as contact with carcinogens, in which
case it is considered as an early tumorigenic event (10, 26). TERTp
mutations are thought tocontribute to tumorigenesis in twodistinct
phases. In the first phase, TERTp mutations heal the shortest
telomeres, thus extending life span of cells containing them, but
they fail to avert general telomere shortening. This leads to the
second phase, where the critically short telomeres result in genomic
instability, causing further increase in telomerase expressionneeded
for continued cell proliferation (43).

Another interesting aspect of TERTp mutation is the possible
cooperationwithmutations, such as those in genes coding for BRAF,
FGFR3, and IDH (44–48). BRAF is a serine/threonine kinase and its
mutation results in activationof themitogen-activatedprotein kinase
(MAPK) and/or phosphatidylinositol 3-kinase–serine threonine
protein kinase (PI3K-AKT) pathways. This leads to upregulation of
theETS systemand inductionofTERT expression.Out of a variety of
BRAFmutations,V600E (a glutamic acid to valine substitution) is the
most frequent. This mutation leads to increased GABPA-GABPB
complex formation and activation of TERT expression (29, 49). Co-
existence of TERTp mutation and V600E is associated with poor
prognosis in patients with thyroid cancer, particularly papillary
thyroid cancer (8, 50). Fibroblast growth factor receptor 3 (FGFR3)
is another example of genetic alterations interacting with TERTp. Its
mutation is well described in urothelial carcinoma (51). FGFR3
belongs to the tyrosine kinase receptor family and stimulates the
RAS-mitogen-activated protein kinase and PI3K-AKT pathways.
TERTp and FGFR3mutations are more often present together than
alone (47).Co-occurrenceof thesemutationsmaysupport creationof
tumors with poor prognosis (10). Additionally, tumors with TERTp
and/or FGFR3mutations had shorter telomeres when compared to
tumors without these mutations (47). Malignant gliomas, acute
myeloid leukemia and cholangiocarcinoma, are often associated
with mutations in isocitrate dehydrogenase 1 and/or 2 (IDH1 and/
or IDH2) (52). These somaticmutations occur at arginine residues of
the IDHactive site (namely, IDH1R132H, IDH2R140Q, and IDH2R172K)
(53). According toDiplas et al.,TERTp and IDHmutation status can
be used together to classify over 80% of all diffuse gliomas (54). A
previous study suggested that presence of TERTp mutation and
additional 1p/19q co-deletion and also mutation within the IDH
gene led to a better response to chemotherapy and better outcome in
glioma patients (55).
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In conclusion, TERTpmutation status, alone or in combination
with mutations in other genes, can be used to characterize
distinguish various types of tumors, as well as predict prognosis
andoutcome.WhileTERTpmutationstatus appears to significantly
impact cancer development, some cancers, such as prostate, lung,
breast, colorectal, and hematological malignancies display
telomerase activity, even though they contain few TERTp
mutations (24, 39, 40, 56, 57). Consequently, other undefined or
epigeneticmechanisms ofTERT-upregulating are expected to exist.
EPIGENETIC MODIFICATIONS

DNA Methylation
Epigenetics describes stable, and possibly heritable changes in
activity and expression, which are not associated with any
underlying changes in DNA sequence (58). DNA methylation is a
common epigenetic mechanism that is essential for regulation of
gene expression. It occurs primarily at non-coding regions of DNA
characterized by high frequency of CG repeats. Such regions, called
CpG islands, aremost commonly found ingenepromoters. 60–70%
of genes contain promoters with these CpG islands (59).

Tissue-specific DNA hypo- or hypermethylation is considered
to be important in regulation of gene expression during
development. Such tissue-specific DNA hypermethylation is
present at promoters rich in CpG islands (60, 61). Promoter
DNA methylation is ubiquitous in human cells and is one of the
most commonly encountered mechanisms of gene expression
regulation. Promoter methylation generally causes gene silencing
by interfering with transcription factor bindings sites. Therefore,
promoters of actively transcribed genes are normally unmethylated
(62).However,DNAhypermethylationmay occur at introns/exons
(rather than promoters) of actively transcribed genes, as well as at
intra- and intergenic enhancers (63). Having an important role in
tissue-specific regulation of transcription, DNA hypermethylation
may be considered as a marker for a broad variety of diseases and
cancers (64, 65).

