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There is mounting evidence that members of the human microbiome are highly associated
with a wide variety of cancer types. Among oral cancers, oral squamous cell carcinoma
(OSCC) is the most prevalent and most commonly studied, and it is the most common
malignancy of the head and neck worldwide. However, there is a void regarding the role
that the oral microbiome may play in OSCC. Previous studies have not consistently found
a characteristic oral microbiome composition associated with OSCC. Although a direct
causality has not been proven, individual members of the oral microbiome are capable of
promoting various tumorigenic functions related to cancer development. Two prominent
oral pathogens, Porphyromonas gingivalis, and Fusobacterium nucleatum can promote
tumor progression in mice. P. gingivalis infection has been associated with oro-digestive
cancer, increased oral cancer invasion, and proliferation of oral cancer stem cells. The
microbiome can influence the evolution of the disease by directly interacting with the
human body and significantly altering the response and toxicity to various forms of cancer
therapy. Recent studies have shown an association of certain phylogenetic groups with
the immunotherapy treatment outcomes of certain tumors. On the other side of the coin,
recently it has been a resurgence in interest on the potential use of bacteria to cure cancer.
These kinds of treatments were used in the late nineteenth and early twentieth centuries as
the first line of defense against cancer in some hospitals but later displaced by other types
of treatments such as radiotherapy. Currently, organisms such as Salmonella typhimurium
and Clostridium spp. have been used for targeted strategies as potential vectors to treat
cancer. In this review, we briefly summarize our current knowledge of the role of the oral
microbiome, focusing on its bacterial fraction, in cancer in general and in OSCC more
precisely, and a brief description of the potential use of bacteria to target tumors.

Keywords: oral microbiome, cancer, oral squamous cell carcinoma, Fusobacterium nucleatum, Porphyromonas
gingivalis, immunotherapy, bacteria-mediated tumor therapy
THE HUMAN MICROBIOME AND CANCER. AN OVERVIEW

About 30 trillion bacterial cells are living in or on every human. That is around one bacterium for
each cell in the human body (1). These microorganisms are on the whole known as the microbiome.
Since the completion of the Human Microbiome Project (2), we have witnessed an increased
interest in the role that the human microbiome plays in human health, many studies have linked
changes in microbial communities to systemic conditions such as allergies, diabetes, inflammatory
bowel disease, and atherosclerosis (3–7). Among the systemic conditions influenced by the
microbiome, cancer has not been an exception. We have learned that chronic infections
org October 2020 | Volume 11 | Article 5910881
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contribute to carcinogenesis, with approximately 13% of the
global cancer burden being directly attributable to infectious
agents (8).

Many viruses promote cancer through well-described genetic
mechanisms. Around 10–15% of human cancers worldwide are
caused by seven human viruses, which include Epstein-Bar Virus
(EBV), Hepatitis B Virus (HBV), Human T-lymphotropic virus-I
(HTLV-I), Human papillomaviruses (HPV), Hepatitis C virus
(HCV), Kaposi’s sarcoma herpesvirus (KSHV) and Merkel cell
polyomavirus (MCV) (9). However, the first evidence that
bacteria were directly involved in cancer development did not
come until the 1980s with the work of Marshall andWarren (10).
When they presented their results, entrenched was the belief that
lifestyle caused ulcers that it was difficult for them to convince
the scientific world of Helicobacter pylori’s role in gastric cancer
(Figure 1). To provide even more conclusive evidence, in 1985,
Marshall deliberately infected himself with the bacterium and
established his stomach illness. Since then, it has been firmly
proven by many researchers worldwide thatH. pylori cause more
than 90% of duodenal ulcers and up to 80% of gastric ulcers, and
has been classified as a class I carcinogen by the World Health
Organization due to its ability to promote stomach cancer after
chronic infection (11–13). Disease-promoting and cancer-
promoting effects of pathogens often depend on virulence
factors. In H. pylori, strains expressing the virulence factors
cytotoxin associated gene A (CagA) or vacuolating cytotoxin A
(VacA), exemplify the role of virulence factors by increasing
inflammation, and cancer rates (14).

An emerging concept in cancer biology implicates the
microbiome as an influential environmental factor modulating
the carcinogenic process. The idea that inflammation promotes
carcinogenesis was first postulated more than 150 years ago by
the German pathologist Virchow (15). The link between chronic
inflammation and cancer is now well established (16–18). This
FIGURE 1 | Timeline: Some significant discoveries and events in cancer microbiome
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association has recently experienced a renewed interest with the
recognition that members of the human microbiome can be
responsible for the chronic inflammation observed in a wide
variety of cancers (19). Increasing evidence shows the association
of changes in the humanmicrobiome with certain types of cancer
(20–22). Studies in germ-free animals have revealed evidence for
tumor-promoting effects of the microbiome in spontaneous,
genetically-induced, and carcinogen-induced cancers in various
organs (23).

There is strong epidemiological evidence that other bacterial
species are associated with cancer development, most likely
induced by creating a pro-inflammatory micro-environment
(24) or suppressing the immune response (25). Among the
species of bacteria that have been directly linked to the
development of cancer is Salmonella enterica subsp. enterica
sv. Typhi (S. Typhi) and gallbladder cancer (26–28),
Streptococcus bovis and colon cancer (29–31), and Chlamydia
pneumoniae with lung cancer (32–36). The most persuasive
epidemiological evidence of bacterial oncogenic potential, aside
from H. pylori, concerns S. Typhi. However, the evidence for S.
bovis and C. pneumoniae and Fusobacterium nucleatum is less
conclusive, a meta-analysis on the association of those organisms
with increased risk of cancer have shown either different or weak
associations (33, 37–42).

Although gallbladder carcinoma (GBC) is rare in western
countries, there is a high incidence in countries with endemic S.
Typhi infections such as South America and parts of Africa and
Asia, particularly India and Pakistan (43). The first
epidemiological association was found by Welton et al. in
1979. In that paper, they analyzed 471 deceased typhoid
carriers, registered by the New York City Health Department
between 1922 and 1975, and matched with 942 controls for sex,
age at death, year of death, the borough the carrier died, and
where they were born. The results show that chronic typhoid
research.
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carriers die of hepatobiliary cancer six times more often than
the matched controls (44). Two more recent meta-analyses
confirmed these initial results. In the first study by Koshiol
et al., they performed a case-control and a meta-analysis of
more than 1,000 GBC cases, and in both cases, they found a
positive association between S. Typhi and GBC (45). In the
second meta-analysis by Nagaraja and Eslick, they selected 17
studies for their analysis, most of them from India and China.
The highest incidence of gallbladder cancer (GBC) occurs in
India, contributing to about 10% of the global GBC cases (46).
When Nagaraja and Eslick performed a subgroup analysis
according to region, they found a significant association
between S. Typhi carrier state and carcinoma of the
gallbladder based on detection methods of S. Typhi antibody
levels and culture (47). A possible mechanism has been
proposed that explains the link between gallbladder
carcinoma and infection by S. Typhi. In predispose mice,
organoids and tissue culture with mutations in TP53 (tumor
suppressor gene), and enhanced c-MYC (oncogenes)
expression translocated bacterial effector molecules SopE,
SopE2, SopB (Salmonella outer proteins), and SptP
(Salmonella protein tyrosine phosphatase), from the
Salmonella pathogenicity island 2 (SPI-2), activate the protein
kinase B (Akt), or MAPK inhibitors, prevented mouse
embryonic fibroblast transformation (48).

