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The escalation in living standards and adoption of ‘Western lifestyle’ has an allied effect on
the increased allergy and asthma burden in both developed and developing countries.
Current scientific reports bespeak an association between allergic diseases and metabolic
dysfunction; hinting toward the critical requirement of organized lifestyle and dietary
habits. The ubiquitous nuclear receptors (NRs) translate metabolic stimuli into gene
regulatory signals, integrating diet inflences to overall developmental and physiological
processes. As a consequence of such promising attributes, nuclear receptors have
historically been at the cutting edge of pharmacy world. This review discusses the recent
findings that feature the cardinal importance of nuclear receptors and how they can be
instrumental in modulating current asthma pharmacology. Further, it highlights a possible
future employment of therapy involving dietary supplements and synthetic ligands that
would engage NRs and aid in eliminating both asthma and linked comorbidities.
Therefore, uncovering new and evolving roles through analysis of genomic changes
would represent a feasible approach in both prevention and alleviation of asthma.
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INTRODUCTION

The advancement of science has caused a reduction in both mortality and morbidity associated with
infectious diseases. However, the modern lifestyle has constituted a world where cases of metabolic
and allergic diseases are prolific. The incidences of allergic diseases constitute the most chronic
maladies globally, with asthma leading the class. Asthma equally affects people from different
socioeconomic status or age groups and accounts for 339 million affected people worldwide (1). An
increase in allergic disorders has also been observed with the adoption of sedentary lifestyle and
higher living standards. The condition further deteriorates due to the prevalence of comorbidities
such as stress, obesity and viral infections (2–4). Despite the healthcare advancements, asthma is still
under-diagnosed and under-treated creating huge healthcare burden and social implications to
individuals and concerned families (5). Also surprisingly, even after taking the existent therapy, a
significant portion of the affected population continues to experience a recalcitrant form of
Abbreviations: AR, androgen receptor; ASM, airway smooth muscle; ER, estrogen receptor; FXR, farnesoid X receptor; GR,
glucocorticoid receptor; LXR, liver X receptor NR, nuclear receptor; PPAR, peroxisome proliferator-activated receptor; PR,
progesterone receptor; RAR, retinoic acid receptor; ROR, retinoid-related orphan receptor; RXR, retinoid X receptor; Th2, T
helper cells type 2; VDR, vitamin D receptor.
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asthma (6). This difficult-to-treat asthma is an attribute of either
insensitivity to corticosteroids or poor therapeutic adherence due
to various associated side-effects. Albeit the fraction of poorly
controlled asthma subjects is relatively small, they form a major
portion of mortality, morbidity and the associated cost.

The impetus behind this review is to accentuate the unmet
dearth of newer therapy targets and to emphasize the need for
customized therapeutics to bestir the challenges of current
asthma therapy. The present article elaborates on asthma and
the associated allies, a newer arena of fascinating drug targets –
nuclear receptors (NRs) and how these could be instrumental in
combating asthma and comorbidities.
ASTHMA: TALE OF AN ATYPICAL
AILMENT

The word ‘Asthma’ has Greek roots and its meaning translates to
short of breath. However, it was in late 19th century when the term
was refined with the publication of a treatise entitled “On Asthma
and its Treatment”. Thus, from that time, asthma came to be
recognized as a distinct ailment which gets triggered by a specific
set of stimuli and possesses clinical consequences (7). The modern
definition as provided by Global Initiative of Asthma (GINA)
describes asthma as a complex disease of lower airways
characterized by bronchoconstriction, excessive mucus
production, breathlessness and wheezing illness (8). The disease
is a mixed outcome of genetic susceptibility and environmental
influence resulting in a lifelong ailment (9). A consistent variability
is also seen in disease expression in terms of provoking elements,
age, gender, various forms of airway inflammation and index of
severity. The most commonly observed form is of allergic asthma
and its physiology involves T-cells, mast cells and eosinophils
majorly along with histamine, cytokines and leukotrienes as
inflammatory mediators (10). Asthma symptoms can range from
mild to severe and hence, has been classified into various
‘phenotypes’ based on observable symptoms or environmental
triggers. However, various phenotypes give no comprehension
about the underlying molecular mechanisms and therefore,
classification of asthma subtypes on the basis of involved cellular
mechanisms led to the recognition of different ‘endotypes’ (11).
They consist of distinctive pathophysiological features like T helper
type 2 (Th2) associated allergic asthma, severe eosinophilic, allergic
bronchopulmonary mycosis, aspirin-sensitive asthma, obesity-
related asthma (lifestyle-linked) and non-Th2 linked neutrophilic
asthma (12). However, the genetics behind most of these endotypes
are not thoroughly deciphered and the variations in disease
progression and severity remains largely unexplained.

