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Immune checkpoint inhibitors (ICIs) have ushered in a new era of cancer therapy;
however, ICIs are only effective in selective patients. The efficacy of ICIs is closely
related to the tumor microenvironment. Fever for a long time was thought to directly
regulate the immune response, and artificial “fever” from hyperthermia modulates the
tumor immune microenvironment by providing danger signals with heat shock proteins
(HSPs) as well as subsequent activation of immune systems. Encouraging results have
been achieved in preclinical studies focused on potential synergetic effects by combining
hyperthermia with ICIs. In this review, we summarized a cluster of immune-related factors
that not only make hyperthermia a treatment capable of defending against cancer but also
make hyperthermia a reliable treatment that creates a type I-like tumor microenvironment
(overexpression of PD-L1 and enrichment of tumor infiltrating lymphocytes) in
complementary for the enhancement of the ICIs. Then we reviewed recent preclinical
data of the combination regimens involving hyperthermia and ICIs that demonstrated the
combined efficacy and illustrated possible approaches to further boost the effectiveness
of this combination.

Keywords: hyperthermia, tumor microenvironment, immune checkpoint inhibitors, combined therapy,
synergetic effect
INTRODUCTION

Immune checkpoint inhibitors (ICIs) aim to reverse the immunosuppressive tumor
microenvironment (TME) have ushered in a new era of cancer treatment. Efficacy of ICIS-based
cancer immunotherapy relies on the immune status in TME. TME is composed of tumor cells,
immune/inflammatory cells, stromal cells, blood/lymph vessels, cytokines, secreted proteins, RNAs,
and small organelles (1). Through signal transduction and intercellular interactions, TME
constitutes and modulates the cancer-immunity cycle (2). Based on the immune status of TME,
tumors can be classified as “cold” and “hot” in which “cold” tumors often have a low response rate to
anti-PD-1/PD-L1 mAb due to reduced tumor mutation, less T-cell infiltration, less PD-L1
expression and enrichment in immunosuppressive cells (3). Anti-angiogenesis treatment,
radiotherapy, or chemotherapy increases the treatment efficacy of ICIs by transforming the
immune status of TME through exposure of tumor-specific antigens, normalization of the
endothelium, attraction of immune cells, etc. (4–6) Hyperthermia can also modulate the immune
status of TME and influence the immune system through cytotoxic effects of high temperatures (7).
org November 2020 | Volume 11 | Article 5952071

https://www.frontiersin.org/articles/10.3389/fimmu.2020.595207/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.595207/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.595207/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:yanlingma2020@163.com
https://doi.org/10.3389/fimmu.2020.595207
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.595207
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.595207&domain=pdf&date_stamp=2020-11-09


Li et al. Hyperthermia Facilitates Immune Checkpoint Inhibitors
Hyperthermia is a method of killing cancer cells or impeding
their growth by increasing tissue temperature with an external
heat source for a certain period of time. Hippocrates, the father of
modern medicine said, “Those who cannot be cured by surgery
can be cured by heat. Those who cannot be cured by heat, they
are indeed incurable.” Early studies found that fever was
correlated with spontaneous tumor regression. Since the last
century, hyperthermia has been widely used for patients with
both locoregional and advanced cancers in prostate cancer,
melanoma, bladder cancer, esophageal cancer, and cervical
cancer. The combination of hyperthermia and radio-/
chemotherapy has also shown effectiveness for tumor control
in numerous clinical studies. Hyperthermia can be classified as
local (microwaves, radio waves, or ultrasound), regional
(hyperthermic intraperitoneal chemotherapy), and whole body
hyperthermia depending on the organ to be targeted. While
based on temperature ranges, hyperthermia can be classified as
fever-range temperature hyperthermia (39–40°C), mild
temperature hyperthermia (heat shock temperature, 41–43°C),
and thermal ablation (cytotoxic temperature, >43°C). Magnetic
nanoparticle hyperthermia, cryo-thermal therapy, and
photothermal therapy are newly developed treatments that also
belong to the category of hyperthermia.

Hyperthermia modulates the immune status of tumor
microenvironment by providing danger signals with HSPs as
well as subsequent activation of immune systems. The
immunomodulatory effects not only make hyperthermia a
treatment capable of defending against cancer but also make
hyperthermia a reliable treatment that creates a type I-like tumor
microenvironment (overexpression of PD-L1 and enrichment of
tumor infiltrating lymphocytes) in complementary for the
enhancement of the ICIs. Below, we summarize a cluster of
immune-related factors that are inducible by hyperthermia,
highlighting the complementary effect of hyperthermia on
immunogenicity and immunoreactivity in the tumor
microenvironment for the enhancement of ICIs. Then we
reviewed recent preclinical data of the combination regimens
involving hyperthermia and ICIs that demonstrated the
combined efficacy and illustrated possible approaches to
further boost the effectiveness of this combination.
HYPERTHERMIA INCREASES TUMOR
DNA DAMAGE

