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Children with chronic mucocutaneous candidiasis (CMC) experience recurrent infections

with Candida spp. Moreover, immune dysregulation in the early life of these patients

induces various autoimmune diseases and affects normal growth and development. The

adaptive and innate immune system components play a significant role in anti-fungal

response. This response is mediated through IL-17 production by T helper cells. Inborn

errors in IL-17-mediated pathways or Candida spp. sensing molecules are known to

cause CMC. In this review, we describe underlying immune mechanisms of monogenic

primary immune deficiency disorders known to cause CMC. We will explore insights into

current management of these patients and novel available therapies.

Keywords: CMC, chronic mucocutaneous candidiasis, immune dysregulation, primary immune deficiency,

autoimmunity

INTRODUCTION

Children with chronic mucocutaneous candidiasis (CMC) experience recurrent infections with
Candida spp. Infections can bemucosal or invasive, and isolated or associated with other infections.
CMC can involve the vagina, esophagus, skin, and other organs. Moreover, severe immune
dysregulation in the early life of these patients induces various autoimmune diseases and affects
normal growth and development. Medical care is complex and usually warrants a combination of
systemic anti-fungal and immunosuppressive agents (1–3).

Advances in genetic tests in the recent decade have expanded our knowledge of underlying
immune mechanisms in CMC, elucidating an increasing number of newly defined primary
immune-deficiency disorders (4). An in-depth characterization of the impaired immune pathways
associated with CMC is critical in order to offer treatment tailored to the individual patient.

In this review, we describe monogenic primary immune-deficiency disorders known to cause
CMC. Based on insights into underlying immune mechanisms, we explore different targeted
therapies currently available or under development for these patients.

IMMUNE MECHANISMS UNDERLYING MONOGENIC CHRONIC
MUCOCUTANEOUS CANDIDIASIS

The discovery of monogenic causes for CMC has enabled us to expand our knowledge of
fundamental immune mechanisms (Figure 1).

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.593289
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.593289&domain=pdf&date_stamp=2020-10-16
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:odeds@hadassah.org.il
https://doi.org/10.3389/fimmu.2020.593289
https://www.frontiersin.org/articles/10.3389/fimmu.2020.593289/full


Shamriz et al. Novel Insights Into Monogenic CMC

FIGURE 1 | Underlying mechanisms of immune responses against Candida spp. (A) Candida spp. recognition and initial immune response involve key molecules of

the innate system. (B) Adaptive response against Candida spp. includes activation and differentiation of naïve CD4+ T cells into effector T helper 17 (Th17) cells. TLR,

toll-like receptor; PKC-δ, Protein kinase C-δ; MYD-88, Myeloid differentiation primary response 88; NFκB, Nuclear factor kappa-light-chain-enhancer of activated B

cells; IL-Interleukin; APC, Antigen presenting cell; TGF-β, Transforming growth factor beta (TGF-β); JAK-Janus Kinase; STAT, Signal transducer and activator of

transcription; RORγT, RAR-related orphan receptor gamma.

Immunity against Candida spp. consists of innate and

adaptive responses. The innate response involves recognition
of pathogen-associated molecular patterns (PAMPs) by pattern
recognition receptors (PRRs) found in different cells of the innate

immune system, such as monocytes and natural killer (NK)
cells (5). Various PRRs are known to induce pro- and anti-

inflammatory cytokine production in response to PAMP ligand
binding. These PRRs include toll-like receptors (TLRs) 2, 3, 4,
6, and 9, as well as other receptors, such as dectin 1–3 (5).
PAMP ligand binding to Dectin-1 leads to signal transduction via
adaptor-molecule caspase activation and recruitment domain-
containing 9 (CARD9) (5).

The adaptive immune system components also play a
significant role in anti-fungal response. This includes pathways
mediated by interleukin (IL)-17 and IL-22, which are produced
by Th17 cells (6). Indeed, defective fungal sensing by the innate
system, as well as abnormalities in IL-17-mediated pathways can
induce CMC (Table 1). Impairments in the adaptive response can
be further subdivided into decreased IL-17 cytokine production,
impaired IL-17-mediated intracellular signaling or increased
peripheral neutralization by anti-IL-17 autoantibodies.

Production of Neutralizing Autoantibodies
Against IL-17 and IL-22
T cell development in the thymus includes clonal deletion of
self-reactive T cells. This is achieved by the introduction of
self-antigens to naive T cells by medullary thymic epithelial
(mTEC) and dendritic cells. mTECs express autoimmune
regulator (AIRE), an important facilitator of self-antigen gene
expression (7).

