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Autoimmune diseases, such as systemic lupus erythematosus, are characterized by
excessive inflammation in response to self-antigens. Loss of appropriate
immunoregulatory mechanisms contribute to disease exacerbation. We previously
showed the suppressive effect of vancomycin treatment during the “active-disease”
stage of lupus. In this study, we sought to understand the effect of the same treatment
given before disease onset. To develop a model in which to test the regulatory role of the
gut microbiota in modifying autoimmunity, we treated lupus-prone mice with vancomycin
in the period before disease development (3–8 weeks of age). We found that
administration of vancomycin to female MRL/lpr mice early, only during the pre-disease
period but not from 3 to 15 weeks of age, led to disease exacerbation. Early vancomycin
administration also reduced splenic regulatory B (Breg) cell numbers, as well as reduced
circulating IL-10 and IL-35 in 8-week old mice. Further, we found that during the pre-
disease period, administration of activated IL-10 producing Breg cells to mice treated with
vancomycin suppressed lupus initiation, and that bacterial DNA from the gut microbiota
was an inducer of Breg function. Oral gavage of bacterial DNA to mice treated with
vancomycin increased Breg cells in the spleen and mesenteric lymph node at 8 weeks of
age and reduced autoimmune disease severity at 15 weeks. This work suggests that a
form of oral tolerance induced by bacterial DNA-mediated expansion of Breg cells
suppress disease onset in the autoimmune-prone MRL/lpr mouse model. Future
studies are warranted to further define the mechanism behind bacterial DNA promoting
Breg cells.
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BACKGROUND

Recent evidence suggests an association between the
composition of gut microbiota and the pathogenesis of
systemic lupus erythematosus (SLE), a systemic autoimmune
disease affecting over 5 million people worldwide (1–3). We and
others have reported intestinal dysbiosis in SLE patients and the
abnormal dynamics of the gut microbiota in different lupus-
prone mouse models (4–12). However, whether the gut
microbiota is a cause or a secondary effect of lupus pathogenesis is
still under debate. Moreover, whether the gut microbiota contribute
only to the effector phase of SLE or play a more nuanced role in
regulating the induction of SLE remains unknown. In female lupus-
prone MRL/Mp-Faslpr (MRL/lpr) mice, a significant depletion of
Lactobacilli was observed (4). However, oral administration of a
mixture of five Lactobacillus strains largely attenuated lupus-like
symptoms in these mice (13), suggesting an essential role of the
balance of microbiota genera in SLE pathogenesis. On the other
hand, germ-free MRL/lpr female mice exhibited very similar lupus
disease course and clinical parameters compared to mice housed
under conventional conditions (14). This indicates that entire
removal of gut microbiota throughout the lifespan neither
attenuates nor exacerbates lupus. Rather, the effects of gut
microbiota on lupus disease may be more complex and time-
dependent, as we found that the removal of gut microbiota after
lupus onset, achieved by treatment with mixed antibiotics
(ampicillin, neomycin, metronidazole and vancomycin) or
vancomycin alone, ameliorated lupus nephritis in female MRL/lpr
mice (15). Whether there are other regulatory effects of the gut
microbiota besides a role in the effector phase of disease, however,
remains unresolved.

There is evidence that a variety of regulatory cells can modify
lupus pathogenesis (16–18). Among these are regulatory B (Breg)
cells that have been recognized as critical modulators of both
normal and aberrant immune responses, especially in
autoimmune disorders (19, 20). Numerical impairment of Breg
cells has been observed in SLE patients, particularly those with
active lupus nephritis (21). In mouse studies, the initial finding
that B cell-deficient lupus-prone mice exhibited exacerbated
disease brought the suppressive functions of Breg cells to light
(22). Further studies revealed that the exacerbated disease
phenotype was only seen when B cells were depleted early in
life (23). In contrast, B cell depletion during late stages of disease
was beneficial, consistent with the known function of B cells to
produce pathogenic autoantibodies and present autoantigens to
T cells in lupus (24, 25). This suggests that Breg-mediated
protection from lupus may be restricted to the pre-disease
stage. However, direct experimental evidence is lacking to
support the hypothesis that the effect of Breg cells on lupus is
time-dependent.

The involvement of the gut microbiota in Breg function has
been of great interest in recent years (26, 27). Studies have linked
microbiota to IL-10 producing Breg induction in colitis and
arthritis mouse models, but the relationship between gut
microbiota and Breg development in SLE has not been
explored. We hypothesized that Breg cells could be induced by
bacterial components, such as DNA, from the gut microbiota
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and that Breg function might suppress the development of SLE in
disease-prone mice. Consistent with this, B cells isolated from
lupus-prone mice produce more IL-10 in response to stimulation
by CpG oligonucleotides than normal mouse B cells, but not to
stimulation through the B-cell receptor or CD40 ligation (28).
Moreover, B cells express toll-like receptor 9 (TLR9), the
receptor of CpG-DNA; and TLR9-deficient lupus mice exhibit
exacerbated disease suggesting a protective role for TLR9 ligation
in lupus (29). These data support our hypothesis that bacterial
DNA from the gut microbiota, rich in unmethylated CpG motifs
(30), may promote the protective effects of Breg cells against
lupus by inducing their IL-10 production.