The T cell-based immune system frequently responds to
neoantigens that arise as a consequence of accumulated DNA
damage, known as the tumor mutation burden (8, 9). High
tumor mutation achieves a higher response rate to PD-1/PD-L1
mAb and gets a higher objective tumor remission rate.
Hyperthermia directly and indirectly induces DNA damage in
addition to interacting and interfering with various DNA repair
cascades, all of which contribute to mutations in the tumor
genome and the production of neoantigens (8, 10). Briefly,
hyperthermia can directly induce the DNA damage response
by promoting single stranded break (SBS), double stranded break
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(DBS), histone H2AX with phosphorylated C-terminal serines
(g-H2AX) foci formation and ataxia-telangiectasia mutated
protein(ATM) phosphorylation and decelerating DNA
replication and repair (downregulate DNA polymerases and
topoisomerases activity), and indirectly activate DNA damage
response and induce tumor suppressor alternative reading frame
(ARF) by promoting ROS production, cell cycle arrest, cell cycle
checkpoint arrest, cell death, decelerate DNA replication.
Moreover, hyperthermia can significantly promote DNA
damage in tumor stem cells that are resistant to most classical
treatment regimens, which would be more effective for the
formation of tumor neoantigens (11). In addition, exosomes
extracted from heat-stressed tumor cells (HS-TEX) induce a
bystander effect that can transform DNA damage from heat-
stressed tumor cells to the non-heated ones (12). The enhanced
irreversible cellular DNA damage accumulation was further
proven by that hyperthermia is applied as a complement in
treatment combining chemotherapy or irradiation to induce
irreversible cellular DNA damage (13). Nevertheless, the
identification of neoantigens requires the mapping of tumor-
specific genetic aberrations using whole-exosome sequencing,
in silico predictions, mass spectrometry, and T cell assays (9).
HYPERTHERMIA IS A STRONG ICD
INDUCER

Despite mutations and neoantigens for the potential initiation of
immunity, only immunogenic characteristic defined by
immunogenic cell death (ICD) triggers an immune response.
ICD is a novel concept that has emerged during the last decade.
ICD depends on the concomitant generation of reactive oxygen
species (ROS, Type I) and activation of endoplasmic reticulum
stress (ER stress, Type II) (14, 15) to function as “enabler” and
“eat me” signals to recruited immune cells (16–18). ICD has
emerged as an important sign of a favorable immunogenic TME
that provides the various functional immunological cell
infiltration and cytokines (15, 19). Clinical studies have
suggested that pre-treatment with ICD inducers sensitizes cells
to immune checkpoint blockade treatment (20). Though
discussed frequently, hyperthermia is a kind of ICD inducer.
Below, we will discuss hyperthermia-induced ICD from two
aspects including ICD-related biological events (ER stress,
ROS, and apoptosis) and the accompanying generated damage-
associated molecular patterns (DAMPs) with an emphasis
on HSP.

Hyperthermia-Induced ICD Depends on
ER Stress and ROS
“Fever”-induced apoptotic, necrotic, or even live cancer cells
constitute a relevant natural mode of tumor-associated antigen
(TAA) (21, 22). Hyperthermia generates different modes of TAA
depending on the temperature change. Generally, temperature at
the fever range (37–41°C) leads to a protective function for
cancer cells with presentation of their constituents, while
temperatures of 41–43°C promote cell death predominantly by
November 2020 | Volume 11 | Article 595207
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apoptosis with a balance between pro-apoptosis and anti-
apoptosis. As temperature rises even higher, the pro-apoptosis
becomes dominant. While temperatures rise above 43°C
(thermal ablation range), tumor cells experience the
destruction mainly by necrosis (23).

Thermal ablation induced necrosis is a pathologic cell death
that can produce immunogenic inflammatory response (24).
Unlike thermal ablation, fever range hyperthermia can only
influence cell membrane fluidity and stability, change cell
morphology, and influence intracellular sodium–calcium levels
(25). At this temperature, the heat shock response and ER stress
can occur simultaneously. Heat shock response-induced HSPs
can either diminish the activation or relieve ER stress by
activating a negative feedback system of the unfolded protein
response (UPR) to avoid excessive activation (26) and can
protect tumor cells against both caspase-dependent and
caspase-independent apoptosis triggered by oxidative stress
(27). Additionally, eIF2a phosphorylation, the hallmark of
ICD (28, 29), was rarely induced at this temperature (30).
While temperature rises between the “fever range” and
“thermal ablation range” at 41–43°C, tumor cells died
predominantly by apoptosis with a balance between pro-
apoptosis and anti-apoptosis. This process involves the
induction of CHOP, the alterations in calcium levels and the
activation of ER proteases, calpain–calpastatin proteolytic system
and caspase mediated apoptosis (30, 31). This process also
accompanies with the upregulation of eIF2a phosphorylation.
While both low (43°C) and high (45°C) hyperthermic exposures
were capable of inducing cell death by activating apoptotic
pathways, mild hyperthermia (43°C) triggers the apoptotic
response in a more regulated manner in order to sustain
apoptotic cell death (31).