Asthma exists with numerous comorbidities that mutually
influence its clinical expression, disease management and
control. Comorbid conditions like sinusitis, rhinitis, microbial
infections, obstructive sleep apnea, psychopathologies, hormonal
disturbances and gastroesophageal reflux disease (GERD) have
been found to be highly prevalent (13). Also, demographic
observations suggest of a possible hormonal angle and this has
been considerably documented that women suffer more severe
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asthma and subsequent hospitalisations than men (14–17)
(Figure 1A). The adult form of asthma witness significantly
more comorbidities than the general asthmatic population with a
ratio of one being found in every four adults. Although children
had a lower comorbidity burden, yet 12.6% harbored a linked
chronic medical condition (18). Further, asthmatics are shown to
be more prone to arthritis, heart disease, diabetes, cancer, stroke
and osteoporosis (19).

As recommended by the disease-management guidelines,
inhaled corticosteroids and short-/long- acting b2-adrenoceptor
agonists (SABAs and LABAs) form the cornerstone of current
asthma treatment. Salbutamol and terbutaline hail to the SABAs
category and are the most effective asthma relievers available till
today. The two LABAs, salmeterol and formoterol are used as a
supplementary therapy where patients do not experience relief
with inhaled corticosteroids. These successfully induce
bronchodilation for 12 h. However, LABA has the potential to
mask worsening inflammation and hence, a monotherapy with
LABA is not prescribed (20–22). Mounting evidence suggests that
a significant fraction of asthmatics respond poorly to inhaled and
systemic steroid therapy (23, 24). Treatment of glucocorticoid-
resistant patients with GCs produces major health risks, ranging
from irreversible tissue damage to the development of Cushing’s
syndrome, thereby increasing the overall morbidity and mortality
rates (25). Moreover, along with osteoporosis and pneumonia, oral
corticosteroids may sway our body toward glucose intolerance/
diabetes and also enhance susceptibility to viral infections (26, 27).
The general non-compliance to GC treatment, genetic defects in
GR and abnormal steroid pharmacokinetics further add to the
issue (28, 29). Several other adjunct therapies are prevalent along
with the mainstay that provide relief to severe asthmatic cases,
such as methylxanthines, magnesium, anticholinergic drugs,
ketamine or other inhaled anesthetics. However, these too, are
gloomed by the associated dire effects (30–32). Furthermore, new
and emerging biologic therapies for severe asthma are cytokine-
based (anti-IL-4, IL-5, or IL-13) and mostly target Th2-mediated
pathways. Nonetheless, they suffer from issues like functional
redundancies and overlapping side-effects; thereby failing in
clinical efficacy (33) (Figure 1B). At present, FDA has approved
Omalizumab, a recombinant humanized anti-IgE monoclonal
antibody for severe asthma, which down regulates the high-
affinity IgE receptor FcϵR1 on mast cells and basophils (34).
Since there is an absence of unifying markers for non-Th2
asthmatics, novel strategies to target this section of patients have
yielded poorer success ratios than therapies for Th2 high asthma.
Hence, the lack of an alternative effective therapy leads to high
healthcare costs.
NUCLEAR RECEPTORS: A CLAN OF
IDIOSYNCRATIC TRANSCRIPTION
FACTORS

NRs hail from a large 48-membered ligand-dependent
superfamily of transcription factors that are associated with the
overall vertebrate development and are connected to a plethora
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of human diseases (35). The appeal of these receptors is that their
activity can be regulated by binding to small lipophilic molecules
called ligands (36). Ligands cross the lipid bilayer and carry out
both intra- and extra-cellular physiological activities. The
superfamily of NRs is typically grouped into three classes
based on their ligand selectivity: class I, class II, and class III.
The classical endocrine nuclear receptors catalog themselves to
Frontiers in Immunology | www.frontiersin.org 3
class I and comprise of estrogen (ER), glucocorticoid (GR),
mineralocorticoid (MR), progesterone (PR), and androgen
receptors (AR) as its members. Steroid hormones synthesized
by endocrine glands serve as their ligands and these NRs bind to
their DNA sequences in homodimeric fashion. NRs which get
activated by dietary vitamins, importantly vitamin D receptor
(VDR) and retinoic acid receptor (RAR) are also clubbed into
A