Here, we develop a model in which to test the role of the gut
microbiota in suppressing the initiation of SLE and present
evidence for an important protective mechanism that involves
bacterial DNA from the gut microbiota and the induction of
Breg cells.
METHODS

Mice and Treatments
Female MRL/Mp-Faslpr (MRL/lpr, stock number 000485) mice
were purchased from The Jackson Laboratory (Bar Harbor, ME)
and bred and maintained in a specific pathogen-free facility
according to the requirements of the Institutional Animal Care
and Use Committee (IACUC) at Virginia Tech (Animal Welfare
Assurance Number: A3208-01). CO2 was used for euthanasia
according to the IACUC protocol. All experiments were
performed in accordance with the National Institutes of Health
guide for the care and use of Laboratory animals (NIH
Publications No. 8023, revised 1978). Vancomycin (2 g/L) was
given in the drinking water during the indicated periods of time.
The drinking water containing vancomycin was replenished once
a week. Endotoxin-free E. coli bacterial DNA was purchased
from InvivoGen (San Diego, CA). Eighty micrograms per mouse
of bacterial DNA was prepared in phosphate buffered saline
(PBS) then orally gavaged to vancomycin-treated mice once a
week for 4 consecutive weeks at 4, 5, 6, and 7 weeks of age. All
experiments were performed at least twice.
Renal Function
Urine was collected weekly starting from disease onset at 8 weeks
of age, and all samples were stored at −20°C and analyzed at the
same time with a Pierce Coomassie Protein Assay Kit (Thermo
Scientific). When mice were euthanized at 15 weeks of age,
kidneys were fixed in formalin for 24 h, embedded in paraffin,
sectioned, and stained with periodic acid-Schiff (PAS) stain by
Virginia Tech Animal Laboratory Services (ViTALs) at Virginia-
Maryland College of Veterinary Medicine. Slides were read with
an Olympus BX43 microscope. All the slides were scored in a
blinded fashion by a board-certified veterinary pathologist.
Glomerular lesions were graded on a scale of 0 to 3 for each of
the following five categories: increased cellularity, increased
mesangial matrix, necrosis, the percentage of sclerotic
November 2020 | Volume 11 | Article 593353
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glomeruli, and the presence of crescents. Tubulointerstitial (TI)
lesions were graded on a scale of 0 to 3 for each of the following
four categories: presence of peritubular mononuclear infiltrates,
tubular damage, interstitial fibrosis, and vasculitis.

Cell Isolation and Flow Cytometry
Spleens were collected and mashed in 70-µm cell strainers with
complete media (RPMI 1640, 10% fetal bovine serum, 1 mM
sodium pyruvate, 1% 100× MEM non-essential amino acids,
10 mM HEPES, 55 mM 2-mercaptoethanol, 2 mM L-glutamine,
100 U/ml penicillin–streptomycin, all from Life Technologies,
Grand Island, NY). Red blood cells were lysed with RBC lysis
buffer (eBioscience). For surface staining, cells were blocked with
anti-mouse CD16/32 (eBioscience), stained with fluorochrome-
conjugated antibodies, and analyzed with BD FACS Aria II flow
cytometer (BD Biosciences, San Jose, CA). For intracellular
staining, Foxp3 Fixation/Permeabilization kit (eBioscience) was
used. Zombie Aqua fixable viability kit (Biolegend) was used to
exclude dead cells. Anti-mouse antibodies used in this study
include the following: CD3-APC, CD4-PE-Cy7, CD8-PerCP/
Cy5.5, IL-10-PerCP/Cy5.5, IFNg-APC/Cy7, IL-17A-FITC,
CD44-FITC, CD62L-APC/Cy7, Foxp3-PE, B220-PE, CD19-
APC (Biolegend); RORgt-PE (eBioscience). Flow cytometry
data were analyzed with FlowJo.

RT-qPCR
Spleen and kidney were homogenized with Bullet Blender
homogenizer (Next Advance), and total RNA was extracted
with RNeasy Plus Universal Kit (Qiagen) according to the
manufacturer’s instructions. Genomic DNA was removed by
digestion with RNase free DNase I (Qiagen). Reverse
transcription was performed by using iScript cDNA Synthesis
Kit (Bio-Rad). Quantitative PCR was performed with iTaq
Universal SYBR Green Supermix (Bio-Rad) and ABI 7500 Fast
Real-Time PCR System (Applied Biosystems). Relative gene
expression was calculated using L32 as the housekeeping gene.
Reactions were run in triplicate. Primer sequences for mouse
L32, IL-17A, Has1, Has2, Has3, IL-1b, TNFa and IL-6 are listed
in Supplemental Table I.