Traditional view holds that apoptosis is non-immunogenic
and does not induce an inflammatory response. However, recent
studies have suggested that certain kinds of treatment that induce
tumor cell apoptosis can also release DAMPs and induce ICD.
Calreticulin (CRT) exposure, high mobility group box 1
(HMGB1) release, and adenosine triphosphate (ATP) secretion
are essential factors for cell death to be considered ICD (32). In
fact, heat-shock conditioning of cancer cells increased their CRT
plasma membrane translocation and induced the release of
HMGB1 protein. Moreover, both CRT and HMGB1
mobilization were associated with enhanced antigen cross-
presentation and antigen present cell maturation after
hyperthermia at mild temperature range of 41–43°C (33, 34).
It remains to be elucidated that hyperthermia related apoptosis
can induce ICD, but apoptosis induced by hyperthermia is
involved in the ICD generation (35–37). Nevertheless,
considering the ICD-related biological events of ER stress,
ROS, and apoptosis and the accompanying generated DAMPs,
hyperthermia can be regarded as an ICD inducer as well as other
treatments (32, 38). Whereas, it should be noted that
hyperthermia-induced ER stress or apoptosis is fostered by
focused ROS rather than by secondary or collateral ER stress
effects, which were thought to be more effective for ICD-
associated immunogenicity (15). Moreover, this referred ICD is
Frontiers in Immunology | www.frontiersin.org 3
different from pathologic necrosis cell death caused by tumor
ablation (39).

HSPs Are Among the Most Important
DAMPs Induced by Hyperthermia
Hyperthermia induces various kinds of DAMPs, including
HMGB1, CRT, and ATP. In addition, study by proteomic
profiling found quantitative proteins regulated by heat shock
treatment that can be described as potential DAMPs or
candidates for further immunological analysis (40). However,
the current paradigm of the immunogenicity of hyperthermia
mainly relies on HSPs and activated Toll-like receptor-4 (TLR-4)
signaling pathways for the initiation of tumor-specific immune
responses (38, 41). Here, we discuss various forms of HSPs and
the suitable temperature for maximized immunity.

HSPs are a group of highly conserved chaperone proteins
synthesized under pressure in a wide range of tumor cells
containing HSP70, HSP60, HSP90, and small HSPs. Elevated
HSPs are usually associated with poor prognosis in most cancer
types. However, these overexpressed HSPs after hyperthermia
are also associated with enhanced immune response. There are
three forms of HSP: intracellular, membrane, and extracellular
HSPs. Intracellular HSPs promote the maintenance of the innate
structures and functions of their client proteins by facilitating
protein folding when the cells are under homeostatic challenges
(42). Unlike intracellular HSPs, studies found that small fractions
of several heat-stress cognates are located at or near the
cytoplasm inside the membrane along with cytoskeletal
proteins, and that additional submembranous localization of
HSPs may be a part of cellular responses to heat that
associated with membrane damage (43). Whereas, later
research found that this membrane HSP70 might also serve as
a tumor-specific target for the cytolytic attack of CD56bright/
CD94+ natural killer (NK) cells (25, 44). While, extracellular
HSPs released from tumor cells are regarded as potent adjuvants
to facilitate the presentation of tumor antigens and the induction
of anti-tumor immunity (45, 46).

In accordance with relationship between biological events and
temperature, HSPs start to release at 41°C and reach a maximum
at 43°C but begin to diminish at 45°C (47). To achieve the
optimal extracellular HSP synthesis for anti-tumor immune
activation, Lin et al. developed a model to predict the optimal
temperature and exposure time by involving factors such as
different cell lines, cell incubation times, and heat administration
methods into the model. They found that the maximum
extracellular HSP synthesis was at 43°C, so was the maximum
modulatory effect for tumor regression and decreased metastasis.
When the temperature was further increased, HSP synthesis
decreased, and the immune modulatory effect of hyperthermia
was also downregulated (48). Whereas, through bioinformatic
approach, Duzgun et al. identified a series of molecules that
determine the thermoresistance and immunogenic cell death in
thermotherapy through estimating the percentage of the two
kinds of denatured proteins. They found that thermoresistance
along with ICD both existed in a broad temperature windows,
and that average Tm (50% of the protein is unfolded) of DAMPs
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(63.42°C) is remarkably higher compared to the thermal ablation
temperature due to the function to interact with their pattern
recognition receptors (PRRs) even under thermal stress (49).
Although the suitable temperature for maximized immunity
remains unclear, these models offer ways to rationally explore
suitable conditions to exploit hyperthermia.
HYPERTHERMIA ENHANCED THE
IMMUNE RESPONSE IN MULTIPLE STEPS

With increased tumor mutation burden and ICD, immunity is
either activated or enhanced by hyperthermia for the subsequent
immune response in multiple steps of the cancer-immunity
cycle. Hyperthermia-activated immunity appears to be specific,
persistent, and memorable. This activated immunity not only
makes hyperthermia a capable treatment to defend against
cancer but also orient it as a reliable treatment that can
facilitate the efficacy of ICIs.