B

FIGURE 1 | Asthma, comorbidities and treatment challenges. (A) The link between asthma phenotypes and endotypes is depicted; suggesting possible existence of
multiple endotypes for a single phenotype and vice-versa. The outer sphere portrays the commonly observed comorbid conditions in asthma patients. (B) The
reported side-effects and shortcomings of glucocorticoid receptor and other adjunct therapies in asthma have been highlighted.
January 2021 | Volume 11 | Article 594433
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this category, although they bind to DNA by forming
heterodimers with other NRs. The ligand binding affinity is
very high in such receptors due to a smaller ligand binding
pocket. Class II corresponds to orphan NRs for which respective
ligands have not been discovered so far. They bind DNA usually
as monomer or homodimer and examples of such NRs include
retinoid-related orphan receptors (RORs) and nerve growth
factor IB (Nurr77). Class III represents adopted orphan NRs
and comprise of those NRs which earlier belonged to orphan
category but with recent discovery of their ligands, have
constituted a new class. On comparison with endocrine NRs,
these have larger ligand binding pockets and lower affinity for
ligands. Peroxisome proliferator-activated receptors (PPARs),
farnesoid X receptor (FXR), liver X receptor (LXR) and
retinoid X receptor (RXR) are all examples of adopted orphan
receptor (37, 38). The NRs largely share a conserved structure
consisting of a DNA-binding domain (DBD), hinge region,
ligand-binding domain (LBD) along with variable N-terminal
and C-terminal domains. N-terminal is known for carrying out
transactivation functions via activation function-1 (AF-1);
independent of the ligand binding to the receptor. The DBD
binds to the target DNA by recognizing certain conserved
sequences known as response elements while hinge is a flexible
region that connects DBD and LBD. The LBD is responsible for
ligand based interaction and recruits coregulators through the
activation function-2 (AF-2), which is followed by a C-terminal
extension. NRs can bind to response elements of their target
genes as homodimers, heterodimers and monomers and
classically act as transcriptional repressors in the absence of a
ligand. However, upon ligand binding, NRs undergo
conformational changes that lead to release of corepressors,
recruitment of coactivators and subsequent target gene
activation (39). In addition to this, the class of adopted orphan
receptors are more desirable as drug targets than endocrine
receptors. Since adopted orphan receptors do not command
the hormonal system, the adverse effects of immune and
metabolic imbalance are averted. Moreover, orphan receptors
also hold certain charm and curiosity because discovery of their
ligands hold the potential of being used as new ‘modulatory
switches’ of the human system.

In current years, NRs have been accentuated as strategic
therapeutic targets due to their ability to translate nutritional
and metabolic signals into gene regulation; significantly
impacting human health and disease progression (40).
Interestingly, the market share for drug targets also reveals the
dominance of G-protein-coupled receptors (GPCRs), NRs and
voltage gated ion channels, underlying their immense clinical
importance (41, 42). Since NRs communicate directly through
DNA response elements of their target genes and can also
crosstalk with various other signalling pathways, the spectrum
of advantages is considerably more. NRs are deep-seated inside
the cells, have cleaner effector functions and exhibit specificity
both at the DNA binding and ligand binding levels. As these
ligand-dependent transcription factors glean their ligands from a
varied set of fat-soluble hormones, vitamins and diet stemmed
components, NRs provide us with a considerably better
Frontiers in Immunology | www.frontiersin.org 4
opportunity for functional modifications (35). In addition to
this, modulation by synthetic ligands makes them the ideal target
for ‘small molecule drugs’ family (43). As small molecules can be
easily manipulated, drugs can be designed that are even more
potent than the endogenous ligand, for example, dexamethasone
which brings a greater biological response than cortisol (44). Due
to the immense success of NRs as drug targets, discovering newer
roles of NRs in diseases and designing agonist/antagonist for
them appear as a promising research initiative. Therefore, it
wouldn’t be a mendacious statement to say that NRs are the
future of genomic medicine and would soon compete with
GPCRs, ion-channels and kinases as ‘next-generation targets’.
NUCLEAR RECEPTORS IN ASTHMA

With the recognition of NRs significance in physiology, they are
now being extensively researched in numerous human diseases.
In reference to asthma too, the accumulated data from scientific
world stipulates the involvement of NRs in the pathology of
asthma and its progression. Both kinds of NRs; those that abate
asthma (Figure 2) and the ones that tend to promote the disease
severity (Figure 3) are documented.

Endocrine Receptors
Glucocorticoid Receptor
Glucocorticoids are among the most ubiquitous hormones
present in mammals that carry out majority of their action
through GRs. The GRs are involved in gluconeogenesis,
postnatal insulin-like growth factor-1 production, behavioral
abnormalities and physiological control of inflammation (45–
51). In the context of asthma, GR is the most extensively studied
NR. Glucocorticoids are known to have a suppressive effect on
IL-5, IL-13, IL-33, and MCP1 expression, thereby impeding
infiltration of eosinophils, macrophages, neutrophils and T
cells into the lungs of asthmatic mice (52). GR also represses
airway smooth muscle (ASM) hypertrophy in human ASM cells
by inducing kruppel-like factor 15 (KLF15) (53). Furthermore,
the GR expression levels or its subsequent phosphorylation are
disrupted by multiple factors such as exposure to Aspergillus
fumigatus (54), increased protein phosphatase 5 (PP5) activity
(55), enhanced nuclear factor interleukin-3 (NFIL3) expression
levels (56) and activation of H1R by histamine (57) (Figure 2A).
Moreover, some recent reports have also linked gene
polymorphism associated with GR as one of the plausible
causes behind insensitivity to corticosteroid therapy (58, 59).
Limited GR nuclear bioavailability (60, 61) and secondary effects
of fetal sex and maternal asthma on placental GR expression are
some of the other rationalities behind increased asthma
susceptibility and exacerbations (62).