ELISA
Anti-dsDNA IgG was measured according to a previously
described method (31). Relative anti-dsDNA IgG levels were
calculated as the ratio between anti-dsDNA IgG (U/ml) and total
IgG (mg/ml), and fold changes are shown with the ratio of the
control group set as 1. Total IgG and cytokine concentrations
were determined with mouse IgG (Bethyl Laboratories), IL-10,
IL-6, IFNg (Biolegend) and IL-35 (LifeSpan BioSciences) ELISA
kits, respectively, according to the manufacturers’ instructions.
Samples were run in duplicate.

Breg Cell Isolation and Adoptive Transfer
IL-10 producing B cells were isolated from the spleens and
mesenteric lymph nodes (MLNs) of sex- and age-matched (6
and 7 weeks of age, or 11 and 12 weeks of age) female MRL/lpr
donor mice with the Mouse Regulatory B Cell Isolation Kit,
purchased from Miltenyi Biotec (Gladbach, Germany) following
Frontiers in Immunology | www.frontiersin.org 3
the manufacturer’s protocol. Single cell suspensions were
prepared from spleens and MLNs and B cells were enriched by
using the Regulatory B cell Biotin-Antibody cocktail, followed by
addition of Anti-Biotin MicroBeads and magnetic separation on
LD Columns (Miltenyi Biotec). Regulatory B cells were enriched
following in vitro stimulation of purified splenic B cells.
Specifically, enriched B cells were stimulated for 16 h with
10 µg/ml lipopolysaccharide (LPS), followed by 5 h of 50 ng/ml
phorbol myristate acetate (PMA) and 500 ng/ml ionomycin.
Stimulated cells were labeled with Regulatory B Cell Catch
Reagent (Miltenyi Biotec) and incubated for 45 min. The
supernatant was removed, and cells were resuspended in buffer
and labeled with Regulatory B Cell Detection Antibody. Anti-PE
microbeads were mixed into the cell suspension and cells were
magnetically separated on LS columns (Miltenyi Biotec) to
capture IL-10 secreting Breg cells by positive selection. For
adoptive transfer, each recipient mouse was injected with one
million of these isolated Breg cells per injection through the tail
vein. Two injections either at 6 and 7 weeks of age (pre-disease
stage) or at 11 and 12 weeks of age (active-disease stage) were
carried out. Mice in the control cell group were injected with cells
depleted of Breg cells at 6 and 7 weeks of age. Specifically, the
non-B cell fraction from the initial B-cell enrichment was
combined with the negative fraction of stimulated B cells
following IL-10 capture and magnetic isolation to constitute the
control cell population used for adoptive transfer.

Microbiota Sampling and Analyses
Fecal microbiota samples were obtained by taking a mouse out of
the cage and collecting a fecal pellet. To avoid cross-
contamination, each microbiota sample was collected by
using a new pair of sterile tweezers. Samples were stored at
−80°C. All samples were processed at the same time. Sample
homogenization, cell lysis, and DNA extraction were performed
as previously described (13). PCR was performed, and purified
amplicons were sequenced bidirectionally on an Illumina MiSeq
at Argonne National Laboratory. 16S rRNA gene sequencing
data were analyzed as described previously (13). The datasets
generated and analyzed during the current study are available
in the NCBI SRA (BioProject #PRJNA529260). For gas
chromatography measurement of short chain fatty acids
(SCFAs), fecal samples were weighed then acidified using
phosphoric acid immediately before analysis at Virginich Tech
Environmental and Water Resources Research Facility.
Quantification was performed with a Hewlett-Packard 5890
gas chromatograph fitted with a flame ionization detector
coupled with a Nukol GC column and a Hewlett-Packard 7673
GC/SFC injector. The injector settings were: temperature -200°C;
carrier-hydrogen; injection mode-split (ratio 2:1). The
temperature program was: initial temperature 80°C held for 3
min, then increase temperature at a rate of 6°C per minute to
140°C and hold for 1 min. The Flame Ionization Detector
Settings were: temperature-250°C; hydrogen flow-35 ml/min;
air flow-350 ml/min; makeup flow (nitrogen)-15 ml/min; total
makeup (makeup + column flow)-30 ml/min. The levels of
individual SCFAs are shown as µmol/g feces.
November 2020 | Volume 11 | Article 593353
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Oral Administration of SCFAs
MRL/lpr mice were treated with 2 g/L of vancomycin in the
drinking water starting at 3 weeks of age. To avoid the possibility
of chemical reactions between vancomycin and SCFAs in the
drinking water, SFCAs were administered by oral gavage from 3
weeks of age to 8 weeks of age. Sodium acetate, sodium
propionate and sodium butyrate (Sigma) were administered by
oral gavage, at 1 g/kg of body weight, diluted in water, five times
per week. Mice were then monitored during disease progression,
and urine samples were collected weekly. Mice were sacrificed for
sample collection at 15 weeks of age.