Hyperthermia Promotes APCs’ Activation
It has been established for years that mild thermal stress regulates
DCs’ activities to control infections and tumor growth (50, 51).
Although APCs’ activation is not directly associated with the
prognosis of PD-1/PD-L1 mAb treatment, APCs’ activation
directly influences tumor-specific T cell responses. APCs’
activation includes antigen presentation and APC maturation.
During the process of antigen presentation, hyperthermia mainly
regulates “phagocytosis checkpoints” by enhancing the
immunogenic “eat me” signals and repressing tolerogenic “eat
me” signals as well as “do not eat me” signals (52). Specifically,
phagocytosis of APCs is mainly enhanced by immunogenic “eat
me” signals of DAMPs through receptor-mediated endocytosis via
PRR. Moreover, hyperthermia represses the “do not eat me” signal
through decreasing the expression of CD47 in the cell surface (53).
In addition, hyperthermia can also inhibit tolerogenic “eat me”
signals by transforming immature APCs and/or APCs exhibiting
immunosuppressive phenotypes (M2 macrophages, N2
neutrophils, myeloid-derived suppressor cells) to a relatively
mature one (54, 55). This transformations include infiltrating
activated monocytes into the tumor microenvironment (56),
inducing immature DCs to differentiate into DCs (45),
promoting macrophage polarization to the M1 type that exerts
pro-inflammatory effects, and promoting the release of
inflammatory factors (57, 58). In fact, significantly increased
phagocytosis rates of macrophages and DCs have been seen;
moreover, this process seems to be temperature sensitive (>43°C).

Along with antigen presentation, APCs initiate a process of
maturation by increasing the expression of MHC I, MHC II
molecules and costimulatory molecules, and migrating to the
draining lymph node. This process can be mediated by antigen
presentation, TLR agonists, the standard maturation cocktail of
pro-inflammatory cytokines (59), and physiological temperature
stress of 40–41°C (50, 51). Traditional views hold that
hyperthermia-induced ICD is among the strategies to improve
the efficacy of dendritic cell-based immunotherapy for specific
Frontiers in Immunology | www.frontiersin.org 4
cancer types (60). However, studies have suggested that merely
heating tumor cells cannot activate immature DCs. Only when
tumor cells and immature DCs are both under sequential
hyperthermia treatment, can the immature DCs be effectively
activated. This result suggests that DCs’ maturation not only
depends on danger signals with HSPs but also on hyperthermia
itself independently (61). Further studies proposed that fever-
range hyperthermia promote DCs from a quiescent status to an
activated status by promoting the metabolic reprogramming in
them (62, 63). The authors proposed that hyperthermia
increased the expression of insulin-like growth factor binding
protein 6 (IGFBP-6) and HSP70, whose autocrine mechanism
increases the glycolysis, decreases the activity of the
mitochondrial respiratory chain and consequent oxidative
phosphorylation (OxPhos), enhances the production of NO
and ROS, and promotes the mitochondrial Ca2+ overload. It
should also be noted that this metabolic reprogramming of DCs
functions more like a kind of checkpoint in DCs’ activation or
maturation, and this process is an early event for the
accomplishment of cell-specific immunologic adaptation.

Hyperthermia Corrects Dysfunctional CD4
T Cell Immune Response
CD4 T cells display a large degree of plasticity to differentiate
into Th1, Th2, Th17, and regulatory T cells (Tregs) in response
to different tumor environments (64, 65). Th1 cells along with its
generated chemokines exert prominent anti-tumor activity by
blocking the formation of new blood vessels as well as promoting
recruitment of tumor-killing immune cells. Intra-tumoral
FoxP3 + Tregs impede effective immune response against
cancer and impaired the efficacy of PD-1/PD-L1 mAb. In
contrast to function of Tregs, Th17 cells may be prominent
candidates for adoptive T-cell therapy (66–68). Functional
systemic CD4 T cell immunity is essential for effector cytotoxic
T lymphocyte (CTL) priming, memory CTL development, and
effective PD-1/PD-L1 blockade (69, 70). Hyperthermia showed
the potential of correcting dysfunctional CD4 T cell immune
response by drifting CD4 T cells to Th1 and transforming Treg
cells into Th17 cells to rebuild a favorable TME that can
effectively respond to anti-PD-1/PD-L1 mAb.

DCmaturation induced by thermal therapy is a prerequisite for
CD4 T cell differentiation (57, 71). Besides fever-range
hyperthermia (39–40°C) inhibits Th2 and Treg growth, induces
spleen Th1 and Tc1 proliferation, and promotes Th1 cell-
associated secretion of IL-2, IFN-g and TNF-a in spleen (72).
While cryothermal therapy not only reduced the percentage of
Tregs and myeloid-derived suppressor cells (MDSCs) in spleen,
lung and blood but also promoted CD4+ T cell’s differentiation
into predominant CD4+ CTL, Th1, Th2, and Tfh subsets (73).
Moreover, compared with radiotherapy alone, combined
radiotherapy with hyperthermia regulated the tumor
microenvironment and upregulated the Th1/Th2 ratio (74). In
addition, HS-TEX can elicit Th1-polarized immune responses by
increasing the production of IgG2a and IFN-g in sensitized tumors
(75). Besides, preclinical studies have shown the potential of
hyperthermia to promote Th1-related immunity and repress the
November 2020 | Volume 11 | Article 595207
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function of Treg cells. Last, the correcting of dysfunctional CD4 T
cell by hyperthermia has also been proven by that patients with
tumor treated with hyperthermia showed increases in Th17 cells
and decreases in Tregs in the peripheral blood (76).