The previous examples refer to the link between specific
organisms and carcinogenesis; however, microbes that trigger
transformation events in host cells are rare. It has been
demonstrated that in some cases, the tumorigenic process is
not the result of the activities of a specific organism but rather the
result of an instability in the composition of the bacterial
communities or dysbiosis, often associated with inflammatory
disorders such as colitis or periodontal disease. In mouse models,
it has been shown that a dysbiotic community can lead to the
development of colorectal cancer (49, 50).

The shift from a eubiotic community, with low cancer risk, to
a dysbiotic community, with increased cancer risk, is the result of
changes in environmental conditions and associated with
metabolic responses in the host that modulate the progression
of cancer (51). Dysbiosis of the oral microbiome could influence
cancer outcomes by different mechanisms. Two common
mechanisms that could have severe implications in the
development of the disease are chronic inflammation and the
synthesis of metabolites that could induce mutations (52).

The Oral Microbiome and Cancer
There were reports of a correlation between periodontitis and
leukemia as early as the late 1940s early 1950s (53, 54). Since
those pioneer studies, there is mounting evidence of the
correlation between periodontal disease and various cancers.
Several meta-analyses have confirmed the suspicion that
periodontal disease should be considered as a risk factor in
several types of cancers. In fact in a meta-analysis by Corbella
et al., they found that a statistically significant association was
found for all cancers studied, both combined and individually
(digestive tract, pancreatic, prostate, breast, corpus uteri, lung,
hematological, esophageal/oropharyngeal and Non-Hodgkin
Frontiers in Immunology | www.frontiersin.org 3
lymphoma) (55). Never smokers population with periodontal
disease has a higher risk of developing hematopoietic and
lymphatic cancers (55, 56). Pancreatic, lung, and colorectal
cancers also show a positive correlation with periodontal
disease (55, 57–60). In the case of breast cancer, the evidence
shows a more modest positive association between periodontal
disease and breast cancer (61). Finally, the most expected
correlation would be with oral cancers, and indeed there is a
clear positive correlation between periodontal disease and oral
cancers (55, 59, 60). Edentulism has been positively correlated
with pancreatic cancer (58) but not within colorectal cancer (62).
Interestingly, in the study where authors did not find
associations of edentulism and colorectal cancer (CRC), they
also found no correlation between edentulism and periodontitis
(62). One of these meta-analyses looked at not only a correlation
between periodontal disease and cancer but also correlations
with particular organisms (60). The results of that meta-analysis
indicated that periodontal bacterial infection increased cancer
incidence and was associated with poor overall survival, disease-
free survival, and cancer-specific survival. Subgroup analysis
indicated that the risk of cancer was associated with
Porphyromonas gingivalis and Prevotella intermedia infection but
not Tannerella forsythia, Treponema denticola, Aggregatibacter
actinomycetemcomitans, and F. nucleatum infection (60).

In the case of pancreatic cancer, a potential mechanism has
been proposed (57). The innate immune response to pathogenic
bacteria that results in inflammation also has been linked with
pancreatic carcinogenesis. Lipopolysaccharide, a component in
the outer membrane of Gram-negative bacteria, such as, P.
gingivalis, triggers an innate immune response that involves
recognition by Toll-like receptor 4 (TLR4), which stimulates
both myeloid differentiation primary response 88 (MyD88)
dependent and MyD88-independent pathways that then
activate the nuclear factor kB pathway and results in the
release of pro-inflammatory cytokines. Interestingly, TLRs
seem to have a role in pancreatic cancer development, and
TLR4 is explicitly highly expressed in human pancreatic cancer
but not a healthy pancreas. In the murine models, the TLR4/
MyD88 pathway can trigger protection from pancreatic cancer
development or acting to promote inflammation and pancreatic
cancer development (63). LPS was shown to drive pancreatic
carcinogenesis, as was the blockade of the MyD88-dependent
pathway (via a dendritic cell-mediated deviation to TH2),
whereas blockade of TLR4 (via TRIF, TIR-domain-containing
adapter-inducing interferon-b) and blockade of the MyD88
independent (via TRIF) were protective against pancreatic
cancer (63). Although more empirical evidence is needed,
similar mechanisms implicating inflammatory response of the
innate immune system may be implicated in other types
of cancer.
Oral Microorganisms and Cancers Outside
the Oral Cavity
One characteristic of the oral microbiome that distinguishes
from other body sites is that many oral microorganisms that are
considered commensals in the oral cavity are commonly
October 2020 | Volume 11 | Article 591088
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associated with various cancers in distant organs (Table 1). The
associations of oral organisms and distant cancers occur in two
categories. The first appears in certain types of cancer where no
oral microbes are directly involved in the tumor’s pathogenesis,
but there is a consistent change in the composition of the oral
microbiome associated with cancer, thus with the potential use of
those changes as biomarkers of cancer (71, 86). The second kind
of association is the association of organisms involved in
tumorigenesis, such as F. nucleatum association with CRC (88,
89, 100).

Dysbiosis of the oral microbiome has been associated with a
wide variety of cancers (Table 1). There are three types of
associations between microbiome and disease that have been
described as potential biomarkers in cancer: increase or decrease
Frontiers in Immunology | www.frontiersin.org 4
in numbers of individual organisms, use of models of several
organisms as predictors and assessing their performance, and
finally changes in diversity indexes that give an overall picture of
the behavior of the community.

As examples of specific organisms as biomarkers, an increase
in F. nucleatum has been linked to CRC (88), and P. gingivalis
(69) and Fusobacterium spp. (70) have been linked to pancreatic
cancer. Additional examples of links of specific bacteria and oral
organisms are presented in Table 1. Another approach in the
search for biomarkers of cancer is the use of complex models of
several organisms that maximize the area under the Receiver
Operating Characteristics (ROC) curve or Area Under Curve
(AUC). ROC shows how well a model can discriminate or
separate the cases and controls, and AUC has a value between
TABLE 1 | Oral organisms associated with distant tumors.

Cancer Organisms Sample type Reference

Esophageal cancer Increase of T. forsythia and P. gingivalis Oral rinse (64)
Esophageal cancer Streptococcus anginosus, S. mitis, Treponema denticola Saliva (65)
Esophageal cancer 3 taxon model: Lautropia, Streptococcus, and an unspecified genus of the order

Bacteroidales. (AUC = 0.94)
Oral swab (66)

Esophageal cancer Overall decreased microbial diversity in cancer patients Saliva (67)
Pancreatic cancer Porphyromonas gingivalis, Aggregatibacteractinomycetemcomitans Oral rinse (68)
Pancreatic cancer Porphyromonas gingivalis Blood (antibodies) (69)
Pancreatic cancer Fusobacterium spp. Tissue from pancreatic

ductal adenocarcinoma
(70)

Pancreatic cancer 2 taxon model: Streptococcus mitis and Neisseria elongata. (AUC =0.90) Saliva (71)
Pancreatic cancer Significative higher ratio of Leptotrichiato Porphyromonas was found in cancer patients. Saliva (72)
Pancreatic cancer Association with b-diversity and Haemophilus Saliva (73)
Pancreatic cancer Fusobacterium spp. Tissue samples, swabs, stool (74)
Pancreatic cancer Streptococcus thermophilus higher in cancer, and Haemophilus parainfluenzae and

Neisseria flavescens lower in cancer
Saliva (75)

Pancreatic cancer Haemophilus, Porphyromonas, Leptotrichia and Fusobacterium could distinguish cancer
patients from healthy subjects