Statistical Analysis
Analysis of non-sequencing data was performed with non-
parametric Mann–Whitney test for the comparison of two
groups, and non-parametric Kruskal–Wallis test for the
comparison of three or more groups. Unless specified, the
PBS-treated groups were used as the control. The results were
considered statistically significant when p < 0.05. All analyses
were performed with GraphPad Prism (San Diego, CA).
RESULTS

Oral Vancomycin Given at the Pre-Disease
Stage Exacerbates Lupus
To explore the role of the microbiota in modulating the
induction of SLE, we treated MRL/lpr mice with antibiotics
before disease initiation. We chose vancomycin because it is not
absorbed in the gastrointestinal tract (32), so any effect on
the immune system should be mediated by local effects on the
gut microbiota. As previously noted, both female (15) and
male MRL/lpr mice (Figures S1A–C) benefited from oral
vancomycin treatment during the active-disease stage, i.e., 9 to
15 weeks of age. However, when we extended the time course of
vancomycin treatment starting at 3 weeks and ending at 15
weeks of age, which covered both pre-disease and active-disease
stages, the beneficial effects of vancomycin disappeared in both
female (Figures 1A–E) and male MRL/lpr mice (Figures S1A–
C). This is consistent with the lack of phenotype change between
germ-free and specific pathogen-free MRL/lpr mice (14). We,
therefore, hypothesized that the effects of gut microbiota on
lupus was time-dependent, and questioned whether oral
vancomycin treatment during the pre-disease stage, i.e., 3 to 8
weeks of age, could promote lupus disease development. We
decided to focus on female mice from then on as lupus has a
strong female bias. Strikingly, splenomegaly in female MRL/lpr
mice was significantly aggravated as a result of vancomycin
treatment before disease onset (Figure 1A). In addition, the
ratio of anti-double stranded (ds)DNA autoantibodies to total
IgG in the serum was significantly elevated (Figure 1B).
As kidney inflammation (or lupus nephritis) affects more than
half of SLE patients (33), we assessed renal function by
measuring proteinuria, renal lymph node (RLN) weight, and
kidney histopathology. Both proteinuria and the RLN weight
Frontiers in Immunology | www.frontiersin.org 4
were significantly increased when mice were treated with
oral vancomycin before disease onset (Figures 1C, D).
Early vancomycin treatment also resulted in significantly
higher pathologic scores in glomerular and tubulointerstitial
(TI) evaluations (Figure 1E). These results indicate that gut
microbiota has a time-dependent influence on the development
of lupus, and that vancomycin-mediated modulation of gut
microbiota before disease initiation could exacerbate lupus in
female MRL/lpr mice.

To investigate the immunological mechanism(s) by which
early vancomycin treatment worsened lupus, we first examined
IL-6 and IL-17 as we had previously shown that diminished IL-6
and IL-17 levels contributed to the attenuated disease phenotype
upon vancomycin treatment during the active-disease stage (15).
We found that whereas long-term vancomycin treatment (3 to
15 weeks of age) did not change the serum level of IL-6, it was
significantly upregulated in mice treated from 3 to 8 weeks only
(Figure 1F). We next quantified splenic T-helper 17 (Th17) cells
and CD4−CD8− double-negative (DN) T cells, two major cellular
sources of IL‑17 in both human and mouse lupus (34). A
significant imbalance towards Th17 cells over regulatory T
(Treg) cells was noted (Figure 1G). Moreover, the percentage
and absolute number of DN T cells were significantly increased
in mice treated with vancomycin before disease onset (Figure
1H). These data suggest a higher level of pro-inflammatory IL-17
cells as a result of treating mice with vancomycin before disease
onset. Indeed, the transcript level of Il17a was significantly
increased in both spleen and kidney (Figure 1I). The
proportion of CD4+ and CD8+ T cells did not change (Figures
S1D, E); however, an elevated level of IFNg, which is known to
promote lupus in both humans and MRL/lpr mice (35), was
found in the serum of mice treated with vancomycin before
disease onset (Figure 1J). Further analysis showed that oral
vancomycin treatment before disease onset resulted in
significantly more IFNg-producing CD4+ T cells (or Th1 cells)
in the spleen (Figure 1K and Figure S1F).

We next analyzed the phenotype of immune cells in 8-week-
old mice right after vancomycin treatment before disease onset,
and found a significantly reduced percentage of IL-10
producing Breg cells (Figure 1L), but not of Treg cells
(Figure S1G). Breg cells produce large amounts of IL-10 and
IL-35, two anti-inflammatory cytokines known as key
mediators of the regulatory function of Breg cells (19). We
found that treatment with vancomycin before disease onset
significantly decreased the serum levels of both IL-10 and IL-35
at 8 weeks of age (Figures 1M, N), suggesting a functional loss
of Breg cells after vancomycin treatment during the pre-disease
stage. However, the percentage of Breg cells in 15-week-old
mice did not differ (Figure S1H). This is likely related to the
increase in Breg inducers during active disease, including self-
DNA complexes and multiple elevated pro-inflammatory
cytokines (26, 36). In addition, the bias towards DN T cells
was already present at 8 weeks of age in mice treated with
vancomycin (Figure S1G), suggesting early initiation of IL-17
production. Interestingly, administration of neomycin from 3
to 8 weeks of age led to minimal changes in RLN weight,
November 2020 | Volume 11 | Article 593353
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proteinuria and circulating IL-6 (Figure S2), suggesting a
vancomycin-specific effect on exacerbation of lupus nephritis.
Neomycin, a systemically absorbed antibiotic, might have
additional effects apart from its action on the gut microbiota.
Notably, anti-dsDNA autoantibodies were increased with
neomycin (Figure S2B) but did not seem to play a
pathogenic role. The implications of this observation
are unclear.