Hyperthermia Creates a Favorable
Inflammatory Tumor Microenvironment
It is highly dependent on cytokines and chemokines for “cold”
tumors with low response rate to PD-1/PD-L1 mAb to transform
to a “hot” one that is infiltrated with immune cells in tumor sites.
Serum cytokine analysis revealed that hyperthermia at 41°C for
30 min induces an intratumoral inflammatory cytokines and
chemokines to increase in enhanced T-cell trafficking (77).
Specifically, mild hyperthermia increases the expression of L-
selectin, P-selectin, and intercellular cell adhesion molecule-1
(ICAM-1) in the vessel wall (78–80) and drives the production
of a number of pro-inflammatory cytokines and chemokines (i.e.
interleukin−1b, IL-6, IL-8, IL-10, and CCL22) (77, 81). This
inflammatory cytokines and chemokines act at multiple discrete
steps that favor lymphocyte infi ltrate to the tumor
microenvironment and attack solid tumors in the immune cascade.

Among cytokines and chemokines induced by thermal stress,
IL-6 plays a pivotal role in the tumor immune microenvironment.
Specifically, cryo-thermal therapy-induced IL-6-rich acute pro-
inflammatory response promotes DC phenotypic maturation,
CD4(+) T cell differentiation, and Th1 anti-tumor immunity
(71, 82). In addition, hyperthermia induces M1 macrophages to
secrete CXCL10 and IL-6 to induce CD4 T cell differentiation into
Th1 and CD4 CTL cells, and reduce MDSC aggregation (57).
Moreover, IL-6 stimulated by HS-TEX promotes Treg
transformation to Th17 cells and induces CD4 T and CD8 T
cell-dependent immune responses (76). Though IL-6 also drives
tumor growth and promotes survival of neoplastic cells, these
tumor-promoting activities are completely counteracted by the
effect of T lymphocyte infiltration into the tumor site with a result
of tumor cell killing and tumor regression (81, 83). However, most
of the research was conducted under physiological temperature
stress of 40–41°C. Moreover, hyperthermia alone seems
insufficient for tumor cell regression for the result that
combination of an artificial cytokine storm and hyperthermia
rather than hyperthermia itself can effectively promote the anti-
tumor response (84).

HS-TEX Extracted After Hyperthermia
Acts as Tumor Vaccine
Exosomes are small membrane vesicles of endocytic origin that
have a typical bilayer-membrane structure shuttling from donor
cells to recipient cells to communicate and transport information
between different cells. In response to a variety of stress
conditions, cells employ extracellular vesicle to transmit a pro-
survival message in the tumor microenvironment for evasion of
cell death and transmitting resistance to therapy (85). Heat stress
not only promotes the release of TEX (quantity) (86) but
a l so p romote s TEX to pack w i th more pos i t i v e
immunomodulators (HSP70, adhesion molecules, chemokines)
rather than negative regulators (fasL, TGF-b) (87).
Frontiers in Immunology | www.frontiersin.org 5
HS-TEX is a reliable tumor vaccine for tumor-specific immune
response. A study suggested that HS-TEX extracted from ascites of
gastric cancer can induce DCs’ differentiation and promote
tumor-specific immune response (88). Whereas, intra-tumoral
injection of HS-TEX derived from colon cancer cells and B
lymphoma with hyperthermia efficiently induced tumor-specific
anti-tumor immunity in mouse models (89, 90). Besides, HS-TEX
can activate DCs to release IL-6 to trigger subsequent
transformation of the immune microenvironment to reduce
Tregs and promote the chemotaxis of T cells to tumors (76).
Contents in the HS-TEX plays an important role for its function in
TME. HSP-70 abundant exosomes recruit more NK cells and
promote the killing of NK cells better than that of apoptotic
fragments and HSP-70 knockout exosomes (91). Chemokines in
HS-TEX recruit and activate DCs and tumor-specific T cells
through a lipid raft-dependent pathway to promote tumor
immune response. Despite the promising role of HS-TEX in
TME, a study also suggested a bystander effect induced by HS-
TEX from tumor cells that promotes the survival of unstressed
ones (12). Moreover, PD-L1 can also express in TEX for immune
evasion, but this expression cannot be neutralized by anti-PD-L1
mAb treatment (92). The sophisticated role of HS-TEX in the
TME remains to be elucidated in vivo rather than as a vaccine.
(Thus, this part is presented in Figure 1marked with dotted lines.)
FIGURE 1 | Hyperthermia creates a type I-like tumor microenvironment, and
the multifaceted mechanisms make hyperthermia a potent immune
checkpoint inhibitor sensitizer. (1) Hyperthermia increases the tumor mutation
burden/neoantigen and promotes immunogenic cell death. These two
aspects promote DC activation maturation and thus transform the
immunosuppressive microenvironment by inhibiting Treg cells and promoting
tumor-infiltrating lymphocyte recruitment. (2) Hyperthermia can directly
promote DC and T cell maturation. (3) Exosomes extracted from heat-
stressed tumor cells (HS-TEX) act as a cancer vaccine to activate DCs and
promote cells to secrete IL-6 to transform the immunosuppressive TME
(marked with dotted lines) (4) Hyperthermia can upregulate PD-L1 expression
in an elevated temperature.
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Hyperthermia Promotes CD8 T Cell’s
Quantity and Quality
Despite the presence and activation of several immunologic
components in the TME, tumor cells are not easily eradicated
(93). Mechanisms involved in this impaired response are
attributed to the immune suppressive agents in the TME,
including the depletion of naïve anti-tumor T cells during
thymic lymphocyte development, unresponsiveness of CTLs
due to impaired of costimulatory or enhanced coinhibitory
molecules, prolonged presence of immunosuppressive cells and
along with secreted inhibitory molecules from those cells (94).
Consequently, although immune cells are found in the TME,
they are not fully effective (95, 96). Hyperthermia can break this
barrier by promoting antigen-specific naive CD8 T cell
differentiation, enhancing the cytotoxic potential of T cells and
promoting memory stem T cell generation.