Promotermethylation is also amajor regulatory element ofTERT
expression, correlating bothwithTERTmRNA levels and telomerase
activity (66). An approximately 300 bp part of TERTp situated on
either site of the TSS is unmethylated in actively transcribed TERT.
However, Castelo-Branco et al. and, more recently, Lee et al.
documented that hypermethylation of the TERT gene correlates
with telomerase activity in different types of cancers (67–69). A study
on patients with pediatric brain tumors brought to light a new group
of 5 CpG islands located upstream of the TSS, which were
hypermethylated and correlated with TERT expression. On the
other hand, healthy tissues without TERT expression did not have
this hypermethylation (59). This pattern is counter to the generally
established functions of DNAmethylation (63). Lee et al. discovered
that it is due to presence of a new, larger region known as the TERT
Hypermethylated Oncological Region (THOR). It is located distal to
the TSS and is composed of 52 CpG islands (69, 70). Thismeans that
there are two regions of TERTp regarding methylation status in
telomerase-positive cells: the unmethylated proximal TERT core
promoter, which is where transcription factors are usually bound,
Frontiers in Immunology | www.frontiersin.org 4
and the hypermethylated THOR, located further away from the core
promoter (67, 69, 71) (Figure 2). The unusual nature of THOR
methylation is due to it acting as a transcription repressor in its
unmethylated state. Recently, several authors documented an
association between THOR hypermethylation and cancer
progression coupled with TERT upregulation in pancreatic and
gastric cancers (72, 73). Interestingly, both THOR and the TERTp
region proximal to TSSweremostly unmethylated in normal thyroid
tissue (49).

RegardingTERTpmutation status, it appears that it does interfere
with effects of THOR hypermethylation in cancers where TERTp
mutation is common. Furthermore, presence of both of these factors
may have a synergistic effect on TERT expression. In a study on
urothelial bladder cancer patients, co-occurrence of THOR
hypermethylation and TERTp mutation was a marker of higher
risk of disease recurrence and progression (74). Likewise, a study on
melanoma patients showed a similar effect on reduced recurrence-
free survival (75). These and other examples show that TERTp
mutation coupled with THOR hypermethylation is a better marker
of disease progression than TERTp mutation alone. Nevertheless, it
should be noted that THOR hypermethylation does not associate
with progression in a small group of cancers such as esophageal
cancer, meningioma or pituitary adenoma (76).

Another interesting issue is the possible interplay between
TERTp mutation, methylation, and histone modifications, which
constitute yet another epigenetic mechanism affecting chromatin
accessibility. A study by Stern et al. on monoallelic cancers showed
that cancers without a specific TERTp mutation at −124 from the
TSS had promoter hypermethylation, which was accompanied by
repressive histone H3K27me3 methylation, leading to gene
inactivation. They hypothesized that presence of this mutation
coupled with low TERTp methylation discourages H3K27me3
histone methylation in transcriptionally active TERT (70).
Interestingly, one study showed that TERTp hypermethylation
was present in both melanoma and normal skin cells. However,
only in melanoma cells with TERTp mutation did this
hypermethylation correspond to increased TERT expression and
chromatin accessibility (77). A further study by McKelvey et al. on
thyroid cancer cell lines heterozygous for TERTp mutation
demonstrated conclusively that TERTp methylation was allele-
specific, whereby TERTp with mutation was significantly less
methylated than wildtype promoter. Moreover, MYC, a
transcription activator, bound only to the hypomethylated
mutated TERTp, resulting in monoallelic expression (MAE) in
heterozygous cells (29). MAE is one of two TERT expression
categories as described by Huang et al., the other being biallelic
expression (BAE, both alleles transcriptionally active). These two
expression patterns appeared to be specific for many cancers,
although some cancers exhibited variation betweenMAE and BAE
in differed cell lines (34). However, a later study by Rowland et al.
showed that this simple classification into MAE and BAE-specific
cancer cell lines does not sufficiently describe the complex nature
of TERT expression. In a study conducted on a single cell-level,
they found great heterogeneity in TERT expression between
various cells, within both the cell lines described as MAE, and
those described as BAE by Huang et al. (78).
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micro-RNA
Most recent studies focus onTERT regulation at the transcriptional
level. Meanwhile, post-transcriptional regulation by microRNAs
(miRNAs), has not been expensively studied. miRNAs are a class of
small non-coding RNAs (~22–24 nucleotides) (79). miRNA
recognition sites are typically located in 3′ untranslated regions
(3′UTRs) of mRNA (Figures 1 and 2). miRNAs binding to 3’UTR
generally silences the transcript, thus reducing gene expression.
miRNAs are ubiquitous elements of gene regulation, and control
many different biological processes. In cancer, miRNAs function as
gene regulatory molecules, acting as tumor suppressors or
oncogenic drivers (18, 80).

VariousmiRNAs are knownas regulators ofTERT. In particular
let-7g-3p,miR-128,miR-133a,miR-138-5p,miR-498,miR-541-3p,
and miR-1182, downregulate expression of TERT and telomerase
activation (18, 81). Functional analyses indicated that
overexpression of miR-138-5p and miR-422a significantly inhibit
TERT expression through interaction with TERT 3’UTR in
colorectal cancer cells (79, 82). Moreover, miR-138-5p represses
TERT protein expression in human anaplastic thyroid carcinoma
and cervical cancer cells (79, 83). Likewise, miR-1182, miR-1266,
miR-532, miR-1207-5p, and miR-3064 suppress gastric, bladder,
ovarian cancer growth and invasion by binding to theTERT 3’UTR
(10, 79, 84, 85). Furthermore, miR-128 was found to control TERT
expression in HeLa and teratoma cell lines (81, 86).