Tongue coating microbiota (76)

Hepatic cancer Fusobacterium and Oribacterium. Increase in diversity. Tongue coat (77)
Lung cancer Capnocytophaga sp., Veillonella sp. Saliva (78)
Lung cancer Streptococcus and Veillonella Airway brushings (79)
Lung cancer Sphingomonas and Blastomonas Saliva (80)
Lung cancer Streptococcus and Veillonella Saliva (81)
Colorectal cancer T. denticola and Prevotella sp. oral taxon 313 Oral rinse (82)
Colorectal cancer Fusobacterium sp., Porphyromonas sp. Stool (83)
Colorectal cancer Fusobacterium sp. Colorectal cancer tissues (84)
Colorectal cancer Lactobacillus and Rothia Oral rinse (85)
Colorectal cancer Streptococcus and Prevotella spp. Oral swabcolonic mucosae

and stools, colorectal polyps
or controls

(86)

Colorectal cancer Fusobacterium sp. Tissue and stool samples (87)
Colorectal cancer Fusobacterium nucleatum Colorectal tissue biopsies (88)
Colorectal cancer Fusobacterium sp. Colorectal tissue biopsies (89)
Colorectal cancer Fusobacterium sp. Colorectal tissue biopsies (21)
Colorectal cancer Fusobacterium sp., Lactococcus sp. Colorectal tissue biopsies (90)
Digestive tract
cancer

Actinomyces odontolyticus, Steptococcus parasinguinis, Corynebacterium spp., Neisseria
spp.,TM7[G-1] sp., Porphyromonas gingivalis, Fusobacterium nucleatum, Neisseria elongata
and Streptococcus sanguinis

Saliva (91)

Colorectal cancer Fusobacterium nucleatum, Parvimonas micra, and Peptostreptococcus stomatis Colon tissue (92)
Colorectal cancer Peptostreptococcus stomatis, Fusobacteriumnucleatum, Parvimonas spp. Meta-analysisfecal samples (93)
Gastric cancer Overall diversity of tongue coating microbiota was reduced Tongue coating (94)
Gastric cancer Overall increased microbial diversity in cancer patients Saliva and plaque samples (95)
Gastric cancer 6 bacterial clusters were identified to distinguish cancer patients from controls. (cluster 6

had AUC = 0.76)
Tongue coating (96)

Breast cancer Corynebacterium, Staphylococcus, Actinomyces, and Propionibacteriaceae Urine (97)
Breast cancer Fusobacterium, Atopobium, Gluconacetobacter, Hydrogenophaga and Lactobacillus Breast tissue (98)
Breast cancer Coriobacteriaceae Oral rinse (99)
October 2020 | Volum
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0.50 and 1.0, indicating no discrimination and perfect
discrimination, respectively (101). Thus, and AUC of 0.9
would indicate that the probability of discriminating a case vs.
control is 90%. In Table 1, we show three examples of combined
taxons to distinguish controls vs. cancer samples: a three taxon
model of Lautropia, Streptococcus and an unspecified genus of
the order Bacteroidales, with AUC =0.94, has been associated
with esophageal cancer (66), a two taxon model, Streptococcus
mitis andNeisseria elongata with an AUC of 0.90, associated with
pancreatic cancer (71) and a bacterial cluster associated with
gastric cancer with AUC of 0.76 (96). Finally, another approach
to the use of biomarkers in differentiating case vs. control
samples is using changes in biodiversity indicators as a proxy
of changes in the microbiome that could be linked to the status of
the sample, independently of what organisms are present or
absent. We have also presented examples of this approach in
Table 1. For instance, Chen et al. observed an overall decrease of
microbial diversity in the saliva of esophageal cancer patients
(67), while an overall increase in diversity in saliva and plaque
from gastric cancer patients was observed by Sun et al. (95).

Except for CRC, where Fusobacterium spp. are ubiquitous, in
general, there is little overlapping in the biomarkers identified in
the different studies (Table 1), probably due to the different type
of samples and methods of analysis used to identify the
composition of the community.

Pancreatic cancer has been one of the most widely studied
types of cancer in seeking association between changes in the oral
microbiome and disease (68–76). Although the communities
vary depending on the study, Porphyromonas and Fusobacterium
genera were associated with cancer in most studies (Table 1).
Likewise, in the case of lung cancer, the genus Veillonella
appeared associated with the majority of studies (Table 1).

CRC has been an exception in that Fusobacterium spp. have
been consistently associated with this type of cancer, both as a
biomarker in the oral cavity (91) and more importantly, in stool
and biopsies from tumors samples (21, 84, 87–90, 92, 93),
indicating a possible direct effect on the progression of the
disease. A more direct indication of the clinical relevance of F.
nucleatum in CRC has been presented in a recent paper where
the authors show that in mice with colorectal tumors, oral or
intravenous administration of dextran nanoparticles covalently
linked to azide-modified phages that inhibit the growth of F.
nucleatum significantly augments the efficiency of first-line
chemotherapy treatments of CRC (102). For all these reasons,
most focus has been placed on studying the role of F. nucleatum
in CRC. Using arbitrarily primed PCR (AP-PCR) to identify
isolates at the strain level, Komiya et al. demonstrated that the
strains present in CRC samples were identical to strains isolated
from the saliva of CRC patients, supporting the oral origin of F.
nucleatum in the intestine of CRC patients (103).

In 2012 Kostic et al., using genomic analysis, identified
Fusobacterium sequences as enriched in colon carcinomas; they
did not prove a causal relationship between Fusobacterium and
colorectal cancer was the first indication of its potential
importance in CRC (21). One year later, Kostic et al., using the
mouse model of intestinal tumorigenesis Apc(Min/+), showed
Frontiers in Immunology | www.frontiersin.org 5
that F. nucleatum was capable of increasing tumor multiplicity
and selectively recruit tumor-infiltrating myeloid cells, which can
promote tumor progression. Tumors from Apc(Min/+) mice
exposed to F. nucleatum exhibit a pro-inflammatory expression
signature shared with human fusobacteria-positive colorectal
carcinomas. F. nucleatum generates a pro-inflammatory
microenvironment conducive to colorectal neoplasia progression
by recruiting tumor-infiltrating immune cells (87). This same year
Rubinstein et al. proposed a possible mechanism by which F.
nucleatum induces tumorigenesis (104). F. nucleatum encodes
several adhesins for interspecies interactions, but so far, only one,
FadA (adhesion protein FadA), has been identified as binding to
host cells (105). FadA is not only an adhesin but also an invasin
required for binding and invasion of both healthy and cancerous
host cells and binds to cell-junction molecules, the cadherins
(105). In Rubinstein et al. model, FadA binds to E-cadherin
activating b-catenin signaling (104). The activation of b-catenin
signaling in colorectal cancer is mediated via a TLR4/P-PAK1
(p21-activated kinases) cascade (106). Loss of E-cadherin-
mediated-adhesion characterizes benign lesions’ transition to
invasive, metastatic cancer (107, 108).

In a more recent article, Rubinstein et al. expanded their
model to include Annexin A1, a previously unrecognized
modulator of Wnt/b-catenin signaling, which is a crucial
component through which F. nucleatum exerts its stimulatory
effect. Annexin A1 is expressed explicitly in proliferating
colorectal cancer cells and involved in the activation of Cyclin
D1 (109). Over-expression of cyclin D1 has been linked to the
development and progression of cancer (110). Based on their
results, Rubinstein et al. proposed a “two-hit” model to explain
how F. nucleatum acts in CRC. Somatic mutations cause the first
“hit”, and the second “hit” is caused by F. nucleatum,
exacerbating cancer progression on those cells that suffered the
initial mutations (109).