CD8 T cells’ differentiation and function of cytotoxicity are
both temperature-sensitive events. Study researched the number
of Melan-A/Mart-1-specific CD8 T cells in patients after isolated
limb perfusion with hyperthermia and found a small increase in
tumor-specific T-cells in a subpopulation of patients with
melanoma, demonstrating the potential of thermal therapy in
the activation and differentiation of immune effector cells in the
tumor microenvironment (97). Another study showed that heat-
shocked pre-treated melanoma cell lysates promote the
proportion of a prototypic effector T cells (PD-1loCD8 T cell)
in the TME to prevent dysfunctional T-cell accumulation and
inhibit tumor growth (98). The result that hyperthermia
promotes naive CD8 T cells’ differentiation are also proved by a
study that CD8+ T cells under heat stress (39.5°C) can
differentiate into effector cells by reversible clustering of
GM1(+) CD-microdomains in the plasma membrane,
clustering of TCRb and the CD8 coreceptor, and enhancing the
rate of CD8+ T cell-APC conjugate formation in all spleen, lymph
nodes, and peripheral blood T cells. While during the phase of
cytotoxicity, the ability IFN-gamma production and cytotoxicity
effect of effector CD8+ T cell are also enhanced after hyperthermia
(99, 100). The enhanced cytotoxicity effect is associated with the
expression of HSF1 that upregulates fas ligand expression by
translocation of the transcription factors AP-1 and NF-kB (101).
Some researchers believe that exhaustion of CTLs is due to
impaired formation of memory T cells (102). Studies have
shown that hyperthermia induces differentiation of CD8+ T cells
into memory stem T cells (TSCM) (103) and could possibly
redistribute the memory T cells of patients with tumor (104).
Thus based on the results of enhanced T-cell trafficking and
promoted CD8 T cell immunity, hyperthermia can effectively
target at the TME to edit the immunity for cancer treatment.
HYPERTHERMIA PROMOTES THE
EXPRESSION OF COINHIBITORY
MOLECULES

Despite the reliable effects of hyperthermia on the immunogenicity
and immunoreactivity of tumors, hyperthermia can also
Frontiers in Immunology | www.frontiersin.org 6
upregulate the expression of coinhibitory molecules. Studies
have shown that heating in the range of 37–49°C successively
upregulated the expression of PD-L1 and IDO on the surface of
tumor cells. They found that with time, the expression of IDO
increased at 48 h after the heat treatment and then decreased at
72h. Whereas, the expression of PD-L1 have the highest
expression at 72 h. Moreover, the upregulated PD-L1 expression
not only showed in tumor margins but also in distant tumors after
hyperthermia (ablation temperature) (105–107). It remains to be
elucidated that the upregulated coinhibitory molecules of PD-L1,
PD-1, and Tim-3 are a cellular protective responses to avoid
excessive immune activation or a byproducts from heat shock
response when cells under damage. It should be noted that the
upregulated coinhibitory molecules on tumor cells can also lead to
impaired function of CD8 T cell. However, this upregulated
immune checkpoint molecule can be neutralized by ICIs, and
synergetic effect has been achieved for the combined hyperthermia
and ICIs for tumor remission (see the following section). Thus,
based on the foregoing reference that hyperthermia can either
activate or enhance the immune response and upregulate PD-L1
in several kinds of tumors, we propose that treatment with
hyperthermia creates a type I l ike tumor immune
microenvironment with tumor infiltrating lymphocytes (TILs)
and upregulates PD-L1 to work in complement with ICIs for
cancer treatment (Figure 1).
PRECLINICAL DATA COMBINING
HYPERTHERMIA AND ICIs

Discussed and researched for centuries, hyperthermia is seldom
applied as a mainstream therapy or an adjuvant approach for
cancer therapy. Clinical studies have researched the combination
treatment of hyperthermia with cytokines and DCs; however, the
results are conflicting. The reasons are mainly attributed to
tumor tissue selection, antigen load in vitro and in vivo, and
whether DCs could be recruited effectively. Despite the
conflicting results of hyperthermia with traditional immune
treatment and the constraint of antigen masking or shielding,
thermoresistance, the bystander effect of HS-TEX and possible
high expression of PD-L1 in HS-TEX, preclinical research of the
combination regimens involving hyperthermia and ICIs has
achieved optimistic results. However, hyperthermia is mainly
restricted to nanoparticle-mediated hyperthermia and
radiofrequency ablation.