AIRE deficiency is characterized by loss of self-tolerance
and the presence of autoreactive T cells and multiple severe
autoimmune diseases. AIRE loss-of-function (LOF) induces
autoimmune polyendocrinopathy-candidiasis-ectodermal
dystrophy (APECED). APECED is characterized by a classical
triad of CMC, hypoparathyroidism, and Addison’s disease
(8), but other systems can be affected by autoimmunity in
APECED, which can induce type 1 diabetes, hypothyroidism,
hypogonadism, vitiligo, and various other autoimmune diseases
(8). CMC in APECED patients is explained by decreased IL-17
and IL-22 cytokine serum levels, with corresponding increased
titers of anti-IL-17 and anti-IL-22 neutralizing autoantibodies
(9, 10). Thus, anti-IL-17/22 autoantibody production in
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TABLE 1 | Reported genes associated with chronic mucocutaneous candidiasis.

Underlying immune

mechanism

Syndrome Involved

gene

Inheritance References

Anti-IL-17 neutralizing

autoantibodies

APECED AIRE AR (1–3)

IL-17 and IL-17

receptor decreased

production

CMC IL17F

IL17RC

IL17RA

AR (4–7)

Defective Th17

differentiation or

intracellular signaling

STAT1 gain of

function

STAT1 AD (2, 8–18)

HIES STAT3 AD (19, 20)

DOCK8 AR (21)

TYK2 AR (22)

ZNF341 AR (23)

PGM3 AR (24)

CARD11 AD (25)

RORγT deficiency RORC AR (26)

ACT1 deficiency ACT1 AR (27, 28)

JNK1 deficiency MAPK8 AD (29)

MSMD IL12 AR (30)

IL12B

IL12RB1

Decreased Candida

spp. recognition

CARD9 deficiency CARD9 AR (31–33)

Dectin 1 deficiency CLEC7A AR (34)

IL, interleukin; APECED, Autoimmune polyendocrinopathy candidiasis ectodermal

dystrophy; AIRE, autoimmune regulator; Th17, T helper 17; DOCK8, dedicator of

cytokinesis 8; STAT, Signal transducer and activator of transcription; HIES, hyper

IgE syndromes; RORγT, RAR-related orphan receptor gamma; CARD, Caspase

recruitment domain-containing protein; PGM3, phosphoglucomutase 3; MSMD,

Mendelian Susceptibility to Mycobacterial Diseases; TYK2, tyrosine-protein kinase 2;

JNK1, c-Jun N-terminal kinase 1; AD, autosomal dominant; AR, autosomal recessive;

CLEC7A, C-Type Lectin Domain Containing 7A.

APECED demonstrates the important association between
immune dysregulation and CMC susceptibility.

Inborn Errors in IL-17 Production or IL-17
Receptor Surface Expression
IL-17R-mediated signaling has been shown in murine models to
be essential in the immune response against Candida spp. (11,
12). In 2011, a single patient was reported to have a homozygous
c.850C>T mutation in IL-17RA that caused reduced surface
expression of IL-17RA on peripheral blood mononuclear cells
(PBMC), reduced lymphocyte response to IL-17A/F stimuli,
and increased susceptibility to Candida spp. infections (13).
Two other patients with CMC had impaired IL-17F cytokine
production due to IL-17F gene mutation (13, 14). Since then,
several cohorts of CMC patients with IL-17R deficiencies have
been reported, including 21 patients from 12 unrelated families
with IL-17RA deficiency (15) and three patients with IL-17RC
deficiency (16).

Defective Th17 Differentiation or
Intracellular Signaling
Antigen-presenting cells produce IL-6, IL1-β, and IL-23,
as well as activate transforming growth factor (TGF)-β in

response to fungal infections. These cytokines bind to naïve
CD4+ T cells and trigger STAT3 followed by RAR-related
orphan receptor (ROR)γT-mediated transcription. RORγT
enhances production of IL-17A, IL-17F, and IL-21 by
lymphocytes, through which they differentiate into Th17 cells.
In turn, IL-21 further self-amplifies Th17-mediated immune
responses (17, 18).

STAT1 Gain of Function
Inborn errors in any of the key players in Th17 differentiation
can result in CMC. STAT1 is such a key component as
was demonstrated from the study of autosomal dominant
(AD) gain-of-function (GOF) mutations. STAT1 mutations are
probably the most common cause of monogenic CMC. These
patients present with a wide clinical spectrum of immune
dysregulation and increased susceptibility to bacterial, viral and
fungal infections (19). Delayed dephosphorylation of STAT1
in these patients impairs the function of IL-6 and IL-21, thus
decreasing STAT3-dependent differentiation of naïve CD4+ T
cells into Th17 cells (20). Of note, a recent report suggests
that some STAT1 GOF mutations may cause STAT1 levels
to be high, although phosphorylation is normal (21). Disease
severity appears to vary according to the mutation. For example,
patients with the T385M mutation are somewhat phenotypically
different from others. The T385M clinical spectrum consists
of chronic candidiasis, recurrent severe invasive infections
with bacterial pathogens, severe viral infections such as
cytomegalovirus and John Cunningham virus and, last but not
least, severe autoimmune phenomena reminiscent of a combined
immunodeficiency disease. These patients show progressive loss
of T and B cell function (22).