Taken together, these results suggest that vancomycin-
mediated modulation of gut microbiota before disease onset
significantly reduced Breg cells, resulting in systemic
inflammation that may contribute to lupus exacerbation in
female MRL/lpr mice.

Adoptive Transfer of Breg Cells Before
Disease Onset Attenuates Lupus in
Vancomycin-Treated Mice
To directly address the hypothesis that Breg cells served to
protect mice from developing SLE, we adoptively transferred
Breg cells into vancomycin-treated mice at different disease
stages. Compared to untreated mice and mice treated with
vancomycin only, early transfer of enriched IL-10 producing
Breg cells (90% purity) at 6 and 7 weeks of age significantly
reduced weights of secondary lymphoid organs (Figure 2A) and
the level of anti-dsDNA autoantibodies at 15 weeks of age
(Figure 2B). In addition, adoptive transfer of Breg cells before
disease onset significantly ameliorated lupus nephritis with
reduced proteinuria, smaller RLN and less severe glomerular
pathology (Figures 2C, D). Importantly, transfer of cells
depleted of IL-10 producing Breg cells, which included 29%
activated IL-10− B cells and 70% non-B cells (Figure 2E) but no
introduction of Breg cells (Figure 2E, F), during the same time
frame did not have the protective effects (Figures 2G–J).
Furthermore, although Breg cells were increased in number
regardless of the time of transfer (Figure 2F), Breg cells
injected during the active-disease stage were not beneficial
(Figures 2G–J). The lack of beneficial response to late Breg
injection suggests that the immunosuppressive function of Breg
cells may be more pronounced during the pre-disease stage of
lupus development.

We next examined immune cell populations and cytokine
production with or without adoptive transfer of Breg cells. Breg
cell transfer during the pre-disease stage significantly decreased
the percentage of DN T cells and altered the balance of Treg/
Th17 towards Treg cells (Figure 2K and Figure S2E).
Additionally, the percentage of IFNg-producing CD4+ T
(or Th1) cells significantly decreased in mice receiving Breg
cells before disease onset (Figure 2L and Figure S2F). The
level of IFNg in the circulation was not significantly affected,
although there was a trend for decline. These results suggest
that increasing the abundance of activated Breg cells in
the vancomycin-treated mice—where Breg function was
impaired—reduced IL-17 and IFNg producing cells leading to
attenuation of systemic manifestations and prevention of the
progression of nephritis in MRL/lpr mice. Whether activated
Breg cells mitigated lupus in a IL-10 dependent manner, or
Frontiers in Immunology | www.frontiersin.org 6
through the production of other cytokines such as IL-35, will be
investigated in the future.

Disease Stage-Specific Effects of Oral
Vancomycin on the Gut Microbiota
The components of the gut microbiota removed by oral
vancomycin may be responsible for inducing Breg cells at the
pre-disease stage before disease onset in MRL/lpr mice. Analysis
of gut microbiota revealed that the diversity and richness of
commensal bacteria were quickly—within 2–3 weeks after oral
vancomycin was started—and significantly reduced to similar
levels regardless of the treatment time frame (Figure 3A).
However, the composition of the gut microbiota at 15 weeks of
age was quite different between the two vancomycin-treated
groups (Figure 3B), indicating that the same antibiotic could
result in different changes of gut microbiota when given at
different times. Focusing on the pre-disease period where
vancomycin exacerbated autoimmunity, we found significant
changes in the gut microbiota at several taxonomical levels. At
the phylum level, in vancomycin-treated young mice,
Bacteroidetes were completely removed and replaced by
Proteobacteria whereas Firmicutes remained unchanged
(Figure 3C). Within the phylum Firmicutes, changes in
multiple classes were observed, specifically, the decline of
Clostridia and Erysipelotrichia but increase of Bacilli (Figure
3D). Within the class Clostridia, every major family decreased,
including Clostridales and Lachnospiraceae (Figure S3A).
Interestingly, within the class Bacilli, whereas the order
Lactobacillales was more abundant with vancomycin treatment
(Figure 3E), not every Lactobacillus species increased its
abundance: L. animalis flourished, L. intestinalis decreased,
whereas L. frumenti remained unchanged (Figure S3B). At
the order level, the major alterations were expansions of
Lactobacillales and Enterobacteriales along with complete
removal of Bacteroidales and Clostridiales (Figure 3E).