Vitamin D Receptor
Vitamin D earlier had its roots of significance among skeletal
disorders such as osteoporosis, fractures, muscle strength,
calcium, phosphorus and bone metabolism (63–66). However,
research conducted in the past decade have established non-
January 2021 | Volume 11 | Article 594433
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A B
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FIGURE 2 | The protective effects of nuclear receptors (NRs) in asthma. Key mechanisms through which (A) Glucocorticoid receptor (B) Vitamin D receptor
(C) Androgen receptor and Retinoic acid receptor-Retinoic X receptor (D) Nurr77, Farnesoid X receptor and Peroxisome proliferator-activated receptors provide
protection against asthma have been summarized in a schematic form.
A

B

C

FIGURE 3 | The exacerbating or promiscuous effects of nuclear receptors (NRs) in asthma. The influence of (A) Estrogen receptor and Progesterone receptor (B) Liver-
X-receptor (C) Retinoic acid receptor-related orphan receptor alpha on major immunological pathways in asthma have been summarized in a schematic form.
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skeletal roles of vitamin D in chronic maladies including
cardiovascular, infectious, metabolic, autoimmune diseases,
cancer, and mortality (67–72). Vitamin D has been reported to
arrest HMGB1/TLR4/NF-kB signaling pathway (73), inhibit the
conversion of CD8+ T-cell to an IL-13 secreting phenotype
through VDR recruitment to Cyp11a1 promoter (74) and keep
a check on serum IgE levels in B cells through both direct and
indirect mechanisms (75) in asthmatic mice. In human B cells,
IgE production, B cell proliferation and subsequent
differentiation into IgE, IgG and IgA producing plasma cells
are also inhibited by active form of vitamin D (1a,25-
dihydroxyvitamin D(3)) via limiting the population of
immunoglobulin‐secreting cells, reducing the activation of NF-
kB and impeding switch recombination (76, 77) (Figure 2B).
Moreover, factors like vitamin D deficiency and VDR gene
polymorphism prevalent in human population have also been
included in the ‘high susceptibility to asthma’ list (78–80).

Androgen Receptor
Primarily, AR plays a pivotal role in the development and
maintenance of male phenotype (81). Along with sex-
differentiation, fertility and male-specific pathology, AR is
shown to modulate hair growth, immune functions, female
reproductive growth, metabolic disorders and certain cancers
(82–87). Since there is a visible sex bias in asthma, possible role of
testosterone and other androgens in its immunopathogenesis
have been studied. Gonadectomized male mice exhibited an
increase in level of IL-13 protein expression, lymphocytes and
eosinophils in comparison to the hormonally intact, sham-
operated male mice (88). Another study has documented
androgen-mediated inhibition of IL-33 driven lung
inflammation and impaired expansion of group 2 innate
lymphoid cells (ILC2) (89). Furthermore, stimulation of female
mice with extract of Alternaria alternata, house dust mite
(HDM) or ovalbumin (OVA) leads to increased production of
IL-5 and IL-13 by ILC2 when compared with stimulated male
mice (88–90). AR signalling has also been reported to directly
attenuate IL-17A+ Th17 cells in the mice lung and indirectly
reduces IL-13+ Th2 cells through impairment of HDM-induced
IL-4 production (91) (Figure 2C). Since androgens also
modulate airway hyperresponsiveness (AHR) and smooth
muscle contractility (92, 93), AR signalling appears to play an
important role in the regulation of allergic airway inflammation.
However, a distinct role of AR in promoting M2 macrophage
polarization has recently been revealed in a murine model of
asthma (94). This finding perhaps suggests of a different role of
AR in macrophages in contrast to other immune cells and
therefore, requires further research.

Retinoic Acid Receptor and Retinoid X Receptor
The retinoid receptors comprise of two distinct subgroups,
namely RAR and RXR that are known to modulate embryonic
development, wound healing, neuronal differentiation,
carcinogenesis, immunity and inflammation (95–98). Vitamin
A serves as a ligand for both RAR and RXR, and provides shield
against allergies by inhibiting IgE synthesis via alteration of
sCD23, sCD54 and IL-6 production in anti-CD40 plus IL-4
Frontiers in Immunology | www.frontiersin.org 6
stimulated human B cells (99). It also suppresses the
differentiation of eosinophils and basophils at early stages of
lineage commitment in HL-60 cells (human cell line) (100).
Moreover, administration of RXR partial agonist NEt-4IB in
mice has been found to significantly reduce AHR and
inflammatory cell accumulation along with suppressing NF-kB
expression (101) (Figure 2C).