The Microbiome and Oral Cancer
Head and neck cancer was the seventh most common cancer
worldwide in 2018 (890,000 new cases and 450,000 deaths) (111).
Oral squamous cell carcinomas (OSCC), the most frequent
malignancies in the oral cavity, represented 2% of all cancers
worldwide (354,864 cases and 177,384 deaths) (111). In the
United States alone, it is expected that a total of 52,260 new
cases of oral and pharynx cancer will occur in the year 2020
(112). The financial cost of treating oral and oropharyngeal
cancer may be the highest of all cancers in the United States
(113). Additionally, an essential factor in OSCC mortality is the
high level of recurrence after treatment. Several studies, with
many cases, have shown that the overall recurrence rate was
approximately 30% (114–116). Recurrence rate in OSCC is high.
In the first 36 months, the recurrence rates range from 70 to 92%
of cases (114, 117–119). Interestingly the observed 5-year
survival after recurrence varies depending on the moment in
which recurrence occurs. If recurrence occurs within the 18
months after treatment, the rate of survival ranges between 20.5
to 27.55%, but if recurrence occurs afterward, the rate of survival
increases to 38.1% to 42.3% (114, 120).
October 2020 | Volume 11 | Article 591088
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Despite advances in our knowledge of the causes and risk
factors associated with OSCC, survival rates for oral cancers,
including OSCC have not improved substantially in the last forty
years, emphasizing that new means of early detection and
treatment are urgently needed.

Viruses have long been associated with the risk of developing
OSCC. The etiological role of human papillomavirus (HPV) in
OSCC has been widely researched for more than three decades.
Several meta-analyses have demonstrated that infection by HPV
increments the risk of OSCC by up to 3-fold (121, 122). The
prevalence of HPV among OSCC patients is around 25% (121,
123, 124); however, there is a geographical component with the
highest HPV prevalence in Africa and Asia, notably among
Chinese studies from provinces with high OSCC incidence
rates (123). Other viruses have been identified in OSCC
samples, as individual infections or in co-infection with HPV.
Still, their role in the disease is unclear (124–127). Despite its
importance, HPV-unrelated OSCC cases account for the vast
majority of oral cancer cases. Other environmental factors
should play an essential role in OSCC development and
progression; among them, the microbiome’s role has just
begun to be considered a risk factor.

As mentioned previously, periodontitis has been linked to
various types of cancers, including esophagus/oropharyngeal
Frontiers in Immunology | www.frontiersin.org 6
cancers. Table 2 presents some of the studies that linked
bacteria’s presence to cancer of the oral cavity and pharynx.
Several studies have found that the risk of developing OSCC may
increase with periodontal disease (55, 142, 143), signaling a
possible role of inflammation caused by the microbiome with
oral cancer. Periodontitis is a typical example of an infectious
disease causing chronic inflammation in the oral cavity (144,
145). Thus several systematic reviews of the literature showed
that periodontal disease increases the risk of oral cancer even
after adjusting for significant risk factors (146, 147).

Moreover, expression of pro-inflammatory cytokines in
periodontal disease such as IL-1 and TNF-a has been linked to
microbial triggered carcinogenesis (19). In a study comparing the
microbiome of gingival squamous cell carcinoma (GSCC) with
per iodont i t i s microbiome, members of the genera
Fusobacterium, Peptostreptococcus, and Prevotella were more
abundant in cancerous, periodontal tissues. In contrast, saliva
or soft mucosa harbored more periodontal health-related
bacteria (148).

Most studies on the role of the human microbiome on cancer
have focused on describing microbial communities present in
specific samples or the immunological response of the host to the
bacterial challenge. The oral microbiome has been proposed as a
diagnostic indicator of oral cancer; however, as in other types of
TABLE 2 | Oral organisms in oropharyngeal cancers.

Cancer Organisms Sample type Reference

Head and neck
squamous cell
carcinoma (HNSCC)

Streptococcus sp. and Lactobacillus sp. Saliva (128)

HNSCC Streptococcus anginosus Tissue (129)
HNSCC Fusobacterium sp. Meta-analysis (38)
Oral squamous cell
carcinoma (OSCC)

Streptococcus anginosus Tissue (130)

OSCC Capnocytophaga gingivalis, Prevotella melaninogenica, Streptococcus mitis Saliva (131)
OSCC Bacillus, Enterococcus, Parvimonas,Peptostreptococcus, Slackia Saliva (132)
OSCC Streptococcus sp. 058, S. salivarius, S. gordonii, S. parasanguinis, Peptostreptococcus stomatis,

Gemella haemolysans, G.morbillorum, Johnsonella ignava
Tissue (133)

OSCC Parvimonas increased in OSCC, Actinomyces reduced in OSCC Tissue (134)
OSCC Fusobacterium periodonticum, Parvimonas micra, Streptococcus constellatus, Haemophilus

influenza, and Filifactor alocis
Oral rinse (80)

OSCC Fusobacterium nucleatum, Prevotella intermedia, Aggregatibactersegnis, Capnocytophaga
leadbetteri, Campylobacter rectus,Catonella morbi, Corynebacterium matruchotii, Gemella
morbillorun, Granulicatella adjacens, Granullicatella elegans, Peptococcus sp., Peptostreptococcus
stomatis, Porphyromonas catoniae and Streptococcus oralis

Tissue (135)

OSCC Fusobacterium, Dialister, Peptostreptococcus, Filifactor, Peptococcus, Catonella and Parvimonas Swabs (136)
OSCC Micrococcus luteus, Prevotella melaninogenica, Exiguobacterium oxidotolerans, Fusobacterium

naviforme, Staphylococcus aureus, Veillonella parvula, Prevotella sp. (oral clone BE073 phylotype),
Rothia mucilaginosa, Streptococcus salivarius, Actinomyces odontolyticus, Moraxella osloensis,
Prevotella veroralis, Propionibacterium acnes, Atopobium parvulum, Streptococcus parasanguinis,
Veillonella dispar, Streptococcus mitis/oralis

Tissue (137)

Gingival squamous cell
carcinoma

P. gingivalis Paraffin
embedded
samples

(138)

Oral mucosal cancer Streptococcus intermedius, S. constellatus, S. oralis, S. mitis, S. sanguis, S. salivarius,
Peptostreptococcus sp.

Lymph nodes (139)

Keratinizing squamous
cell carcinoma

Veillonella sp., Fusobacterium sp., Prevotella sp., Porphyromonas sp., Actinomyces sp.,
Clostridium sp., Haemophilus sp., Streptococcus sp., and Enterobacteriaceae

Swabs (140)

Potentially malignant
oral leukoplakia

Fusobacterium, Leptotrichia, Campylobacter and Rothia Swabs (141)
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cancer, the search for possible biomarkers of oral cancer and, most
specifically, OSCC has not produced conclusive results (52).
Different organisms have been shown to increase in OSCC
samples, as a few examples: Capnocytophaga gingivalis, Prevotella
melaninogenica, and S. mitis (131); F. nucleatum (149);
Pseudomonas aeruginosa (150); Campylobacter concisus, Prevotella
salivae, Prevotella loeschii, and Fusobacterium oral taxon 204 (151);
genera Fusobacterium, Dialister, Peptostreptococcus, Filifactor,
Peptococcus, Catonella, and Parvimonas (136); and Prevotella oris,
Neisseria flava, Neisseria flavescens/subflava, F. nucleatum ss
polymorphum, Aggregatibacter segnis, and Fusobacterium
periodonticum (152).