Restoration of Bacterial DNA Attenuates
Lupus in Vancomycin-Treated Mice
As oral vancomycin can remove many producers of short chain
fatty acids (SCFAs) (37, 38), we quantified the levels of fecal SCFAs
with gas chromatography. In female MRL/lpr mice, the level of
total SCFAs in the feces increased from 3 to 5 weeks of age then
plateaued (Figure S4A). Vancomycin significantly lowered the
level of fecal SCFAs, consistent with vancomycin-mediated
removal of Clostridia (Figure S4B). Further analysis showed
that the three most abundant SCFAs—acetate, propionate and
butyrate—were all significantly reduced in the feces with
vancomycin treatment (Figure S4C). In contrast, the fecal
heptanoate level significantly increased although its role in
immune regulation and autoimmunity is unknown. In light of
the known effect of SCFAs on Treg cells (39), we examined whether
restoration of SCFAs could promote Breg cells and attenuate
lupus in vancomycin-treated mice. Our result showed that
supplementation with SCFAs did not increase the percentage of
Breg cells (Figure S4D). Consequently, SCFA supplement did not
attenuate either systemic autoimmunity (Figure S4E) or lupus
November 2020 | Volume 11 | Article 593353
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FIGURE 2 | Adoptive transfer of Breg cells at the pre-disease stage attenuated lupus in vancomycin-treated mice. Female MRL/lpr mice
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nephritis (Figure S4F). These results suggest that the reduction of
SCFAs upon vancomycin administration was not the reason for
Breg impairment and disease exacerbation.

Through removal of gut microbiota, vancomycin would also
decrease the bacterial load and thus bacteria-derived DNA, the
latter of which had been shown to suppress lupus in mice (40).
Interestingly, in our mice, vancomycin led to a significant
decrease in the total bacterial load in the gut and a significant
reduction of bacterial DNA in the circulation (Figure 4A). We
therefore asked whether bacterial DNA could be the Breg inducer
that would protect vancomycin-treated mice from disease
exacerbation. Notably, recent studies have shown a role of oral
antigens in the induction of tolerance involving Breg cells (41–
46), but previous studies have not shown a role of orally
administered nucleic acids in tolerance. We, therefore, sought
to determine whether orally gavaged endotoxin-free E. coliDNA,
administered once a week from 4 to 7 weeks of age at 80 µg/dose,
would induce Breg-mediated oral tolerance in vancomycin-
treated female MRL/lpr mice. Strikingly, oral administration of
bacterial DNA led to a significant increase of Breg cells in the
spleen and MLN (Figures 4B and S5A, B) without affecting
Foxp3+ Treg cells, Foxp3+RORgt+ Treg cells, or IL-10 producing
CD4+ T cells (Figures S5C, D). As a result, in vancomycin-
treated mice given oral bacterial DNA, the spleen and MLN
weights (Figure 4C), serum level of anti-dsDNA autoantibodies
(Figure 4D), proteinuria (Figure 4E), and kidney glomerular
score (Figure 4F) all significantly decreased. These results
suggest that orally administered bacterial DNA can induce a
form of oral tolerance and be protective against lupus
progression, and that the reduction in circulating bacterial
DNA by vancomycin treatment during the pre-disease stage
may be the cause of lupus exacerbation.

We next investigated the effects of bacterial DNA on
inflammatory mediators in the circulation and their cellular
sources in the spleen. Serum IL-6 was significantly decreased
by oral DNA treatment (Figure 4G). Correspondingly, the ratio
of Treg cells to Th17 cells was significantly increased in the
spleen (Figures 4H and S5E). DN T cells, another major IL-17
producer, were significantly reduced, together with a significant
increase of the proportion of CD8+ T cells (Figure 4I). In both
spleen and kidney, the expression of Il17a mRNA was
significantly decreased following bacterial DNA treatment
(Figure 4J). In addition, IFNg production from splenic CD4+

T cells was inhibited, resulting in a significant decrease of serum
IFNg (Figure 4K). Moreover, the expression of CD44 in CD8+ T
cells was significantly elevated in the spleen of bacterial DNA-
treated mice (Figure 4L), resulting in a significantly higher
percentage of CD44+CD8+ T cells (Figure 4M). CD44 is
important for T cell migration into inflammatory sites such as
the nephritic kidney (47). Because of their potential protective
effect against murine lupus (48–50), more CD8+ T cells
infiltrating the kidney may be beneficial. Furthermore,
treatment with bacterial DNA significantly decreased the
transcript levels of type 1 and type 2 hyaluronan synthases
(Has) in the kidney (Figure 4N), enzymes that mediate the
secretion of hyaluronate (HA) (51). HA is known as the principal
Frontiers in Immunology | www.frontiersin.org 9
extracellular CD44 ligand (51). CD44–HA interaction mediates
the recruitment of diverse immune cells, in particular T cells, and
contributes to disease activity in lupus (52–54). In patients and
mice with active lupus nephritis, the secretion of HA is enhanced
in kidney, which correlates with lymphocyte infiltration and
kidney damage (55, 56). Importantly, the inhibition of HA in
lupus-prone mice improved disease parameters, at least partially
by reducing the expression of pro-inflammatory cytokines,
including IL-1b, TNFa, and IL-6, in the kidney (57). We noted
that the expression of TNFa mRNA in the kidney was also
significantly reduced (Figure 4O). This may be another
mechanism by which the administration of bacterial DNA
attenuated lupus nephritis in vancomycin-treated female MRL/
lpr mice. Notably, the administration of bacterial DNA to mice
treated with vancomycin did not significantly alter the
composition of the small intestine microbiota (Figure S6),
suggesting that bacterial DNA may have bypassed the gut
microbiota to induce tolerance in these mice.
DISCUSSION