Estrogen and Progesterone Receptors
Besides the effect on female reproductive system, estrogen and
progesterone also significantly impact skeletal homeostasis,
glucose and lipid metabolism, central nervous system and
various cancers (102–107). Over the past decade, the role of
female hormones in asthma, particularly estrogen, has been
extensively recognized. The allergic responses are favored by
estrogen in numerous ways such as fostering Th2 polarization,
promoting B-cell switching to IgE production, enhancing mucus
synthesis, increasing M2 polarization and assisting degranulation
of basophils and mast cells (108–111). A couple of initial studies
have reported that interaction of mast cells with estrogen
enhances the release of histamines (112, 113). Other than
histamine, estrogen mediated production of IL-5 and IL-13
from mediastinal lymph nodes has also been observed in an
animal model of asthma (114). Moreover, it must be noted that
exogenous compounds with estrogenic activity, such as xeno-
and phytoestrogens interact well with ERs and are known to
potentially influence histamine release and allergic responses
(115–117). Additionally, an expression analysis has reported the
expression of ER and PR in mast cells of human upper airways
where they have been known to activate mast cells (118, 119).
Differential expression of ER in asthmatics and receptor
polymorphism have also been held accountable for elevating
the asthma pathogenesis (120, 121). Interestingly, the role of ERb
differs from that of ERa and few recent studies have
demonstrated its protective role in asthma via inhibition of
PDGF induced proliferation, suppression of the NF-kB
pathway, downregulation of AHR and airway remodeling
(122–126). Furthermore, the impact of female hormone
progesterone has been investigated in a murine model of
asthma where it enhances airway eosinophilia and bronchial
hyper-reactivity (127). The exposure to a combination of 17b-
estradiol (E2) and progesterone (P4) also leads to an increase in
IL-23/IL-23R signalling and IL-17A production in patients with
severe form of asthma (128) (Figure 3A). Conceivably, the
cardinal involvement of female hormones in asthma
immunopathogenesis accounts for the observed gender disparity.

Adopted Orphan/Orphan Receptors
Peroxisome Proliferator-Activated Receptors
The members of PPAR family are major regulators of energy
homeostasis and metabolic function. However, broader roles
have now been discovered and they are being increasingly
recognized as key players involved in inflammatory, metabolic
and neurodegenerative disorders (129). Experimental evidences
have suggested that activation of PPARs produces anti-
inflammatory effects in lung diseases (130). Deficiency of
PPARa enhanced AHR and eosinophilia in a murine model of
January 2021 | Volume 11 | Article 594433
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asthma while its agonist alleviated the disease (131–133). It is
also reported that administration of PPARg agonists or
overexpression through adeno-PPARg provides protection
against asthma in mice (134–136). Several beneficial effects of
PPARg agonists in reducing multiple asthma features, such as
AHR, leukocyte infiltration, mucus overproduction, infiltration
of lung DCs, proliferation of effector T cells, adhesion molecules
and pro-inflammatory cytokines have been observed in various
murine asthma models (137–144). Troglitazone, another PPARg
agonist, impeded eosinophilia through inhibition of their IL-5
directed survival and eotaxin mediated chemotaxis (145) (Figure
2D). Collectively, the protective role of PPARs in lung disorders
is affirmed by both experimental and clinical data (146–150).
However, few recent animal based studies have instituted that
PPARg promotes type 2 effector responses in DCs and T cells (151,
152). Furthermore, therapy with PPARg agonist (pioglitazone and
rosiglitazone) showed modest or no improvement in subjects with
asthma, thereby implying insufficient intervention (153, 154).
Thus, rigorous studies and clinical research are required where a
larger sample size and distinct endotypes are considered in order
to translate PPARg agonists into asthma drugs.

Nur77
The orphan nuclear receptor Nur77, also known as the nerve
growth factor IB (NGFIB) is highly expressed in eosinophils,
tolerant T cells and lung epithelium. It plays a cardinal role in
mediating inflammatory responses in macrophages (155) and is
also involved in cell growth, apoptosis, T cells function, neuronal
regulation, muscle homeostasis and energy metabolism (156–
164). Nur77 has been found to provide protection against asthma
by suppressing nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-kB) activity. The knockdown of Nur77
led to enhanced inhibitor kappa B alpha (IkBa) phosphorylation
and Nur77 knock-out mice had an increased infiltration of
lymphocytes and eosinophils with aggravated mucus
production. Moreover, bronchial hyper-responsiveness is also
determined by single nucleotide polymorphism (SNP) present in
Nur77 gene (165) (Figure 2D).

Farnesoid X Receptor
The bile acid sensing receptor FXR largely controls hepatic
triglyceride and glucose homeostasis (166). In addition to the
above, its non-hepatic roles in fluid homeostasis, atherosclerosis,
cancer, cardiovascular, renal, neuronal and other inflammatory
diseases have also been documented (167–170). FXR is shown to
have an immunomodulatory role in asthma and predominantly
reduces the disease severity. Treatment with natural FXR
agonists (chenodeoxycholic acid and ursodeoxycholic acid)
significantly reduced cellular infiltration in peri-bronchial
areas, mucus production, serum IgE and tissue eosinophilia in
mice (171, 172) (Figure 2D).

Liver X Receptor
LXR finds its expression in a large number of cell types and is
responsible for maintaining whole-body lipid and cholesterol
metabolism (173). Newly discovered roles of LXR, linking lipid
Frontiers in Immunology | www.frontiersin.org 7
metabolism and inflammation, have also emerged; highlighting
its importance in immune disorders such as infection,
atherosclerosis and Alzheimer disease (174). There are several
reports for the role of LXR in airway diseases and one of the
earliest studies states that LXR agonist T1317 (T0901317)
inhibited the proliferation of ASM cells (175). Similarly,
agonist T0901317 provided protection in asthma via
attenuation of OVA-specific IgE and reduction in collagen
deposition and ASM thickness (176). However, LXR agonist
GW3965 mediated enhanced airway reactivity that increased the
growth of ASM in pre-clinical models of asthma is also
documented (177). In addition to this, a recent study involving
LXR-knockout mice have shown that eosinophilic airway
inflammation and production of Th2 cytokines by mediastinal
lymph node cells was abolished in the LXRa−/−b−/− mice in both
the OVA and HDM-induced asthma models (178). Furthermore,
administration of LXR agonist GW3965 exhibited an increase in
the eosinophilic airway disease and production of type 2
cytokines (178) (Figure 3B). Given the immunomodulatory
role of LXR in asthma, these differential effects of ligands need
to be adequately addressed.