miRNAs can also regulate TERT indirectly by controlling
expression of various transcription factors. Accordingly, c-MYC,
a major regulator of TERT, was regulated by miR-494 and miR-
1294 in esophageal squamous cell carcinoma and pancreatic
cancer. Additionally, c-MYC and FoxM1 were targeted by a
Frontiers in Immunology | www.frontiersin.org 5
known tumor suppressor, miR-34a, causing senescence in cells
(18). Interestingly, the study of Lassmann et al. suggested that
TERT is able to regulate miRNA levels at the early phase of
miRNA processing. They demonstrated that deletion of TERT
resulted in a decrease of most mature miRNAs (87).
TRANSCRIPTION FACTORS

Transcriptional Activators
TERTp contains binding sites for a huge number of transcriptional
activators and repressors that directly or indirectly regulate gene
expression. Multiple pathways, such as RAS/RAF/MEK/MAPK,
PI3K/Akt/mTOR, IKK/NF-kB, transforming growth factor b/
Smads, PKC, and the JAK-STAT pathway regulate TERT
expression and telomerase enzymatic activity (88). In fact, most
transcription factors have been identified as possible TERT gene
regulators, such as protein kinases, growth factors, and oncogenic
proteins. Canonical positive regulators of TERT transcription
include the oncogene c-MYC, Sp1, NF-kB, STAT family of
proteins, AP-2, and GSC. These activatory transcription factors
will be described in detail in the following section.

MYC encodes a basic helix-loop-helix leucine zipper (bHLH-
LZ) transcriptional factor called c-MYC (89, 90). TheMYC gene
family regulates expression of genes implicated in many
processes, such as proliferation, cell growth, differentiation,
self-renewal, apoptosis (91, 92). It is essential for embryonic
development and it is expressed in normal somatic cells. There
are several ways for healthy cells to control MYC levels, such as
targeted degradation by the ubiquitin-proteasome system (92).
FIGURE 2 | Mechanisms of TERT transcription regulation. The figure shows various mechanisms regulating TERT expression at the transcriptional level.
Transcription factors: activators (e.g., c-MYC, SP1, STAT3, NF-kB, and ETS), repressors (e.g., MAD, p53, and WT1), and their respective binding sites are shown.
Binding of these transcriptional agents to TERT could be controlled by DNA methylation (CpG sites) in the TERT Hypermethylation Oncological Region (THOR). Two
main hotspot mutations within TERTp, -146C > T (C250T) and -124C > T (C228T) upstream of the transcription start site (TSS) generate new E-twenty-six (ETS)
binding sites, leading to GABP recruitment and, eventually, TERT transcription. Alternatively spliced variants of TERT, which do not have telomerase activity, could be
also generated. Most tissues and organs express no or very low levels of TERT mRNA, dependent on histone markers that are correlated with passive or active
transcription in many cells. The figure also shows different miRNAs at the 3’UTR that inhibit translation of TERT.
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Chromosome translocations, gene amplification, retroviral
insertion or mutations of MYC gene are tumorigenic in mice
and correlate with development of most human cancers (93, 94).
c-MYC functions is dependent on heterodimerization with MAX
(90, 95). While MYC gene contains a transcription activation
domain, no such regulatory domain has been reported for MAX
(96). The c-MYC/MAX heterodimers can bind to specific DNA
sequences located within the core promoter region, known as
E-box motifs (5′-CACGTG-3′), thus activating various genes (90,
92). c-MYC activates telomerase by inducing expression of TERT
(90, 94). In addition, TERT is responsible for maintenance of
c-MYC levels and regulates c-MYC proteasomal degradation (97).

The core promoter of TERT also contains specificity protein 1
(Sp1) binding sites that are necessary for TERT expression. Sp1
belongs to the family of nuclear proteins called Sp/KLF
(specificity protein/Krüppel-like factor) that binds GC-
(GGGGCGGGG) and GT-(GGTGTGGGG) rich elements (98,
99). It is one of the best characterized transcriptional activators
of housekeeping genes and other TATA-less genes (89, 99). Sp1
regulates processes such as inflammation, carcinogenesis,
senescence, hormonal activation, apoptosis and angiogenesis
(98). Transcriptional activity of Sp1 is regulated by a few post-
translational modifications (glycosylation, acetylation,
phosphorylation) and by direct interaction with other proteins,
including other transcription factors, nuclear factors, oncogenes,
and tumor suppressors. Sp1-silencing completely inhibits
telomerase activity by suppressing TERT expression, leading to
apoptosis. Furthermore, mutations in Sp1 binding sites (GC‐
boxes) significantly decrease transcriptional activity of TERTp,
suggesting that Sp1 protein is involved in TERT transcription
(100). Some reports indicated that cooperation between Sp1 and
c-MYC drives cell type-specific TERT expression. This is further
substantiated by the fact that normal cells have lower levels of
Sp1 and c-MYC than cancer cells. However, Sp1 would be a weak
candidate for a biomarker of cancer‐specific TERT expression
because of its ubiquitous expression in normal cells (89, 100).