Hyper IgE Syndromes
Another striking example of impaired Th17 differentiation is
STAT3 LOF mutations known to cause autosomal dominant
hyper immunoglobulin E syndrome (AD-HIES). These
patients have severe eczema, skin abscesses, staphylococcal
infections, and decreased or absent Th17 cells, resulting in
increased susceptibility to Candida infections (23, 24). Markedly
increased IgE levels and eosinophilia are indicative of immune
dysregulation in these patients (25). STAT3 LOF patients are
distinctive by their non-immunologic features, which include
dysmorphic facial features, retained primary teeth, vascular
aneurysms, scoliosis, osteoporosis, and other musculoskeletal
manifestations (26).

Autosomal recessive (AR) HIES is caused by mutations in
dedicator of cytokinesis (DOCK) 8, ZNF341, and tyrosine kinase
(TYK)2. DOCK8 plays an important role in T cell activation
and proliferation via its role in T cell cytoskeleton and actin
reorganization. DOCK8 mutation results in abnormal Th17
polarization and function (27). Clinical manifestations include
an immune dysregulation phenotype consisting of allergic
disorders, such as atopic dermatitis and food allergies, as well
as increased susceptibility to staphylococcal, sino-pulmonary and
viral infections (26).

Other gene mutations causing AR-HIES have been
reported in ZNF341. This factor regulates the transcription
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of STAT3, therefore patients with ZNF341 deficiencies
are clinically similar to HIES with STAT3 LOF. They are
reported to have low levels of STAT3, reduced numbers
of Th17 cells, and high risk for CMC (28). TYK2, a JAK
family member, is critical for normal IL-12 and type I IFN
expression. Mutation of TYK2 can also cause AR-HIES. A
patient with a homozygous TYK2 mutation was reported
to have increased susceptibility to viral infections due to an
impaired IFN-mediated response, and increased risk for fungal
infections most probably due to defective IL-12/IL-23-mediated
responses (29).

In addition, we shouldmention phosphoglucomutase (PGM)3
and CARD11 deficiencies, both reported in some studies to induce
CMC and HIES. PGM3 deficiency is an AR-HIES disorder
characterized by glycosylation defects that have multi-systemic
manifestations including a neurodegenerative course. Sassi et al.
reported occurrence of CMC in four out of nine patients
(30), whereas Zhang et al. and Stray-Pederson et al. did not
describe such findings (31, 32). LOF mutations in CARD11 were
associated with severe atopy and immune dysregulation (33). In
both disorders, it appears that Th17 cells are present, rather than
absent. Therefore, the defect is probably functional and in the
context of global T cell defects.

IL-12/IL-12 Receptor Pathway
Inborn errors in IL-12-mediated pathways are known to play
a major cause for Mendelian susceptibility to mycobacterial
disease (MSMD), increasing the risk for mycobacterial and
viral infections. Interestingly, impaired defective IL-12 or IL-
12R may underlie abnormal IL-23-mediated signaling, thus also
exposing these patients to risk of developing CMC (13). Defective
IL-23- and IL-12-mediated pathways were previously reported
in patients with IL-23R and IL-12Rβ2 deficiencies, respectively.
Impaired signaling in these patients inducedMSMD; however no
CMC was observed (34).

RORC, ACT1, and MAPK8 Mutations
STAT3 induces RORγT transcription, which leads to Th17
differentiation. ARmutations in RORγT have been demonstrated
to decrease Th17 cell counts and result in CMC. Interestingly,
these patients also presented with increased susceptibility
to mycobacterial infections due to impaired interferon
(IFN)-γ-mediated immunity, which also requires RORγT (35).

Regarding the IL-17-mediated pathway, one should also
remember other proteins downstream. ACT1 is an intracellular
adaptor protein in the IL-17-mediated signaling pathway. Several
human mutations in ACT1 are known to impair Th17 function
and induce CMC (36, 37). Staphylococcus aureus blepharitis (37)
and recurrent pneumonia (36) were also noted in these patients,
who display characteristics of primary immune deficiency
with dysregulation.