B cells can promote autoimmunity because of their capabilities to
produce autoantibodies and stimulate autoreactive T cells (58).
However, a subpopulation of B cells, namely Breg cells, are
immunosuppressive (19). Defective IL-10 production and
reduced immunosuppressive ability have been observed in Breg
cells isolated from the peripheral blood of SLE patients (59). This
indicates impairment of the regulatory function of Breg cells in
human SLE, highlighting them as a potential therapeutic target.
Unlike Treg cells that express Foxp3, Breg cells do not have a
common transcription factor. Any B cells may differentiate into
IL-10 producing Breg cells in response to the proper stimulation
(19). The gut microbiota has been suggested as an important
environmental stimulus of Breg cells as wildtype mice treated
with mixed antibiotics had fewer Breg cells (26), a phenomenon
consistent with our observation in lupus-prone mice.

To study the role of the gut microbiota on Breg cells, we chose
the antibiotic vancomycin as it is not absorbed in the gut (32).
Antibiotics readily absorbed in the intestine, such as neomycin,
might have systemic effects beyond those on the gut microbiota.
In this study, we found that vancomycin treatment before disease
onset significantly removed bacterial DNA from the gut and
circulation. In parallel, the development of Breg cells at 8 weeks
of age was dramatically inhibited, leading to more severe clinical
outcomes. Importantly, restoration of bacterial DNA in the
antibiotic-treated mice increased the abundance of Breg cells in
the spleen and MLN at 8 weeks of age, downregulated IL-17 and
IFNg related immune responses, and significantly attenuated
lupus. These results are consistent with those of an earlier
study in NZB/W F1 mice, where i.p. immunization with
bacterial DNA was protective against lupus nephritis (40).
However, no mechanism was given in the earlier study, and
the administration route of bacterial DNA was different (i.p. at
the dose of 50 µg). We administered bacterial DNA orally to
mimic the contribution of the gut microbiota and to determine a
November 2020 | Volume 11 | Article 593353
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FIGURE 4 | Restoration of bacterial DNA attenuated lupus in vancomycin-treated mice. Female MRL/lpr mice were treated with vancomycin (2 g/L) starting 3 week
PBS/mouse per dose) was orally gavaged to vancomycin-treated mice once a week for 4 consecutive weeks at 4, 5, 6, and 7 weeks of age. Analyses were perform
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time (n = 5). (F) Kidney glomerular score. (G) Serum level of IL-6 (n = 5). (H) The ratio of Treg to Th17 cells in the spleen (n = 5). (I) The percentages of CD4+, CD8+

of Il17a gene in the spleen and kidney (n = 5). (K) The percentage of IFNg producing CD4+ T cells in the spleen (left) and IFNg level in the serum (n = 5). (L) Represe
CD44+ cells in CD4+, CD8+ and DN T cells (right) (n = 5). (M) Percentage of CD44+CD8+ T cells in the spleen (n = 5). (N) Transcript level of Has1, Has2, and Has3
TNFa, and IL6 genes in the kidney (n = 5). #p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001. n.s., not statistically significant.

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Mu et al. Bacterial DNA, Breg Suppress Autoimmunity
role of bacterial DNA in inducing a form of oral tolerance that
mitigated autoimmunity. Future studies involving conditional
knockout of DNA sensors will delineate the mechanism by which
bacterial DNA induces Breg cells to protect against lupus. Notably, a
recent study has shown that B cell-specific expression of TLR9, a
sensor for bacterial DNA, is protective against lupus (60).