NF-kB is well known for playing a major role in inflammation,
tumorigenesis, cytokine and chemokine expression, stress regulation,
cell division and transformation (101, 102). NF-kB regulates
expression of apoptosis inhibitors. The NF-kB signaling pathway is
a master regulator of TERT activation in cancer cells. It initiates
expression of TERT by binding to either of two potential motifs in
TERTp (101). Additionally, TERT can directly regulate expression of
NF-kB-dependent genes through binding to the p65 subunit. Studies
have demonstrated that telomerase can directly regulate recruitment
to promoters of NF-kB target genes, such as those encoding
interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF‐a) that
are critical for inflammation and cancer progression (103).

The signal transducer and activator of transcription (STAT)
family of cytoplasmic proteins are direct mediators of signaling
from the extracellular environment to the nucleus (104). Seven
STAT proteins have been identified as STAT 1–4, 5A, 5B, and 6
(105–107). They are normally inactive, but can be activated by
phosphorylation. Of the seven human STAT encoding genes,
STAT3 has drawn the most interest for its association with a
wide variety of human cancers (104, 108).
Frontiers in Immunology | www.frontiersin.org 6
In addition, these proteins are able to regulate TERT
expression in tumor and normal cells (104). TERTp contains
binding sites STAT3 and is overexpressed in prostate, breast,
head, neck, and hematologic cancers, which implicates STAT3 as
an important anticancer target (105).

The adipocyte protein 2 (AP-2) family of transcription factors
contains five isoforms: AP-2a, AP-2b, AP-2g, AP-2d, and AP-2ϵ
(109, 110). They are encoded by the FABP4 gene. These isoforms
have a major role in gene regulation and have different biological
functions. They are required for morphogenesis during embryonic
development (109). AP-2b specifically binds to the TERTp and
activates telomerase in human cancer cells, but not normal cells.
Two E-box sites in a 320-bp region of TERTp (320 bp upstream of
the translationalATGsite) havebeenobserved to regulatepromoter
activity in human rhabdomyosarcoma cells (110).

A recent showed that goosecoid homebox protein (GSC) may
be a new potential activator of TERT expression (49). It is
normally involved in embryonic development and interacts
with TGF-b and Wnt/b-catenin signaling pathways, which are
implicated in tumor invasion (111). It was found to be
overexpressed and to correlate with metastasis in patients with
breast carcinoma (112), and was also associated with poor
prognosis and chemoresistance in ovarian carcinoma (111). An
analysis of TERTp areas with locally decreased methylation in
thyroid cancer cells revealed a GSC biding site. GSC is a TERT
activator and was variously expressed in both thyroid cancer and
normal thyroid cells. Additionally, GSC was overexpressed in
thyroid cancer (49).

Transcriptional Repressors
Transcriptional repressors are proteins that attach to DNA at
specific silencer sites and block transcription of nearby genes. In
the following section, we are going to briefly discuss repressors
that have been shown to downregulate TERT transcription, such
as MAD1/2, p53, WT1, CTCF, and MZF-2.

The mitotic checkpoint is a crucial mechanism in maintaining
chromosomal stability. It guarantees precise chromosome
segregation by delaying separation of replicated sister chromatids
(113, 114). Mitotic arrest deficient 1 (MAD1) is a major element of
themitotic checkpoint, and it recruits its binding partnerMAD2 to
nuclear pores (113, 115). During mitosis, MAD1 localizes to
unattached kinetochores, where it serves as a docking site for
MAD2. Kinetochore-bound MAD1–MAD2 act as a catalyst for
conformational change of free MAD2 (114, 116). MAD1
upregulation serves as a marker of poor prognosis, as it tends to
be overexpressed in cancers (116). Upregulation of MAD1 leads to
chromosomal instability and resistance tomicrotubule poisons that
are currently used as chemotherapeutic agents (116). MAD1 is
recognized as an important cellular antagonist of c-MYC(117, 118).
In addition, c-MYC andMAD1 are involved in regulation ofTERT
expression because they bind to the same promoter sites (E-box) to
activate TERT expression (119). There two E-boxes in TERTp, and
both of them constitute binding sites for c-MYC/MAX or MAD1/
MAX heterodimers (117, 120). A switch from c-MYC/MAX to
MAD1/MAX, triggers decrease inH3 andH4histone acetylation at
TERTp (119, 120).
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p53 is the best known human tumor suppressor which is a
member of a larger p53 family of tumor suppressors (121, 122).
Other than p53, this family also includes p63 and p73 (123, 124).
p53 acts primarily as an inducer of cell cycle arrest, cell
differentiation, senescence, and apoptosis in response to
numerous intrinsic and extrinsic stress signals (122, 125). It has a
major role in the control of genomic stability,DNA replication, and
DNA repair. The p53 encoding TP53 gene is mutated in
approximately 50% of human cancers. TERTp contains two p53
binding motifs (123). Several findings showed that p53 suppresses
telomerase activity by inhibiting TERT expression (125). This
inhibition may be caused indirectly, by an interaction between
Sp1 and overexpressed p53 (125, 126). Furthermore, this inhibition
ofTERT couldbepossibly independent of other p53 functions, such
as those associated with apoptosis (125).