Nanoparticle-mediated hyperthermia is a localized non-
invasive treatment with controllable irradiation that has
emerged as a new paradigm towards precise cancer therapy.
Nanoparticle-mediated hyperthermia includes photothermal
therapy and magnetic hyperthermia. Studies have found that
the combination of ICIs (CTLA-4, PD-L1, IDO) and
nanoparticle-mediated hyperthermia can promote antigen
capture, enhance ICD effect, inhibit Treg cells’ function,
promote M1 macrophages’ differentiation, recruit several folds
of tumor-infiltrating lymphocytes, and achieve lasting memory
for the inhibition of tumor growth in primary and distant sites
November 2020 | Volume 11 | Article 595207
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(106–114). The synergetic role of heat and ICIs is further
confirmed by results that enhanced tumor antigen-specific T
cell responses and an increased Teff to Treg ratio in distant
tumors with a combination of RFA and anti-PD-1 mAb
administration (105). Despite the favorable results, several
studies have shown limited results for complete tumor
remission for ICIs with hyperthermia. Thus, triple combination
strategies including ICIs with radio-/chemotherapy or TLR
agonists have been studied, and they have also achieved
favorable results with decreased tumor volume, increased
metastatic dissemination, prevention of tumor rechallenge, and
improved overall survival (115–126). A case report also found that
Frontiers in Immunology | www.frontiersin.org 7
hyperthermia and ipilimumab combined with IL-2 achieved
complete clinical remission of stage IV triple-negative breast
cancer with lung metastasis (127). Despite the favorable results,
a preclinical study combining magnetic iron oxide nanoparticle
hyperthermia and anti-PD-1 and anti-CTLA-4 with a 4T1-luc cell
mouse model also showed decreased tumor volume but increased
metastatic dissemination and no improvement in overall survival
(128). In fact, a study has shown that tumors quickly overcame
immune responses by inhibiting the function of CD8 and CD4 T
cells, driving a shift to a higher Treg/Teff ratio and upregulating
PD-L1/PD-1 expression, which result suggested that tumor
microenvironment after hyperthermia is variable and is favorable
TABLE 1 | Preclinical studies involving hyperthermia and immune checkpoint inhibitors.

Hyperthermia Immune checkpoint inhibitors Temperature Tumor (mouse model) Reference

CuS NPs-PEG-Mal-mediated PTT Anti-PD-L1 mAb 55°C 4T1 breast tumor (108)
Mild photothermal Anti-PD-L1 mAb 45°C 4T1 breast tumor and B16-

F10 melanoma tumor
(107)

CoFe2O4@MnFe2O4 nanoparticle-mediated
magnetic hyperthermia

Anti-PD-L1 mAb 50°C 4T1 breast tumor (109)

FVIOs-mediated magnetic hyperthermia Anti-PD-L1 mAb 43–44°C Orthotopic 4T1 breast
cancer

(110)

Au nanoparticle-loaded membrane nanosheet
photothermal therapy

Anti-PD-L1 mAb 64.4 ± 1.4°C B16−F10 melanoma-tumor (111)

GNPs-hPD-L1 siRNA-mediated
photothermal therapy

Nanoprism-assisted PD-L1 siRNA 41.2°C HCC827 lung cancer cell
bearing tumor

(112)

APP- and HAuNS-loaded PLGA nanoparticle
photothermal ablation

Sustained release anti-PD-1 peptide 50–55°C 4T1 breast tumor and CT26
tumor

(113)

Au@Pt-LMDP conjugated photothermal-
immunotherapy

Release of a D-peptide antagonist of PD-L1 + 20°C 4T1 breast tumor (114)

NLG919/IR780 micelle-mediated PTT IDO inhibitor 54°C MCF-7 breast cancer (106)

Triple combination
mPEG-Pep-IDOi/ICG NPs-mediated
phototherapy

Anti-PD-L1 mAb and nanoplatform of IDO inhibitor (IDOi) Maximum
60°C

B16–F10 melanoma tumor (115)

Magnetic iron oxide nanoparticle
hyperthermia

Anti-PD-1 mAb and anti-CTLA-4 mAb 43°C 4T1-luc breast cancer model (128)

PEG−rGO−FA−IDOi-mediated PTT Anti-PD-L1 mAb and IDOi 53°C CT26 colorectal cancer (116)
PDMN-JQ1 nanoplatform-mediated
photothermal therapy

bromodomain and extra-terminal inhibitor JQ1
downregulated the expression of PD-L1 and inhibited the
BRD4-c-MYC axis