Retinoid Acid Receptor-Related Orphan Receptor
RORa is functionally linked to have roles in circadian rhythm,
immune regulation, cancer progression, neural development,
cellular metabolism and autoimmune diseases (179, 180).
Recently, RORa has been associated with allergic diseases as its
expression level was found to be on the higher side in patients with
therapy-refractory asthma along with RORa rs11071559C>T gene
polymorphism accounting for elevated susceptibility to asthma
(181–183). This finding is further affirmed by other reports that
discuss the link of RORa SNPs with increased childhood asthma
and exhibits an epistatic interaction with neuropeptide S receptor 1
(NPSR1), leading to the modification of joint risk effects (184).
RORa has also been identified as a key factor required for ILC2
differentiation and is critically required for nuocyte development
(185, 186). Furthermore, this NR is necessary for natural helper
(NH) cells development and allergic inflammation (187). Few other
animal studies have shown that RORasg/sg and RORg-/- mice exhibit
a severely impaired allergic response to OVA (188, 189). Another
member of the ROR family, RORgt, is reported to drive the allergic
airway inflammation toward a steroid-insensitive neutrophilic
phenotype (190). Inhibition of RORgt also led to suppression of
allergic airway hyperresponsiveness and pulmonary neutrophilia in
a murine model of asthma (191, 192) (Figure 3C).
NUCLEAR RECEPTORS AT THE
CROSSROADS OF DIET AND ASTHMA:
KEY MOLECULES FOR NUTRITIONAL
TARGETING OF DISEASE

Diet is considered as a major contributor to education and
regulation of the immune system, particularly impacting
systemic inflammation and generation of oral tolerance.
January 2021 | Volume 11 | Article 594433
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Epidemiological cohort studies have showcased that diets which
are rich in fruits and vegetables (e.g. Mediterranean diet) had
lower allergic index while high maternal consumption of oily and
processed foods enhanced the risk for allergies (193). In relation
to asthma, high fat meals led to an increase in sputum
neutrophils and several other genes regulating airway
inflammation (194–196). On the other hand, reduction in
airway neutrophil influx and IL-8 protein in nasal lavage was
observed upon intake of fruits and vegetables (197, 198). The
components of diet not only impact adult life but also influence
the health of child during pregnancy. There are considerable
evidences linking low maternal intakes of vitamins and fiber in
pregnancy with increased risk of asthma development in
children (199–202). Moreover, development of allergic airway
diseases was also found to be inhibited by diet through significant
regulation of the gut microflora composition (202–204).

Food components alter gene expression through NRs and
epigenetic modifications; contributing profoundly to phenotypic
plasticity and susceptibility to chronic diseases (205–207). Along
with hormones, bile acid and sterols, several NRs are activated by
components directly originating from food or drugs. Examples
include vitamin A (RAR, RXR), vitamin D (VDR), fatty acids
(PPAR), plant steroids (ER), and xenobiotic drugs (CAR, PXR)
(208). Moreover, dietary components like curcumin are also known
to cause histone modifications (acetylation/deacetylation) (209).
Couple of studies have revealed high fat diet induced alterations
in NRs expression and activity (210–212). Flavonoids, a category of
plant secondary metabolites, also exert some of their effects through
NRs and play a key role in dietary modulation of metabolism and
linked diseases (213). Thus, NRs are cardinal players that influence
both the genome and epigenome of an organism, thereby bridging
this gap between genotype and phenotype. Since NRs effect on gene
expression is sequence specific, identification of spatial arrangement
present on binding sequence in food-bound NRs would provide a
greater understanding of epigenetic modulation associated with a
particular disease.
EXPERT OPINION: SCIENTIFIC
CHALLENGES AND FUTURE
PERSPECTIVES

>The field of biology is marked by an extraordinary spatiotemporal
interplay. NRs are exemplary in the same context as each NR
regulates vast array of gene networks, distinct to cell type and origin.
The breakthrough in the field of genetics, molecular and structural
biology has edified our knowledge about the functional regulation of
NRs. However, there are still innumerable unmet queries regarding
the understanding of how dynamically these NRs govern
transcriptional processes. One of the future goals could be:
comprehending their interaction abilities with the genome, how
they peddle chromatin remodeling and corresponding interactions
with binding partners like other NRs or coregulators (enhancers/
repressors). The physiological complexity that we see is perhaps, a
reflection of the genomic complexity. Therefore, another key area
that can be chased would be discovering factors that collaborate
Frontiers in Immunology | www.frontiersin.org 8
with NRs and aid them in carrying out tissue-specific roles. An
understanding of their functional aspects would provide insights
into various human physiological pathways and lead to the genesis
of ‘customized and tailored’ therapeutics.