Another protein implicated in inhibition of TERT is theWilms’
tumor 1 (WT1) tumor suppressor (125). It contains four zinc
fingers and an RNA-binding protein that directs the development
of several organs (heart, diaphragm) andgenitourinary tissues (127,
128). It is normally expressed in kidney, testes, ovaries, and spleen
(129). Most neoplasms, including lung carcinomas, renal cell
carcinoma, pediatric sarcomas, and breast, ovarian, colon,
melanoma, and pancreas cancers, and exhibit a possible
oncogenic activity of WT1 (130, 131). In addition, it is
overexpressed in most acute myeloid leukemia patients, and is
considered tobean independentmarkerofminimal residualdisease
(132). A WT1 binding site is located in TERTp (−352 upstream of
the TSS), and its mutation significantly reduced telomerase activity
andTERTmRNAexpression in 293 embryonic kidney cells but not
in HeLa cells (1, 89, 125). Additionally, WT1 inhibited TERT
transcription during differentiation. This inactivation may
influence activation of telomerase in the tumorigenesis phase.
Furthermore, WT1 binding to TERTp suppresses c-MYC level at
both protein, and mRNA level (1, 2).

CCCTC-binding factor (CTCF) is a zinc finger transcription
factor which is ubiquitously expressed in human (133). Its
binding sites are located in the first two exons of the TERT
gene, and are located in a CpG island. Earlier studies showed that
CTCF does not bind to TERT in telomerase-positive cells, which
is correlated with methylation of exon 1 in these cells (134).
Hypermethylation in this exonic region is common in most
cancers, and CTCF is considered a major TERT repressor in
normal cells.Methylation at specific CpGdinucleotides in exon 1
results in a change in secondary structure ofDNAand creation of
a four-strand structure known as G-quadruplex, which disrupts
CTCF binding (135). Interestingly, CTCF was observed not to
bind to TERT in normal thyroid tissue despite the presence of
methylation, while thyroid cancer cell lines exhibited both
partial methylation and CTCF binding (49).

The myeloid zinc finger protein (MZF)-2 is a Krüppel-like
C2H2 zinc finger protein expressed predominantly in myeloid
progenitor cells and involved in growth, differentiation, and
tumorigenesis (136). The mechanisms involved in MZF-2-
induced suppression of TERTp activity are still unclear (137).
There are multiple binding sites for MZF-2 within the TERTp
region, and upregulation of MZF-2 inhibits TERTp activity. This
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suggests a role for MZF-2 in transcriptional downregulation of
TERT (125, 137).
TERT GENE POLYMORPHISMS

Single Nucleotide Polymorphism
Single nucleotide polymorphisms (SNPs) have been described as
being associated with increased risk for developing various
cancers. They may be located both in intronic and exonic
sequences of TERT, as well as in TERTp. Some common TERT
SNPs found may modify survival and prognosis of certain
cancers. A number of studies have recently been conducted to
identify new SNP loci related to telomere length, which have
shown a relationship between the risk of disease, its severity and
the survival time in various cancers (138–140). In this section, we
will discuss four common TERT polymorphisms that may be
associated with gene expression.

Located at intron 2 of the TERT gene, rs2736100 A>C is a
important non-coding SNP (141, 142). It has been associated
with multiple cancers, especially with lung adenocarcinoma,
which is characterized by significantly increased TERT gene
expression, telomerase activity and gene copy number (143).
Other solid cancers that are associated with this SNP include
gliomas, bladder cancer, melanoma. rs2736100 has been
identified as a major predisposing factor to sporadic and
familial myeloproliferative neoplasms (MPNs), independently
of the major diagnostic and molecular MPN subtypes. The C
allele of rs2736100 and JAK2 46/1(GGCC) haplotype are major
factors predisposing to MPN (141–143). Interestingly, the two
alleles of rs2736100 seem to be associated with different types of
diseases. While the C allele is primarily associated with cancers,
the A allele, which is linked to shorter telomeres, is generally
associated with predisposition to degenerative diseases (144).
Furthermore, rs2736100 C is linked to increased blood cell count
in the Japanese population (145).

Another TERT SNP, rs2853669 A>G is located in the TERTp
region. It obstructs an ETS2 binding site, located close to an E-
box. Previous studies showed that TERTp mutations creating a
putative binding site for ETS, resulted in TERT upregulation and
increased telomerase activity, while mutations at the ETS2
binding site suppressed c-MYC binding to the E-box (146,
147). Studies on rs2853669 showed that it is significantly
associated with poor survival and increased cancer risk rate in
hepatocellular carcinoma patients (146). In contrast, it was also
observed to correlate with improved survival in patients with
clear cell renal cell carcinoma, melanoma and glioblastoma
(148). The C variant of this functional polymorphism results in
decreased telomerase activity. Several studies suggest that
rs2853669, in the presence of certain TERTp mutations, may
also affect development of cancers (149). It was reported that it
could influence telomere length and telomerase activity (150,
151). Furthermore, a study by Rachakonda et al. demonstrated
that, in patients with urothelial bladder carcinoma, TERT
rs2853669 may correlate with survival, prognosis, and tumor
recurrence (152).
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The two SNPs described above were located in non-coding
regions of TERT, there are however also SNPs situated in exonic
regions, of which rs2736098 G>A is a notable example. It is a
synonymous A305A substitution located in exon 2, and was
found to correlate with telomere length (153). Genotype GG was
found to be associated with longer telomeres and decreased
cancer susceptibility in patients with renal cell carcinoma
(154). In another study, Xiao et al. showed that Chinese males
harboring allele rs2736098 A had a greater risk of developing
lung cancer than those with allele G (155). Allele A was also
found to be significantly associated with risk of bladder cancer in
the North Indian population (156). Further studies showed that
it may impact risk for many other cancers, such as breast,
esophageal, prostate, and basal cell carcinoma (153, 157).