Yang et al. studied the progression of the microbiome during
cancer’s progression from the early to the late stage and found a
significant increase of Fusobacteria. At the species level, they
found that F. periodonticum, Parvimonas micra, Streptococcus
constellatus, Haemophilus influenza, and Filifactor alocis were
associated with OSCC, and they progressively increased in
abundance from stage 1 to 4 (80).

Direct evidence of the role of the microbiome in OSCC was
presented by Stashenko et al. were using a germ-free mouse model a
4-nitroquinoline-1 oxide (4NQO)-induced carcinogenesis the
authors observed a significant increase on the number of tumors
and their size when the mice were inoculated with two different
microbiomes vs. inoculated controls. The microbiomes used came
from the tongue of a healthy mouse and the other from the tumor
lesion of a diseased mouse, and Pasteurella was the dominant genus
in both groups (153).

The carcinogenic potential of periodontal pathogens has also
been described in several studies. P. gingivalis, one of the
essential periodontal pathogens, increase the invasiveness of
oral cancer cells and resistance to chemotherapeutic agents
(154–156). Using a 4NQO-induced mouse model of oral
cancer, the inoculation of P. gingivalis promoted tumor
progression by invading precancerous lesions and recruiting
the myeloid-derived suppressor cells by expressing chemokines
such as C-C motif ligand 2 (CCL2) and chemokine (C-X-C
motif) ligand 2 (CXCL2), and cytokines such as IL-6 and IL-8
(157). P. gingivalis also induces expression of the ZEB1
transcription factor, which controls the epithelial-mesenchymal
transition. Interestingly, the up-regulation of ZEB1 appears to be
controlled by FimA, a major virulence factor involved in
adhesion and cellular invasion (158). The infection of P.
gingivalis increases the expression of mesenchymal markers,
including vimentin and matrix metalloproteinase MMP-9 (132,
158, 159).

Utilizing a murine model of periodontitis-associated oral
tumorigenesis, Binder Gallimidi et al. showed that chronic
bacterial co-infection of P. gingivalis and F. nucleatum
promotes OSCC via direct interaction with oral epithelial cells
through Toll-like receptors, with an increase in expression of
TLR2 in OSCC cells and IL-6 in both cells and the mouse model
(160). A detailed review of all the studies where P. gingivalis
has been associated with the development of OSCC has
been recently published by Lafuente Ibáñez de Mendoza
et al. (161).
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F. nucleatum in esophageal cancer tissues has been associated
with shorter survival, suggesting a prognostic biomarker’s
potential role. F. nucleatum might also contribute to aggressive
tumor behavior through the activation of chemokines, such as
chemokine (C-C motif) ligand 20 (CCL20) (162). Epithelial-
mesenchymal transition (EMT) is the process by which epithelial
cells acquire a mesenchymal-like phenotype. It has been
proposed that EMT is responsible for compromising epithelial
barrier function in the pathogenesis of several diseases, including
OSCC. F. nucleatum infection of oral cell lines triggers EMT
(163, 164). F. nucleatum triggers EMT via lncRNA/MIR4435-
2HG/miR-296-5p/Akt2/SNAI1 signaling pathway and up-
regulates mesenchymal markers, including N-cadherin,
Vimentin, and snail family transcription repressor 1 (SNAI1)
(164). The fact that infection by periodontal pathogens generates
EMT features introduces the possibility that this process may be
involved in the loss of epithelial integrity during periodontitis
and may promote predisposition to malignant transformation
through the EMT.

The metatranscriptome has recently begun to be used to
analyze community-wide gene expression in the human
microbiome (165–168). Measuring bacterial gene expression in
the wild has been challenging. The half-life of mRNA is short,
and mRNA in bacteria and archaea usually comprises only a
small fraction of total RNA. Therefore large samples are needed
to study expression, but obtaining such samples is not always
possible. Additionally, working with non-model organisms
presents the challenge of lacking most of the bioinformatic
tools readily available for model organisms.

Using a metatranscriptome analysis of OSCC samples, Yost
et al. found that Fusobacteria showed a statistically significantly
higher number of transcripts at tumor sites, indicating a higher
activity of this group of organisms in cancer. Moreover, when
looking at tumor signatures of the oral microbiome, metabolic
activities such as iron ion transport, tryptophanase activity,
peptidase activities, and superoxide dismutase were over-
represented in tumor samples when compared to the healthy
controls (169).

Effect of the Microbiome in the Outcomes
of Cancer Therapy
Despite its clinical importance, the human microbiome’s effect
on malignancy treatment is merely starting to be investigated.
While organisms assume significant activities in keeping up
human well-being, they are likewise engaged with the turn of
events that lead to tumor development. There is now proof
indicating that the microbiome can impact patient reactions to
cancer treatment. The microbiome has been implicated in
modulating cancer therapy’s efficacy and toxicity, including
chemotherapy and immunotherapy (170, 171). Moreover,
preclinical data suggest that the microbiome modulation could
become a novel strategy for improving the efficacy of immune-
based therapies for cancer (172).

The gut microbiota has the potential to affect the ability of
cancer therapy. The microbiota, when affected by dysbiosis, can
profoundly influence both cancer pathogenesis and its
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therapeutic outcome. In particular, the regulation of such a
therapeutic outcome is firmly linked with the gut microbiota’s
capacity to process anti-cancer compounds and modify the
host’s immune response. These two effects combined may
clarify the patient’s microbiome composition’s substantial
participation in affecting the efficiency of both immunotherapy
and chemotherapy.

The oral microbiome’s role in the outcome of cancer
treatments has not yet been evaluated. Only in two studies,
oral organisms were identified as influencing the outcome of
immunotherapies. The first of these studies showed that F.
nucleatum, along with Bacteroides fragilis and Escherichia coli
improved the survival of adoptive cell therapy (ACT) treated
patients, probably by increasing cytokine production and T cell
infiltration (173). The second study found that Lactobacillus
fermentum attenuated the immune response in patients treated
with CpG-oligonucleotides, which are short synthetic single-
stranded DNA molecules containing unmethylated CpG
dinucleotides, acting as agonists of Toll-like receptor 9 (TLR9),
and leading to strong immunostimulatory effects (174).
EFFECTS ON CANCER CHEMOTHERAPY

A recent survey of in situ bacterial effects on frequently used
chemotherapeutics suggests the profound influence of distinct
bacteria species on the anti-tumor effect. Heshiki et al. examined
the influence of the intestinal microbiome on treatment effects
(175) in a heterogeneous cohort that comprised eight diverse
malignancy types to recognize organisms with a collective effect on
the immune response. It is revealed through human gut
metagenomic examination that responder patients had
inherently higher microbial diversity arrangements than non-
responders. Moreover, by assessing the gut microbiome’s job
without precedent for a heterogeneous patient cohort with
different kinds of malignant growth and anti-cancer medicines,
Heshiki et al. found a worldwide microbiome signature that is
autonomous of disease type and heterogeneity (175). Explicit
species, Bacteroides xylanisolvens, and Bacteroides ovatus were
decidedly connected with treatment results. Oral gavage of these
responder microbes fundamentally expanded the adequacy of
chemotherapy (erlotinib) and actuated the declaration of CXCL9
and IFN-g in a murine lung cancer model. Also, oral gavage of
explicit gut microbiome substantially expanded the impact of
chemotherapy in mice, decreasing the tumor volume by 46%
contrasted with the control.