In the context of asthma too, scientific findings have pointed
toward the existence of NRs that tend to promote or abate
asthma. These discoveries fortify the importance of NRs in
maintaining immune homeostasis. The enormous success of
GR in inflammatory diseases is a well-acclaimed example of
NR serving as an excellent druggable target. However, an
important aspect arising out of the several studies is that the
NRs like ER, AR or GR must be kept out of druggable zones. This
is because they dictate the sensitive hormonal arm and if
tinkered, would have a substantial impact on immune system,
systemic inflammation and body homeostasis. Conceivably, this
could be one of the reasons behind GR-linked dire effects and
hence, it would be a sagacious policy to focus on the family of
orphan NRs. Presently, the role of six orphan NRs; Nurr77, FXR,
LXR, PPAR, ROR, and RXR have been reviewed in the context of
asthma biology. Howbeit, the role of other members of this family
is still encrypted and leaves an open canvas for future research. The
complete landscaping of orphan NRs in immunopathogenesis of
asthma would increase our understanding of how these NRs impact
the complex gene networks behind various disease endotypes.

It is noteworthy to mention that many food ligands as well as
drugs interact with NRs and activate them functionally. ERa ligand
genistein, a food isoflavone, has been found to elevate the
therapeutic efficacy of ERa antagonist tamoxifen in breast cancer
(214). On the other hand, glucocorticoid-induced hyperinsulinemia
was inhibited by PPARa agonist fenofibrate in mice fed on high-fat
diet while enhancing the anti-inflammatory effects of GR on
transrepression of NF-kB (215). Therefore, future efforts must be
directed toward in-depth study of how these food-driven synergies
and antagonisms influence NRs and the response to asthma
therapy. In addition to this, role of gut microbiota in asthma and
their regulation through healthy diet has gained much scientific
attention. So, another interesting question to chase would be to
decipher how the gut microbiota crosstalk through NRs and its
impact on the gut microbiota-diet axis. However, before giving it a
translational outlook, a comprehensive study elucidating the role of
all 48 NRs in asthma and allergies needs to be done. Post the
explication of their roles in current disease biology, alternative
adjunct-therapies could be developed and chosen NRs could be
targeted either via drugs (small-molecules) or dietary supplements.
A combinatorial therapy of the FDA approved ligands; agonists for
defender-NRs that possess anti-inflammatory attributes along with
antagonist for disease-exacerbating NRs could be employed to
relieve asthma in a synergistic way (43) (Table 1).

The NRs annotated so far in asthma biology have their impacts on
comorbidities as well. Whether its metabolic syndromes, microbial
infections, cardiovascular or inflammatory disorders, all of these
biological province corroborate either healing or augmenting roles
of various NRs (216–220).With the cognition of available literature, it
becomes apparent that GR is an odious target for the treatment of
refractory asthma and comorbid conditions as both aberrant GR
expression and gene polymorphism is found to be associated with
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several metabolic, inflammatory and psychiatric illnesses. The GR has
been reported to promote adipogenesis, obesity, musculoskeletal
disorders, and psychosocial stress along with reduction in body’s
ability to clear infection (27, 221–229). Another NR, RORa has
similar attributes and it exacerbates both asthma and associated
comorbidities (230–235). On the other hand, NRs like VDR and
Nurr77 seem to be promising in their action and allay asthma,
rhinitis, obesity, infection, stress or other co-existing conditions (236–
245). Although Nurr77 is a desirable target but is considerably less
explored and requires more translational studies. However, PPARg,
FXR, RXR, RAR, and LXR have multifarious effects where they
mitigate few while exacerbates other comorbidities (101, 246–287).
However, they can be critically chosen for creating a therapeutic
cocktail in context of subjects exhibiting a particular comorbid
condition along with asthma, thereby opening customized therapy
avenues. Also, for a broader effect on clinical symptoms, there is a
necessity to empower defender NRs as well as to countervail the
disease advocating NRs. Therefore, a better remedy option would
comprise of respective agonists of VDR and Nurr77 along with
antagonist of RORa for its neutralization. Before advancing toward
designing therapeutic cocktails, there is an inevitable need to evaluate
the role of all 48 NRs in both asthma and comorbid conditions. Since
asthma manifestation requires a genetic pre-disposition and
fomenting environment, a better comprehension of the genetic
basis would certainly speed-up the journey of finding new targets
and subsequent drug development. These efforts would aid in the
discovery of a cleaner target that might soothe both asthma and
associated comorbidities (Figures 4 and 5).
Frontiers in Immunology | www.frontiersin.org 9
CONCLUSION

• There is no skepticism associated with the intake of a balanced
diet and proper lifestyle patterns leading to a healthier immune
system. Hustle and bustle of earning the daily bread and raised
living standards have led to poor health quality and increased
allergy burden. This review highlights the unmet dearth of newer
therapy targets and elaborates on asthma therapy challenges like
GR-associated side-effects and resistance issues along with a
therapy need for linked comorbidities. It also discusses the
cardinal importance of NRs in maintaining immune
homeostasis and provides a knowledge window of how they
serve as excellent druggable targets. Additionally, the advantages
of adopted orphan NRs over endocrine NRs and why they
should be the cynosure of all pharmacological efforts is discussed.