Variable Number of Tandem
Repeats Polymorphism
It was demonstrated that TERT may be regulated via a variable
number of tandem repeats (VNTR) polymorphism named
MNS16A (Figure 1). It is located upstream of promoter region of
an antisense TERT transcript. Depending on the number tandem
repeats, promoter activity is affected differently. There are two
MNS16A variant alleles: short (S) and long (L). The L allele
correlates with higher promoter activity in the antisense strand
and increased expression of the antisense TERT transcript. This
increased expression of antisense TERT leads to silencing of
functional TERT (158). As a result, the S allele is associated with
higher telomerase activity, while LL homozygotes have lower
telomerase activity (158). Our previous work showed that the S
variant was more frequent in non-Hodgkin’s B-cell lymphoma
patients how did not respond to treatment, as well as those with
intermediate/high International Prognostic Index (159). In
contrast, the S variant was less frequent in chronic lymphocytic
leukemia patients with high disease stage (160).

ALTERNATIVE SPLICING

TERT regulation is a multifarious process, which involves not
only the transcriptional mechanisms described in the previous
sections, but also posttranscriptional ones. This includes pre-
mRNA alternative splicing of the TERT gene (161–163). There as
many as 22 potential alternative splicing sites in the TERT gene,
but the function of many of them is unclear (164–168). One of
the most commonly studied splicing sites are deletions at two
sites, a and b (Figure 2). The b splice site results in a major
deletion (182 bp) and creates a non-functional, truncated
protein. The a splice site generates a smaller (36 bp) deletion,
which produces an impaired protein. Both of these splice sites
result in TERT proteins that are incapable of telomere elongation
(169–172). In many cancers, the full length TERT transcript
(a+b+) correlated with tumor development and shorter survival
in patients (173). However, the a variant alone is known to cause
decreased telomerase activity and shorter telomeres, while the b
splice variant was reported to not only inhibit telomerase activity
but also the ability of cancer cells to induce apoptosis (174, 175).
Another splice TERT variant may be generated by a deletion of
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exons 4–13, resulting in an inactive protein lacking its catalytic
domain. This deletion was observed in both telomerase-negative
and -positive cells, and was associated with increased cell
proliferation (6).
INVOLVEMENT OF TERT IN NON-
TELOMERE-RELATED MECHANISMS

In the previous sections, we described TERT regulation and
telomerase reactivation mechanisms that are involved in
telomere maintenance. Telomere-related functions of TERT,
also known as canonical, may likewise entail prevention of
chromosome fusions (176, 177). However, telomerase also has
non-canonical (telomere-independent) roles (Figure 1). These
roles can be grouped into two broad categories: a) involving
telomerase activity but not telomere elongation and b) involving
neither telomere elongation nor telomerase activity (177). The
telomere-independent roles contribute to the regulation of
metabolic mechanisms, epigenetic regulation of chromatin,
stress response, RNA silencing, signal transduction pathways
(Wnt and c-MYC signaling pathways), enhanced mitochondrial
function, cell adhesion, and migration (176, 178, 179).

TERT is found in cytoplasm and mitochondria, alongside its
usual nuclear localization (176, 180) (Figure 1). In humans, mice
and rats, TERT contains two specific targeting sequences that
regulate its transport in and out of organelles: a nuclear targeting
signal sequence, and a mitochondrial targeting sequence (181).
In inactive CD4+ lymphocytes, TERT is mainly cytoplasmic but
after activation it is transported to the nucleus in a process
controlled by the kinase Akt (182). Additionally, shuttling TERT
out of the nucleus may be promoted by oxidative stress, and this
mechanism is dependent on phosphorylation of tyrosine 707 by
Src kinase. Translocation of TERT into mitochondria improves
mitochondrial potential which eventually leading to cancer cell
survival (183). The extra-nuclear TERT functionalities are
generally thought of as non-telomere related, i.e. non-
canonical, and will be described below (179).

Cytoplasmic TERT exhibits many functions, including
interacting with signaling pathways such as Wnt/b-catenin
signaling. In addition, TERT binds to stress particles under
non-stress conditions, and in lymphocytes, it is stored outside
the nucleus without stimulation. TERT may also form a part of a
TERT–NF-kB subunit p65 complex, which can move from the
cytoplasm to the nucleus in multiple myeloma cells, upon TNF‐a
induction (184). NF-kB, in turn, controls expression of a variety
of genes involved in inflammation, immune responses, and cell
differentiation (179). Zhou et al. demonstrated that the
endoplasmic reticulum transiently activates the expression of
TERT in cancer cell lines (185).