This information recommends an anticipated effect of the
microbiome’s explicit constituents on tumor development and
disease treatment results with suggestions for both visualization
and treatment. Curiously, the microbiome can bolster the resistant
framework in the battle against malignancy. For instance,
cyclophosphamide (a medication used to treat leukemia and
lymphomas) was found to impact the organisms living in the
gut. These gut organisms reacted by advancing the production of
resistant cells, which appears to improve cyclophosphamide
adequacy (176). Among patients with hematologic malignancies,
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specific bacterial taxa are connected with the effectiveness of
allogeneic hematopoietic stem cell transplantation (allo-HSCT)
and reduced hazard for graft-versus-host disease (GVHD)
succeeding treatment (177, 178). Besides, holding expanded
measures of microorganisms having a place with the variety of
Blautia was related to diminished GVHD lethality in this cohort
and was affirmed in another independent cohort of 51 patients
from a similar organization (177).
EFFECTS ON CANCER RADIOTHERAPY

Ionizing radiation therapy (RTX) was received by cancer patients
that are genotoxic for tumor cells and might be curative for
restricted cancers. The great worldview in radiation biology
accepted that the cellular nucleus was the main objective of
radiation and DNA harm was incited by direct testimony of
vitality or creation of reactive oxygen species (ROS) through a
radiation-induced separation of intracellular water molecules.
Ionizing radiation, however, additionally incites non-targeted
impact on non-irradiated cells, such as genomic unpredictability,
systemic radio-adaptive retorts, inflammatory and immune
reactivity, and bystander effect on nearby cells. Observer and
foundational impacts are auxiliary to DNA harm and are
intervened by the interruption of gap intersection proteins
engaged with cell-cell interactions and by the arrival of
extracellular intermediaries, together with cytokines, exosomes,
ROS and nitric oxide (NO). Along these lines, comparably to the
tissue harm related to contamination by microorganisms,
radiations initiate the arrival of damage-associated molecular
pattern (DAMP) pressure signals (179). The impacts of
radiation are perplexing. It initiates both immunostimulant and
immunosuppressive reactions and might be deficient in enacting a
defensive anti-cancer invulnerable reaction (180). It very well may
be speculated that the gut microbiome likewise satisfies a job in the
immunostimulatory impacts of RTX. The viewed fluctuations in
microbiome arrangement at epithelial surfaces in patients and
mice rewarded with RTX have been proposed to contribute to the
pathogenesis of bone marrow failure, colitis, looseness of the
bowels, oral mucositis and enteritis (181). RTX persuades
apoptosis in the breach of the intestinal barrier, intestinal crypts,
and modifications in the microbiome conformation (182).

Studies have shown that the intestinal microbiome has a
significant effect on total body irradiation. Fewer endothelial cells
of the intestinal mucosa are derived through irradiation into
apoptosis and prompt less lymphocyte invasion in germ-free
mice than in conventional mice (183). This finding shows that
gut commensals can assume a harmful role in protecting the
enteric harmfulness of total body irradiation (TBI) in germ-
free mice.
EFFECTS ON CANCER IMMUNOTHERAPY

Ongoing examinations have featured the significance and
possible effect of organisms on ailment recuperation of
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immunotherapy. Strikingly, the microbiome can bolster the safe
framework in the battle against malignant growth (176).
Microorganisms have been appeared to advance cancer growth
improvement by instigating inflammation. This provocative
reaction can, likewise, beneficially affect malignancy treatment.
A few treatments, such as CpG-oligonucleotide immunotherapy,
rely on inflammation (174).

In an examination performed by Iida et al., it was seen that
mice treated with anti-toxins did not react to platinum
chemotherapy or CpG-oligonucleotide insusceptible treatment
contrasted with mice with flawless gut microorganisms of
subcutaneous tumors. These outcomes recommend that gut
microbiome improves the impacts of treatments that are
subject to aggravation. Desirable reactions to cancer therapy
require an unblemished commensal microbiome that intervenes
in its belongings by regulating myeloid-inferred cell capacities in
the tumor microenvironment. These discoveries underscore the
significance of the microbiome in the outcomes of sickness
treatment (174).

In most patients treated with traditional cancer therapies,
tumors become resistant to therapy, and the chances of tumor
recurrence are high (184). Immunotherapy approaches have
shown potential in treating hematopoietic (185, 186) and solid
cancers (187–189). However, the efficacy of immunotherapy is
still limited by the variability of the immune response in different
patients and the different susceptibility of tumor types (190, 191).
The emerging knowledge of the ability of the gut microbiome to
modulate the response to immunotherapy offers new possibilities
to improve its efficacy by targeting the microbiome.

Util ization of Check Point Inhibitors (ICIs) has
revolutionized cancer treatment across multiple cancer types
and has gotten the first since forever FDA endorsement of a
tumor agonistic agent in tumors with microsatellite instability
(MSI) (192). The most generally utilized ICIs are monoclonal
antibodies that focus on the customized cell demise protein (PD-
1), its ligand (PD-L1), or the cytotoxic T-lymphocyte antigen 4
protein (CTLA-4). Table 3 shows the microbiome in malignant
growth patients dealt with immune checkpoint inhibitors (ICIs).
It was proposed by Sivan (197) that Bifidobacterium, a particular
taxon of microbial commensals, armed anti-tumor resistance
and raised the viability of PD-L1 blocking treatment. They
additionally recommended that microbiome could modify the
anti-tumor invulnerability as well as the reaction to PD-L1
inhibitors. Routy et al. investigated the relationship of dysbiosis
with epithelial tumors to comprehend whether synchronous
utilization of anti-infection agents creates essential protection
Frontiers in Immunology | www.frontiersin.org 9
from ICIs in mice and patients. Their outcomes indicated that
the anti-tumor impact was undermined in antibiotic (ATB)
treatment group, with progression-free survival (PFS) and
overall survival (OS), being fundamentally shorter contrasted
with that of the control group, showing that ATB could be
utilized as a prescient marker for estimating ICIs obstruction.
Additionally, utilizing the shotgun sequencing for quantitative
metagenomics of the fecal example, Enterococcus hirae and
Akkermansia muciniphila were demonstrated to be altogether
plentiful in patients with best clinical reaction to ICIs (PFS > 3
months) (196).

Naidoo et al. established a connection between the gut
microbiome and remedial results after the clinical examination
of Chinese patients with cutting edge non-little cell lung
carcinoma treated with PD-1 ICIs treatments. As indicated by
their outcomes, reacting patients held greater assorted variety
and stable arrangement of the natural gut microbiome during
treatment and had drawn-out PFS altogether. In detail, Prevotella
copri, Bifidobacterium longum, and Alistipes putredinis were
improved in responders, though Ruminococcus spp. was found
mainly in non-reacting patients. As expected, in the periphery
blood of responding patients, a more noteworthy recurrence of
natural killer cell and memory CD8+ T cell subgroups was
seen (198).

A consortium of 11 bacterial strains was isolated by Tanoue
et al. from healthy human donor feces that can thrive in the
intestine, increasing interferon-g-producing CD8 T cells. The
colonization of mice improved immune checkpoint inhibitors’
therapeutic effectiveness with these 11-strain mixtures in
syngeneic tumor models. All these strains act together in a way
that is subject to significant histocompatibility (MHC) class Ia
molecules and CD103+ dendritic cells. Primarily the 11 strains
represent rare, low-abundance components of the human
microbiome, and subsequently, have incredible potential as
extensively powerful biotherapeutics (199).