Finally, we should also mention mutations in MAPK8. AD
MAPK8 mutations resulting in c-Jun N-terminal kinase 1
(JNK1) deficiencies were previously reported to induce CMC.
Impaired Th17 differentiation and decreased responses to IL-17A
and IL-17F stimuli were shown. Interestingly, JNK1-deficient
patients with CMC were also found to have a novel connective

tissue disease, thus distinguishing mutant MAPK8 from other
monogenic inducers (38).

Decreased Recognition of Candida
Infections
The innate response against Candida spp. is complex.
Recognition of fungal PAMPs by PRR is critical for Candida
spp. sensing, as is the Dectin-1–Syk–CARD9 signaling pathway.
Biallelic mutations in CARD9 are reported to induce CMC and
general increased susceptibility to fungal infections (39–45).
In comparison with IL-17-associated inborn errors, CARD9
deficiency is thought to induce a more severe and invasive
candidiasis, affecting various tissues including even the central
nervous system (CNS) (46).

Dectin-1 deficiency has also been shown to induce reduced
recognition of β-glucans with increased susceptibility to Candida
spp. infections. However, an important feature of this disorder
is the lack of susceptibility to other infections, which defines
it as an isolated CMC (47). Impairment of the Dectin-1–
Syk–CARD9 pathway also affects the differentiation of CD4+

naïve T cells into Th17 cells, thereby interfering with the
adaptive immune response to Candida spp. (6). Indeed, Tyr238X
mutation in dectin-1 was previously described to cause CMC
and onychomycosis phenotypes, as well as decreased IL-17 levels.
However, phagocytosis and killing of Candida spp. in these
patients were intact (47). Although dectin-1 deficiency is not
included in International Union of Immunological Societies
(IUIS) 2019 classification (4), the Tyr238Xmutation can be found
in gnomAD1.

CURRENT MANAGEMENT OF
MONOGENIC CHRONIC
MUCOCUTANEOUS CANDIDIASIS

Current management of CMC consists mainly of prophylactic
anti-fungal agents, such as fluconazole (1). However,
other therapeutic modalities are currently available.
Granulocyte-macrophage colony-stimulating factor (GM-CSF)
production by PBMC is suggested to be reduced in CARD9-
deficient patients. A patient with a hypomorphic CARD9
mutation presenting with CNS candidiasis was found to achieve
clinical remission after GM-CSF administration (46), and GM-
CSF has been found to be effective in other patients with CARD9
deficiency (48).

Histone deacetylase (HDAC) inhibitors were also examined
in the management of CMC, especially in patients with STAT1
GOF mutations. Inhibition of histone acetylation is thought to
affect the adaptive and innate immune systems. Indeed, HDAC
inhibitors were found to rescue STAT3-mediated pathways in
STAT1 GOF patients (49). Moreover, in-vitro treatment with
HDAC inhibitors resulted in increased IL-22 production in
response to Candida spp. (49).

1https://gnomad.broadinstitute.org/variant/12-10271087-A-C?dataset=gnomad_

r2_1
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Hematopoietic stem cell transplantations (HSCT) have some
efficacy in CMC. For example, in two patients with CARD9
deficiency, HSCT from haploidentical and fully matched donors
was successful, although a second HSCT was required in the
first patient. Complete clinical resolution of fungal infections
was noted in both patients (45). There are reports of successful
HSCT in STAT1 GOF patients as well, with complete resolution
of immune dysregulation and rescue of Th17 differentiation and
function (50). However, the results of HSCT in STAT1 GOF
are generally not favorable, with high rates of secondary graft
failure (51).

Targeted immunotherapies for CMC-inducing inborn errors
are therefore warranted. Ruxolitinib, a Janus kinase (JAK)1/2
inhibitor, is reportedly effective in STAT1 GOF. Ruxolitinib
treatment of a STAT1GOF child presenting with a clinical picture
of CMC and autoimmune cytopenia was shown to directly
intervene with the impaired immune pathways. It improved
Th17 differentiation, decreased Th1-mediated responses, and
attenuated CMC and immune dysregulation (52). Another study
found that ruxolitinib in STAT1 GOF patients can rescue NK
cell maturation. Moreover, it was effective in restoring perforin
expression on NK cells, thus rescuing NK cytotoxic function

(53). Other reports of children with STAT1 GOF mutations
have confirmed the efficacy and safety of ruxolitinib in this
disorder (54–56).

CONCLUSIONS

Current advances in next-generation sequencing have revealed
various monogenic inducers of CMC. Understanding the
impaired immune pathways involved in CMC is critical
in the management of these patients. CMC is strongly
associated with immune dysregulation and autoimmunity in
early childhood. Therefore, a joint collaboration between
immunologists, endocrinologists, and infectious disease and
other specialists is needed in order to offer a personally tailored,
effective, treatment to these patients.
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