As much as 10–20% of total TERT is localized in mitochondria
(176, 179). Therein, TERT binds tomitochondrial DNA (mtDNA)
and improves respiratory chain activity, protectingmitochondrion
from environmental damage and decreasing reactive oxygen
species (mtROS) production (180, 186). mtROS production leads
tomitochondrial damage and telomere shortening. Neutralization
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ofmtROSdoes not recover themitochondrial function but reduces
telomere shortening (187). Additionally, telomere and
mitochondrial disfunction is mediated by p53, which induces
growth arrest, senescence and apoptosis in cells (188). TERT
import depends on membrane potential and it is located close to
the inner membrane (181). TERT binds to mtDNA in the region
coding for NADH ubiquinone oxidoreductase subunits 1 (ND1)
and 2 (ND2) and protects mtDNA from environmental damage
(181). Mitochondrial TERT plays a role in decreasing apoptosis
and improving mitochondrial membrane potential. Furthermore,
it has unusual DNA- and RNA-dependent RNA polymerase
activities, upon interaction with tRNAs (189). TERT can also
interact with mitochondrial RNA processing endoribonuclease
(RMRP) and use the RNA-dependent RNA polymerase to
synthesize dsRNA. Mutations in RMRP can interfere with
RMRP-TERT binding, contributing to pleiotropic syndrome
cartilage–hair hypoplasia (190).
TERT AS A POTENTIAL THERAPEUTIC
TARGET

The unique feature of telomerase is its low or nonexistent expression
in somatic cells, but overexpression in most cancer cells (191). Thus,
telomerase and other telomere components offer a highly attractive
diagnostic and prognostic biomarker of cancer and a target for
development of therapeutics. Several strategies have been devised
to target telomerase functions: telomerase inhibition, telomerase
peptide vaccines, and suicide gene therapy. Epigenetic processes
were suggested as another promising target for therapeutic
purposes (192). Some of these are already used in treatment of
patients as part of clinical trials (193).

TERT inhibition has been regarded as a promising
therapeutic strategy, as earlier in vitro studies showed that
TERT silencing cell proliferation (194, 195). An early approach
was to design compounds that would interact with DNA at the 3’
overhang, stabilizing telomeric G-quadruplex secondary
structures, and thus blocking telomerase access to DNA.
Telomestatin, BRACO-19, RHPS4, TMPyP4 are some of the
most commonly studied G-quadruplex binding proteins (191,
196, 197). Telomestatin (OBP-301) is a natural product isolated
from Streptomyces anulatus (198). The primary mechanism of
telomestatin action involves a highly specific interaction with the
G-quadruplex to stabilize its structure (199). These DNA-
binding compounds are now less popular due to discovery of
better molecular strategies, such as targeting the TERT active site
directly. Studies on such inhibitors led to discovery of 2-[[(E)-3-
naphthalen-2-ylbut-2-enoyl]amino]benzoic acid (BIBR1532),
which inhibits telomerase by binding non-competitively to the
TERT active site (197, 200). This binding leads to increased
oxidative stress and decreased nitrogen monoxide bioavailability
in favor of H2O2. However, BIBR1532 has not yet progressed to
clinical tests (201). Aside from synthetic compound, various
naturally occurring compounds, such as allicin (from garlic),
curcumin (from turmeric), silibinin (from thistle), and
epigallocathechin gallate (EGCG, from tea) were found to have
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telomerase inhibitory properties (202). A synthetic, more stable
derivative of EGCG, MST-312, was shown to inhibit telomerase
in various cancer, although its mechanism of action remains
unknown (203–205).

Some peptide vaccines can possibly target the telomerase active
site (199). GV1001 (KAEL-GemVax Co. Ltd., Gangnam-gu Seoul,
Republic of Korea) is the only such vaccine to enter clinical trials
(206). Its structure is based onapeptide sequence fromTERTactive
site and it capable of binding multiple HLA class II molecules. It
functions by stimulating tumor-reactive CD8+ and CD4+ T-cell
immunity specific for TERT (199, 207, 208). GV1001 is used in
treatment of patients with advanced stage melanoma, lung,
hepatocellular carcinoma and pancreatic cancer (196). Two other
TERT-based peptide vaccines, p540 and p675were also observed to
elicit TERT-specific cytotoxic T cell HLA-A*02:01- restricted
immunity (208, 209). Other TERT-based vaccines are composed
of more than one separate peptide sequence. An example of such a
vaccine is GX301, composed of four peptides. This multi-peptide
character means that it recognizes more HLA haplotypes, binding
to both class I and II HLA molecules (210). GX301 is currently
(October 2020) inphase II of a clinical trial onpatientswithprostate
cancer (211). GRNVAC1 is a dendritic cell vaccine, which was
created by transfecting dendritic cells withmRNAencodingTERT-
chimeric protein, and then returning the transfected cells to the
patient (196). These cells would then target telomerase-expressing
tumor cells. The clinical trial is in phase I/II, and the vaccine is
currently used in treatment of patients with metastatic prostate
cancer (196, 207).