Then again, immunotherapy viability has all the earmarks of
being intensely impacted by gut microbiome confirmation. Oral
organization of probiotics, for example, A. muciniphila (196) and
Bifidobacterium species (197) or fecal microbiota transplantation
(FMT) (200) from treatment-responsive patients, considerably
upgraded the PD1-based immunotherapy and canceled tumor
outgrowth, robotically through the enlarged dendritic cell and T
cell reaction (197). Even though these examinations are not
utilizing colorectal cancer (CRC) models, seeing how gut
microbiome adjusts strong reaction might be necessary to
encourage positive remedial results in CRC patients getting
TABLE 3 | Characteristics of the microbiome in cancer patients treated with immune check point inhibitors (ICIs).

Cancer Microbes related with response to ICI treatment References

Metastatic melanoma B. fragilis and/or B. thetaiotaomicron, Burkholderiales species (193)
Metastatic melanoma Faecalibacterium genus and other Firmicutes (194)
Metastatic melanoma Enterococcus faecium, Collinsella aerofaciens, Bifidobacterium adolescentis, Klebsiella pneumoniae, Veillonella parvula,

Parabacteroides merdae, Lactobacillus species, and Bifidobacterium longum
(195)

Non-small cell lung
carcinoma

Ruminococcaceae, Faecalibacterium, specifically Ruminococcae, Alistipes, and Eubacterium species (196)

Renal cell carcinoma Ruminococcaceae, Faecalibacterium, specifically Ruminococcae, Alistipes, and Eubacterium species (196)
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immunotherapy, or even to conquer opposition-held by non-
responders. To our best information, no clinical preliminaries
assessing gut microbiome control and treatment viability are
distributed right now (201). A couple of clinical preliminaries are
started and now at the selecting stage (Table 4) in light of Fong
et al. (201). It stays dark whether these preclinical discoveries can
be effectively meant clinical application.

The microbiome, aside from the balance of adequacy, may
likewise foresee the susceptibility to immunotherapy-associated
unfavorable events. While ICIs have given way to overawed
immunological resilience to tumors, the danger of auto
insusceptibility in healthy tissues is a critical restriction in their
utilization. In patients on anti-CTLA-4, the immune-related
adverse events (irAEs) happen all the more generally
contrasted with those taking anti-PD-1/PD-L1, and when these
mediators are used in amalgamation, the frequency of irAEs
appears to upsurge consequently (198). The microbiome has
been related to the danger of creating immune-related
noxiousness. The abundance of species according to study by
Dubin et al. (202) among Bacteroidetes phylum, explicitly
Barnesiellaceae, Bacteroidaceae, and Rikenellaceae, was related
with resistance to colitis in patients with metastatic melanoma
dealt with ipilimumab (n=34), though reduced recognition of
hereditary pathways engaged with polyamine transport and
Frontiers in Immunology | www.frontiersin.org 10
vitamin B amalgamation in the gut related with an expanded
danger of colitis (202).

Moreover, Chaput et al. showed that baseline gut microbiota
is a good predictor of clinical response and colitis in metastatic
melanoma patients treated with ipilimumab. Twenty-six patients
with metastatic melanoma treated with ipilimumab were
enrolled in the study. Fecal microbiota composition was
assessed at baseline and before each ipilimumab infusion. In
their results, baseline gut microbiota enriched with
Faecalibacterium and other Firmicutes was associated with
beneficial clinical response compared with patients whose
baseline microbiota was driven by Bacteroides (194).

The significant reason for repeat and poor prognosis is the
treatment failure in colorectal cancer patients, resistance to
malignancy medicines has been connected to the nearness of
explicit sorts of microbes in the gut. In colorectal cancer patients,
scientists observed that resistance to drugs correlated with an
expansion in F. nucleatum in the gut. The bacterium appeared to
square passing (apoptosis) of the malignant growth cells and
trigger autophagy, an endurance device for the disease cells. Yu
et al. explored the commitment of gut microbiome to
chemoresistance in patients with colorectal malignant growth
(203). In colorectal cancer tissues in patients with relapse post-
chemotherapy, the F. nucleatum was found in abundance and
TABLE 4 | Ongoing clinical trials of gut microbiota modulation in potentiating efficacy of anticancer therapies.

Patient /Cancer Number of
subjects

Intervention Primary
outcomes

Secondary outcome Location Status Clinical trial
registration
number

Chemotherapy
Patients with
metastatic CRC

50 Chemotherapy + Weileshu
(Lactobacillus salivarius AP-32,
Lactobacillus johnsonii MH-68)
vs
chemotherapy alone

PFS OS Zhejiang,
China

Not yet
recruiting

NCT04021589

Patients with
metastatic CRC

140 Chemotherapy + targeted
therapy +
Bifico (Lactobacillus acidophilus
and
Bifidobacterium) vs
chemotherapy +
targeted therapy

ORR / Zhejiang,
China

Not yet
recruiting

NCT04131803

Rectal cancer
patients receiving
concurrent
chemotherapy and
pelvic Radiation
therapy

160 VSL#3 vs placebo Impact of probiotics
to
increase tumor
regression
grade (TRG) 1-2
rate

Acute bowel toxicity
Pathological complete
response
Sphincter saving surgery
Disease-free survival
Late toxicity (at 12-36
months)

Rome, Italy Recruiting NCT01579591

Immunotherapy
Melanoma patients
resistant/refractory to
PD-1 therapy

20 Single-arm: FMT
from anti-PD1 responders
through colonoscopy + PD-1
therapy

ORR T cell composition
T cell function
Immune profile

Pennsylvania,
United States

Recruiting NCT03341143

Patients with solid
tumors (including
non-small cell lung
cancer, renal cell
carcinoma, bladder
cancer or melanoma

132 Single-arm: MRx0518 +
Pembrolizumab

Adverse events Tumor biomarkers
Clinical benefits
(ORR, DOR, DCR, PFS)
Microbiome composition
OS

Texas, United
States

Recruiting NCT03637803
O
ctober 2020 | V
olume 11 |
PFS, progression-free survival; OS, overall survival; ORR, objective response rate; DOR, duration of response; DCR, disease control rate.
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was related to patient clinicopathological qualities. They
additionally showed that F. nucleatum elevated colorectal
malignant growth protection from chemotherapy. F.
nucleatum, mechanistically, targets TLR4 and MYD88 inborn
immune signaling and specific microRNAs to enact the
autophagy pathway and modify colorectal malignant growth
chemotherapeutic reaction. To control colorectal cancer
chemoresistance mechanistically, clinically, and biologically,
the F. nucleatum arranges an atomic system of the Toll-like
receptor, autophagy, and micro-RNAs. Estimating and focusing
on F. nucleatum and its related pathway will yield critical
understanding into clinical administration and may enhance
colorectal malignant patient outcomes (203).

Albeit a progression of examinations has confirmed the effect
of the microbiome on disease treatment, there still lies a lot of
vagueness and deficiency in these investigations. The initial test
experienced is the inadequate comprehension of the rare
microbial species engaged with a better strong reaction.