NZB/W F1 mice deficient of CD19, compared to unaltered
NZB/W F1 mice, showed an earlier onset of lupus nephritis and
exhibited a reduced survival rate, though the emergence of
autoantibodies was also delayed (22). In another study, the
depletion of all mature B cells, including Breg cells, accelerated
disease onset (23). However, the exacerbation of lupus was only seen
in NZB/W F1 mice with B-cell depletion initiated very early in life
from 4 weeks of age. In contrast, when B-cell depletion started at 12
to 28 weeks of age, the disease was significantly inhibited. It is likely
that early depletion of B cells largely removed Breg cells, whereas
late depletion was likely to have eliminated more autoreactive B
cells. While using a different lupus-prone mouse model, we
observed a very similar phenomenon on the development and
effect of Breg cells. Early reduction of circulating bacterial DNA by
vancomycin treatment significantly decreased the percentage of
Breg cells in the spleen, resulting in higher levels of IFNg
production, IL-17 mRNA expression, earlier disease initiation,
and exacerbation of lupus. On the contrary, the same antibiotic
dosage given at a later time (9 to 15 weeks of age) attenuated lupus-
like disease in the same mouse model (15). Interestingly,
replenishment of bacterial DNA from either gram-positive or
gram-negative bacteria, through oral gavage, increased the Breg
cells in both spleen and MLN at 8 weeks of age, while reducing
IFNg, TNFa, and late-stage disease severity (data not shown).
Additional supporting evidence for the role of Breg cells in
delaying disease initiation and late-stage disease severity is that
adoptive transfer of activated Breg cells ameliorated disease
parameters in vancomycin-treated mice when injected pre-disease,
while no reduction in disease severity was observed in
mice administered activated Breg cells following autoimmune
disease development. These results clearly indicate that the
immunosuppressive functions of Breg cells act to suppress
initiation of autoimmune disease. Notably, we had used a mixture
of IL-10- B cells (29%) and non-B cells (70%) as the cell control that
also included T cells such as Treg cells. This cell control given at the
pre-disease stage did not change the disease severity at 15 weeks of
age, suggesting that early introduction of activated IL-10 producing
Breg cells, rather than Treg cells, were responsible for the
attenuation of lupus. In addition, we found that the percentages
of Breg cells in the spleen were similar at the late-disease stage (15
week of age) regardless of treatment. This has been shown to be
related to the accumulation of DNA-containing immune complexes
during active disease, which, together with elevated pro-
inflammatory cytokines, can dominate the regulatory activity of
Breg cells (36). This may explain why antibiotic treatment during
the active-disease stage is beneficial, even with the removal of
bacterial DNA.

In this study, we have presented a novel mechanism in which
commensal microbiota are able to promote Breg abundance and
function during early autoimmune disease. It is evident that
Frontiers in Immunology | www.frontiersin.org 11
bacterial DNA can induce Breg cells during vancomycin
treatment, promoting immunosuppressive cytokine production
and mitigating disease exacerbation. Moreover, other cells may
contribute to Breg activation, following bacterial DNA recognition,
through cytokine production or antigen presentation, as shown by
the ability of plasmacytoid dendritic cell-derived Type I IFNs to
modulate TLR7 sensitivity of naïve B cells (61). Additional studies
are needed to define the underlying mechanism of bacterial DNA
promoting immunoregulation more completely. Notably,
however, while several oral antigens have been shown to induce
Breg cells (41–46), the role of oral nucleic acids in tolerance
induction has not been reported. We show here that bacterial
DNA is capable of inducing a form of oral tolerance that mitigates
autoimmunity in lupus mice.

In MRL/lpr mice, the results are somewhat controversial
regarding the role of Breg cells. One report described Breg cells
as protective, as the transfer of in vitro anti-CD40-generated B
cells greatly improved lupus nephritis through an IL-10-
dependent mechanism (62). However, in another study, B-cell-
specific IL-10 deletion did not affect lupus progression, implying
that endogenous IL-10 producing Breg cells are ineffective in
suppressing autoimmunity in MRL/lpr mice (63). This may be
explained by the time dependence of Breg function, and an
inducible model to deplete IL-10 producing Breg cells at
different time points will help delineate the importance of these
cells at different disease stages. Moreover, it is likely that other
anti-inflammatory mediators originated from Breg cells can
compensate the loss of IL-10 in regulating autoimmunity.
Indeed, IL-10 independent immune suppression by Breg cells
also occur (19). For example, a unique subset of IL-35 producing B
cells overlaps with the IL-10+ Breg subset. The promotion of IL-
35+ Breg cells in vivo conferred protection against autoimmune
disease (64). In our study, the reductions of IL-10+ Breg cells and
serum IL-10 were accompanied by reduced serum IL-35,
suggesting that IL-35 may be responsible for the regulatory
function of Breg cells on lupus in MRL/lpr mice. It is unknown
if this reduction in IL-35 is primarily related to decreased Breg cell
induction and reduced Breg IL-35 production, or reduced IL-35
production from regulatory CD4+ or CD8+ T cells subsequently
leading to reduced Breg induction. Since IL-35 can induce IL-10
producing Breg cells, it is possible that the reduced circulating IL-
35 observed with early vancomycin treatment contributes to the
reduced Breg induction. As such, a role for Treg cells or an
underlying metabolic mechanism contributing to the reduced
Breg abundance and function observed following early
vancomycin treatment cannot be ruled out. Further studies
involving B cell-specific deficiency of IL-35, preferably in an
inducible model, will help to elucidate the protective role of IL-
35 producing Breg cells against lupus.

In summary, vancomycin administered prior to autoimmune
phenotype development exacerbates disease markers, in part,
through reduced Breg cell numbers and circulating Breg-
associated cytokines. Replenishment of IL-10 secreting Breg cells
through adoptive transfer reduced autoimmune disease severity in
15 week-old female MRL/lpr mice. In addition, oral administration
of bacterial DNA induced Breg cells and attenuated lupus. This
November 2020 | Volume 11 | Article 593353

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Mu et al. Bacterial DNA, Breg Suppress Autoimmunity
work highlights a novel pathway of immune-regulatory modulation
by gut microbiota-supplied DNA that acts through promotion of
Breg cells in secondary lymphoid organs to restrain the
development of autoimmune disease.
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