Another strategy are the suicide gene therapies. They include
oncolytic virotherapy, the predominantly used strategy to treat
cancer, which has potential to specifically lyse the tumor, and not
healthy cells. This approach involves adenoviruses replicating
selectively in cancer cells, and subsequently killing them (212).
This viral system relies on the highly active TERC/TERT
promoter controlling expression of a bacterial protein
nitroreductase. Neither this nor any other suicide gene therapy
has entered into clinical trials (193).

Recent studies increasingly suggest that epigenetic
mechanisms may be targeted in new therapeutic strategies.
Chidamide, an inhibitor of the enzyme histone deacetylase,
was shown to decrease telomerase expression through miR-
129-3p up-regulation in non-small cell lung cancer cells. This
leads to subsequent ROS accumulation and subsequent cell cycle
arrest (213). Epigenetic mechanisms may also be exploited in
potential therapies using personalized approach. A study on
effects of all-trans retinoic acid (ATRA) in treatment of
ovarian carcinoma patients showed that the efficacy of therapy
correlated inversely with methylation level of TERTp. This was of
particular interest in a large subgroup of serous ovarian
carcinoma patients, who had hypomethylated TERTp, and
could therefore be treated effectively with ATRA (214).

As shown by the examples described above, telomerase is an
attractive target for cancer immunotherapy. The main advantage
of TERT is its high cancer-specific expression. Results from clinical
trials have been encouraging, because of the safety and good
tolerability of telomerase inhibitors (215). As a final point, it
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should be noted that using just one type immunotherapy may not
suffice to eliminate cancer cells. Therefore, new studies should
focus on strategies integrating various types of therapies (216).
SUMMARY

TERT is normally actively transcribed only in early embryonic
development and in cells with high proliferative potential, while it is
inactive in most somatic cells in adults. However, in most cancers,
TERT undergoes reactivation, and by extending telomeres (the
canonical function of TERT) it contributes to cancer formation and
progression. There are many regulatory mechanisms involved in
telomerase reactivationandadjustmentofTERT expression, among
whichTERTpmutation is perhaps themost important.Othermajor
TERT regulation mechanisms (also known as telomere
maintenance mechanisms) are: chromosome rearrangements,
methylation, miRNA interference, binding of transcription
factors, genetic polymorphism, and alternative splicing. Some of
thesemechanismsmay interactwitheachother, havinga synergistic
effect on TERT expression. Aside from the better-known telomere
lengthening function, TERT also has many secondary, telomere-
independent roles (non-canonical functions of TERT). Taking in to
account its major importance in cancer, TERT has become a target
of various therapeutic strategies in cancer treatment and continues
to be an interesting object of research.

The following features of TERT described in this manuscript
can be highlighted:

• TERT is a functional catalytic protein subunit of telomerase,
which lengthens telomeres by adding short DNA repeats,
consequently averting chromosomal instability;

• Its regulation is a multifarious process where both
transcriptional and posttranscriptional mechanisms are
involved;
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• TERT is also a major component of various oncogenic
signaling pathways, and its overexpression often contributes
to tumorigenesis;

• TERT gene is often overexpressed in cancers, and this
overexpression can be induced by a variety of mechanisms,
such as: TERT gene amplification, TERT gene polymorphism,
TERTp mutation and methylation, and miRNA interference,
alternative splicing of the TERT;

• Aside from its primary nuclear localization, TERT can also be
transported to cytoplasm and mitochondria;

• It has many non-canonical, i.e. telomere-unrelated, functions
these include: interaction with signaling pathways, stress
protection, regulation of chromatin structure, binding to
and protection of mitochondrial DNA;

• TERT and its gene may also act as an attractive target for
therapeutic interventions with a diagnostic and prognostic
impact.
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Copyright © 2020 Dratwa,Wysoczanśka, Łacina, Kubik and Bogunia-Kubik. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
originalpublication in this journal is cited, inaccordancewithacceptedacademicpractice.
No use, distribution or reproduction is permittedwhich does not complywith these terms.
November 2020 | Volume 11 | Article 589929

https://doi.org/10.1186/s13048-019-0536-y
https://doi.org/10.1016/j.drudis.2019.05.015
https://doi.org/10.3390/ijms20081823
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	TERT—Regulation and Roles in Cancer Formation
	Introduction
	Chromosomal Rearrangements
	TERT Promoter Hot-Spot Mutations
	Epigenetic Modifications
	DNA Methylation
	micro-RNA

	Transcription Factors
	Transcriptional Activators
	Transcriptional Repressors

	TERT Gene Polymorphisms
	Single Nucleotide Polymorphism
	Variable Number of Tandem Repeats Polymorphism

	Alternative Splicing
	Involvement of TERT in Non-Telomere-Related Mechanisms
	TERT as a Potential Therapeutic Target
	Summary
	Author Contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