The Potential of Microbiome in
Cancer Therapy
The worldwide malignant growth trouble has risen drastically,
making it a critical need to create novel treatments and anticipate
which treatment will offer themost advantage to a disease quiet. The
use of microorganisms to treat tumors is nothing new. German
physician W Busch probably treated the first patient with cancer to
be purposefully infected with bacteria in 1868 (204). He induced a
bacterial infection in a woman with an inoperable sarcoma by first
cauterizing the tumor and then placing her into bedding previously
occupied by a patient with “erysipelas” (Streptococcus pyogenes).
Busch reported that within a week, the primary tumor and the
lymph nodes in the neck had shrunk in size. Unfortunately, the
patient died a few days after the infection had begun. Later, in 1883
Friedrich Fehleisen, a German surgeon had identified S. pyogenes as
the cause of “erysipelas” and had begun treating patients with cancer
with the living cultures of the bacteria with success (205). Almost
simultaneously in the USA, William B. Coley was performing
similar experiments. In 1981 he injected Streptococcus into a
patient with inoperable cancer (206). The infection caused by the
bacterium has the side effect of shrinking the malignant tumor, and
this was one of the first examples of immunotherapy. Given the
risks of using live organisms, Coley developed a mixture of dead
bacteria to treat his patients. They were known as Coley’s toxins. He
then devoted most of his life as head of the Bone Tumor Service at
Memorial Hospital in New York, treating more than 1000 cancer
patients with bacteria or bacterial products (207). However, his
studies, the first using immunotherapy, were forgotten for several
reasons. First, the use of microorganism(s) to treat human cancers
provided a short term benefit, but eventually, tumors recurred;
second, the discovery of radioactivity and its use to treat tumors in
the early 1930s and second the advent of chemotherapy in the 1940s
relegated the use of immunotherapies on a second plane.

In recent years, there has been a renewed interest in using
bacteria-mediated tumor therapy (204, 208, 209). Although widely
used for treating many tumors, chemotherapy causes many off-
target effects, such as significant damage to healthy tissues. In
Frontiers in Immunology | www.frontiersin.org 11
contrast, biological generally exert target-specific effects and are
relatively safer for human use. Moreover, bacterial-based
immunotherapies can penetrate solid tumors and inexpensive.
Upon systemic administration, various types of non-pathogenic
obligate anaerobes and facultative anaerobes have been shown to
infiltrate and selectively replicate within solid tumors (204, 209).

A significant step in the development of bacterial therapeutics
is identifying potential species and strains with minimal
pathogenicity to the host, and that can replicate precisely in
the tumor hypoxic microenvironment. Several genera of bacteria,
including Clostridium, Bifidobacterium, E. coli, and attenuated
Salmonella, have been used in bacteria-mediated tumor therapy
(204, 208–210).

The genera Clostridium and Salmonella are probable the best-
studied as vectors in bacteria-mediated tumor therapy. In 1947, it
was first shown that direct injection of spores of Clostridium
histolyticus into a transplantable mouse sarcoma caused
oncolysis and tumor regression; however, mice died soon after
(211). In 1964 Moese and Moese injected a non-pathogenic
isolate of Clostridium butyricum intravenously and observed the
tumor’s disappearance, but again the survival of the mice was
non-permanent (212). The ability of Clostridium to grow in
hypoxic areas with necrosis gives them an advantage to target
tumors. With the development of genetic systems to work with
Clostridium, this bacterium has attracted renewed interest as a
potential vector to treat solid tumors. Thus, a genetically
engineered C. acetobutylicum expressing and secreting the E.
coli cytosine deaminase (CDase) has been used against
rhabdomyosarcoma-bearing WAG/Rij rats and show that the
enzyme was produced in tumors in vivo (213).

Numerous S. typhimurium mutant strains have been studied
from the perspective of cancer treatment. One of the significant
advantages of using S. typhimurium is that there is a well-developed
genetic system that allows for all kinds of genetic manipulations of
this organism. Many different immunomodulators have been
cloned into S. typhimurium to be expressed at the tumor site.
These include cytotoxic proteins, to kill tumor cells directly, and
tumor-associated antigens to increase the immune response in the
site of the tumor, and prodrug enzymes that modify a substrate to
convert it into a toxic product (214, 215).

So far, the only strain of S. typhimurium going through a
phase I clinical trial is strain VNP20009, which contains
deletions in the msbB and purl genes, to attenuate virulence
and avoid septic shock (216).

A more recent approach has been combining bacteria-mediated
cancer therapies with other kinds of therapies. For example, a
photo-thermal agent, such as melanin-like poly-dopamine (pDA),
was coated with VNP20009 targeted to hypoxic and necrotic tumor
areas. A mouse model of the tumor was irradiated with a near-
infrared laser, which achieved tumor targeting and tumor
elimination without relapse or metastasis (217).

Although no reports on the treatment of OSCC have been
published, the potential of these techniques to treat oral tumors is
enormous. OSCC are solid tumors, and they are easily accessible
to be treated at the site, which makes the ideal type of cancer
treated with bacterial-mediated tumor therapies.
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THE FUTURE OF MICROBIOME IN
CANCER THERAPY

We anticipate that the human microbiome will bit by bit play an
undeniably conspicuous role in cancer treatment. As of now, the
system of the microbiome’s impacts in cancer treatment is not
surely known; be that as it may, some clinical pilot studies will
assist with uncovering the capability of the microbiome in tumor
advancement and malignancy treatment. The advancement of
these clinical preliminaries will expel impediments for utilizing
the microbiome to improve and help treatment utilizing ICIs.
The microbiome, at first, can lessen complexities during
malignant growth treatment. Right now, the most widely
recognized noxious reaction when utilizing ICIs is related to
colitis. The reason for the ailment is uncertain. Curiously, the
lactic acid bacterium Lactobacillus reuteri can wipe out ICIs
related to colitis and improve weight reduction and irritation
(218). Second, the intestinal microbiome upgrades the
nourishing assimilation limit of patients with cancer and
improves their anti-tumor capacity. The rise of tumor micro-
ecological immune nutrition has additionally prepared for the
improvement of the microbiome as implement in disease
immunotherapy. Third, microbiome research is relied upon to
prompt the structure of immunization against tumors. An
ongoing microbial-based malignancy immunization has
demonstrated its utility. This malignant growth antibody
forestalls the development of squamous cell carcinoma
communicating epidermal growth factor receptor (EGFR) vIII
and instigates EGFR vIII-explicit cell insusceptibility (219).

Current research is thrilling for investigation against tumor
resistance and signifies a discovery in the structure of the
microbiome. For cancer immunotherapy, FMT is predictable
Frontiers in Immunology | www.frontiersin.org 12
to be the most critical immediate bio optimization tool. FMT is a
mainstream innovation that has been utilized clinically to treat
repetitive Clostridium difficile contaminations (220).

Finally, recent studies support the hypothesis that periodontal
inflammation exacerbates gut inflammation in vivo by
translocation of oral pathobionts to the gut, activating the
inflammasome in colonic mononuclear phagocytes resulting in
inflammation (221, 222). Additionally, periodontitis results in the
generation of reactive Th17 cells against oral bacteria. These
reactive Th17 cells are exhibit gut tropism and migrate to the
inflamed gut. When in the gut, Th17 cells of oral origin can be
activated by translocated oral pathobionts and cause the
development of colitis, but gut-resident microbes do not activate
them. We do not know if gut inflammation could have a similar
effect on the oral cavity’s inflammatory environment, as a result of
which the severity of head and neck cancer could increase. Studies
of the gut microbiome’s effect on the immune response to head
and neck cancer are lacking but maybe worth pursuing.
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