+21.7–20.3°C 4T1 breast tumor (117)

PDA-PEG-R848-CD nanoparticle PTT Anti-PD-L1 mAb + PDA loaded with TLR7 agonist 52.4°C 4T1 breast tumor (118)
Fe3O4-R837 SP-involved PTT Anti-PD-L1 mAb and nanoparticles loaded with Toll-like

receptor 7 agonist
Ablation
temperature

4T1 breast tumor (119)

Iron nanoparticle-mediated magnetic
hyperthermia

Anti-CTLA-4 mAb and TLR7 agonist 55°C CT26 mouse colon cancer
and murine B16 skin
melanoma

(120)

WO2.9-WSe2 nanoparticles l RT/PTT Anti-PD-L1 mAb-based CBT + low radiation dose 48°C 4T1 breast tumor (121)
COF@ICG@OVA PTT/PDT therapy Anti-PD-L1 mAb + PDT + PTT >63.5°C H22 murine hepatoma (122)
Hyaluronic acid-shelled PPy/CPT
nanoparticles

Anti-PD-L1 mAb and camptothecin 45–50°C 4T1 Breast cancer (123)

FA-CD@PP-CpG phototherapy Anti-PD-L1 mAb+low dosage of loaded docetaxel 44°C 4T1 breast tumor (126)
Pd-Dox@TGMs NPs chemical-photothermal
therapy

Anti-PD-L1 mAb and doxorubicin 51.2°C CT26 colorectal cancer (124)

Cu-PPT + 650 + 808 nm laser photo/
chemodynamic therapy

Glutathione peroxidase-mimicking and PD-L1 mAb – CT26 colorectal cancer (125)

Regional hyperthermia followed by systemic
fever-range hyperthermia induced by
interleukin-2

Ipilimumab (case report) <42°C Stage IV triple-negative
breast cancer with lung
metastasis

(127)

Radiofrequency ablation
Radiofrequency ablation Anti-PD-1 mAbs >45°C CT26 mouse colon cancer (105)

Atezolizumab (case report) >45°C Stage IV non-small cell lung
cancer

(129)
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for anti-PD-1/PD-L1mAb treatment for only a narrow time
window (105). Thus, compared to similar studies mentioned above,
the reasons may partially be attributed to the unsynchronized
treatment of hyperthermia and ICIs, for which other reasons
should be explored to avoid further clinical failure. Detailed
information on the combination therapies is shown in Table 1.
CONCLUSIONS AND FUTURE
CHALLENGES

Providing danger signals and reforming immune cells in the
TME, hyperthermia is involved in multiple steps of regulating
pathways in the cancer-immunity cycle; the immunomodulatory
effect not only makes hyperthermia a treatment capable of
defending against cancer but also makes the regimens of
hyperthermia and ICIs a promising treatment for clinical use.
Two of the major concerns are whether this combination is
sufficient for the initiation and clearance of the tumor and that
the combination would not drag the result in the opposite
direction, i.e., the super-progression of the tumor due to
immunotolerance. For the first concern, selective combination
with the known treatment would be a way for solution. In fact,
both radiotherapy and chemotherapy can directly kill tumor
cells, whose cell debris can be recognized as a tumor in situ
vaccine that can promote the effect of ant-PD-1/PD-L1 mAb.
Moreover, hyperthermia is a potent radio-/chemo-sensitizer via
a series of supplementary cytotoxic effect (130). Thus, it is
expected for efficacy of the triple combination of anti-PD-1/
PD-L1 mAb, hyperthermia and radio/chemotherapy in clinics.
Moreover, it also seems promising for PARPi, anti-angiogenesis
treatments and other treatments to substitute radio/chemotherapy
to combine with PD-1/PD-L1 mAb and hyperthermia for the
Frontiers in Immunology | www.frontiersin.org 8
treatment of tumors with low mutation, fewer neoantigens or
disorganized tumor vessels. Thus, rational different combination
therapies are promising for the eradication of tumors (131). For the
second question, the authors believe that the patients should also be
explored and selected for the combination, which point is also
important for the first concern. Studies have found that certain gene
mutations, such as KRAS, are more sensitive to hyperthermia as
they exhibit sustained ERK signaling hyperactivation and increased
Wingless/Integrated (WNT)/beta-catenin signalling (132).
Moreover, using a bioinformatic approach, a series of molecules
have been identified as determinants of resistance/sensitivity to
thermotherapy (49). The results of the two studies offer ways for
accurate selection when treated with hyperthermia. Last but not
least, thermoequipment and procedures should be normalized with
schedules based on the model system, the magnitude, the duration
of the thermal stress, and the time of recovery after heat exposure
(133). However, radiofrequency and local hyperthermia are the
most commonly used hyperthermia regimens in clinical practice;
they exploit ablation and mild temperature for treatment directly
instead of the help of particle media. How they can be properly used
with ICIs and whether they can achieve equally promising results
remain to be elucidated.
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