• The diets rich in fibers and micronutrients involving essential
vitamins like A or D provide a natural defense against allergies
while those that are calorie rich raise the vulnerability index.
Taken together, these discoveries propose a possible future
employment of patient-friendly therapy involving a
combination of dietary supplements and synthetic ligands that
would trigger the activation of defender NRs.

• The extent to which this perception of comorbid conditions
worsening asthma holds true, the similar amount of veracity
retains in the fact that asthma too can induce or even worsen
comorbidities. They either share similar pathophysiological
pathway (e.g. rhinitis) or alter asthma phenotypes (e.g. obesity,
TABLE 1 | List of nuclear receptors (NRs) and their effect on asthma pathogenesis along with information about natural/dietary and FDA approved ligands (agonists for
protective NRs: green colored and antagonists for exacerbating NRs: red colored).

Nuclear Receptors Nomenclature Effect on
asthma

Natural/Dietary Ligands FDA approved ligands

Glucocorticoid receptor (GR) NR3C1 Reduce Glucocorticoids Amcinonide, Prednisone, Mometasone
furoate, Dexamethasone,
Salmeterol, Budesonide, Hydrocortisone,
Fluticasone propionate

Vitamin D receptor (VDR) NR1I1 Reduce Vitamin D, curcumin, lithocholic acid Ergocalciferol, Cholecalciferol, Calcitriol,
Paricalcitol, Alfacalcidol

Androgen receptor (AR) NR3C4 Reduce Androgens, diindolylmethane, epigallocatechin 3-
O-gallate

Oxandrolone, Nandrolone phenpropionate,
Testosterone, Danazol

Retinoic acid receptor/Retinoic X
receptor (RARa/RXRa)

NR1B1/NR2B1 Reduce Retinoic acid, lithocholic acid, phytanic acid Tretinoin, Bexarotene, Adapalene, Acitretin,
Tazarotene

Peroxisome proliferator-activated
receptor (PPARs)

NR1C1,
NR1C3

Reduce Fatty acids, resveratrol, eicosanoids, arachidonic
acid, genistein, daidzein, equol,
tangeretin, nobiletin

Rosiglitazone, Pioglitazone, Metformin,
Treprostinil, Balsalazide, Fenofibrate

Nurr77 NR4A1 Reduce – Not available
Farnesoid X receptor (FXR) NR1H4 Reduce Bile acids, epigallocatechin 3-O-gallate Obeticholic acid, Chenodeoxycholic acid,

Alpha-Linolenic acid, Ivermectin, Avermectin
B1a

Estrogen receptor (ER) NR3A1 Enhance Estrogens, genistein, daidzein, equol,
epigallocatechin 3-O-gallate, resveratrol

Fulvestrant (antagonist), Tamoxifen,
Lasofoxifene (selective estrogen receptor
modulators)

Progesterone receptor (PR) NR3C3 Enhance Progesterone Mifepristone (antagonist), Ulipristal acetate
(selective progesterone receptor modulator)

Liver X receptor (LXR) NR1H3,
NR1H2

Selective
modulator

Oxysterols, epigallocatechin 3-O-gallate,
genistein, ursolic acid

Not available

Retinoic acid receptor-related
orphan receptor alpha (RORa)

NR1F1 Enhance Sterols, ursolic acid Not available
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smoking, respiratory infections). Therefore, the apprehension
and medication of comorbidities must be considered essential
during the course of asthma evaluation. Considering the NRs
significance in both asthma and comorbidities, there is a
requisite to engage defender NRs alongside the negation of
Frontiers in Immunology | www.frontiersin.org 10
exacerbating NRs for a better cure. Moreover, mysteries to the
underlying molecular link connecting asthma to these specific
comorbid ailments still remain unresolved and finding answers
to them would bring about a cut above understanding
of disorders like asthma that display complicated etiology.
A

B

FIGURE 4 | Effects of nuclear receptors (NRs) on asthma comorbidities. The NRs are also known to impact asthma comorbidities; both protective and exacerbating
roles have been documented. (A) The illustration depicts the reported roles of GR and adopted orphan/orphan receptors in various comorbid conditions. (B) A
proposed hypothetical model of a cleaner therapeutic target as a remedy for asthma and associated comorbidities that can also maintain immune homeostasis.
FIGURE 5 | Nuclear receptors (NRs) at the crossroads of asthma, comorbidities, diet and gut microflora. Numerous studies have highlighted the significant influence
of diet, gut microflora and existing comorbidities in asthma pathogenesis and therapy outcomes. With reported roles of NRs in asthma and comorbidities along with
its ability to crosstalk with diet, drugs and microflora, NRs become the strategic molecules for therapeutic intervention in asthma.
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The application of systems biology and findings from holistic
studies would help in uncovering cleaner targets that are
more desirable and possess some kind of ‘magic-bullet’
properties.
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