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Throughout the last years, gut-resident Foxp3+ regulatory T (Treg) cells have been
associated with a growing number of tissue-specific functions in the intestine,
comprising various aspects of gut immunity and physiology. Treg cells have pivotal
roles in intestinal tolerance induction and host defense by actively controlling immune
responses towards harmless dietary antigens and commensal microorganisms as well as
towards invading pathogens. In addition to these immune-related roles, it has become
increasingly clear that intestinal Treg cells also exert important non-immune functions in
the gut, such as promoting local tissue repair and preserving the integrity of the epithelial
barrier. Thereby, intestinal Treg cells critically contribute to the maintenance of tissue
homeostasis. In order to account for this functional diversity, gut-resident Treg cells have
specifically adapted to the intestinal tissue microenvironment. In this Review, we discuss
the specialization of Treg cells in the intestine. We survey the different populations of gut-
resident Treg cells focussing on their unique functions, phenotypes and distinct
transcription factor dependencies.

Keywords: Treg cell, functions, phenotypes, intestinal tolerance, microbiota, diet, tissue homeostasis, intestinal
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INTRODUCTION

One of the major functions of Foxp3+ Treg cells residing in non-lymphoid tissues is to control local
inflammation. Given the overwhelming load of microbial and food antigens in the intestine, a
cardinal function of gut-resident Foxp3+ Treg cells is to contain inflammatory immune responses to
the microbiota and dietary factors, thereby establishing and maintaining intestinal immune
tolerance. This essential role of gut-resident Foxp3+ Treg cells is highlighted by the development
of immunodysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome in patients
who lack functional Foxp3+ Treg cells (1, 2). IPEX syndrome results in spontaneous inflammation
of many organs, yet IPEX patients most frequently suffer from severe gastrointestinal disorders and
food allergies (3, 4), emphasizing the key role of Foxp3+ Treg cells in establishing tolerance within
the intestine. In addition to maintaining tolerance towards environmental antigens, gut-resident
Foxp3+ Treg cells also shape immunity against invading intestinal pathogens by either suppressing
or promoting inflammatory anti-pathogen immune responses, thus determining host susceptibility
to intestinal infections. Furthermore, there is growing evidence that intestinal Foxp3+ Treg cells
regulate many non-immunological processes in the gut. Indeed, important roles of Treg cells in e.g.
local tissue repair and promotion of epithelial barrier functions are now emerging. These
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non-traditional roles have a profound impact on gut homeostasis
and physiology and should therefore be considered as important
facets of gut-resident Foxp3+ Treg cell function.

In accordance with this remarkable functional heterogeneity,
gut-resident Foxp3+ Treg cells have acquired unique phenotypes,
governed by specific transcriptional networks, that are tailored to
the diverse challenges of the intestinal tissue microenvironment.
In fact, the existence of functionally distinct Treg cell subsets in
the gut, enabling a certain division of labour, can be considered
as one of the key factors underlying intestinal homeostasis. In
this regard, two developmental origins have been described for
intestinal Foxp3+ Treg cells (5). The first occurs in the thymus,
where thymus-derived Treg (tTreg) cells are generated following
recognition of self-antigen by the T cell receptor. The second
pathway of Treg cell generation is in peripheral tissues, such as
the gut, where, under certain conditions, naïve CD4+ T cells
develop into peripherally-derived Treg (pTreg) cells upon
recognition of their cognate antigen, which is regarded as
being non-self. Thus, intestinal pTreg cells are thought to be
mainly responsible for tolerance to non-self-antigens, such as
environmental antigens, whereas tTreg cells would be
preferentially involved in controlling autoreactive responses.
Phenotypically, expression of the markers Helios and
Neuropilin 1 (Nrp1) by tTreg cells but not by pTreg cells can
be used to distinguish these subsets (6–8), although this
distinction is known to have exceptions (9–11).
Frontiers in Immunology | www.frontiersin.org 2
In summary, in this Review, we will discuss the current
understanding of Foxp3+ Treg cell adaptation in the intestine,
including their specific functions, phenotypes and distinct
transcription factor dependencies.
TREG CELLS MEDIATE TOLERANCE TO
ENVIRONMENTAL ANTIGENS

Control of T Cell Responses to
Microbial Antigens
Since their initial discovery, Foxp3+ Treg cells were recognized as
potent suppressors of T cell responses. Accordingly, gut-resident
Treg cells play a pivotal role in suppressing effector T cell
responses to the microbiota (Figure 1). A subpopulation of
Foxp3+ Treg cells found primarily in the large intestine,
characterized by co-expression of the RAR-related orphan
receptor gt (RORgt), has been suggested to specifically mediate
tolerance to the microbiota (12). Indeed, induction and
maintenance of RORgt+ Treg cells critically depend on the
microbiota (13–15) and/or specific metabolites thereof, such as
microbial secondary bile acids (16–18) or short chain fatty acids
(SCFA) (15, 19–21), although the specific role of SCFA for
RORgt+ Treg cells is controversial (14). In addition to
microbial metabolites, food-derived vitamin A seems to
specifically drive RORgt+ Treg cells in the intestine (15).
FIGURE 1 | Intestinal Foxp3+ Treg cells mediate tolerance to environmental antigens.Intestinal Foxp3+ Treg cells are potent suppressors of immune responses to
environmental antigens, such as commensal microbes and harmless dietary antigens. Peripherally-induced Helios- Nrp1- Foxp3+ Treg (pTreg) cells co-expressing
RORgt differentiate specifically in response to microbial antigens and have a crucial role in the suppression of microbiota-specific Th17 cell and IgA responses. In
addition, RORgt+ pTreg cells also contribute to the suppression of aberrant intestinal Th2 cell responses. Molecularly, RORgt+ pTreg cell differentiation and function,
such as production of immunosuppressive IL-10, depends on the transcriptional regulators c-Maf, IRF4 and Blimp-1. pTreg cells induced by dietary antigens lack
RORgt expression. This Treg cell subset has a specific role in installing tolerance to ingested antigens by controlling food-specific Th cell responses. Within Peyer’s
Patches, specialized Foxp3+ T follicular regulatory (Tfr) cells depend on Bcl6 and c-Maf and exhibit a dual role in controlling the germinal center reaction and
subsequent IgA production. While Tfr cells exert a suppressive effect on T follicular helper (Tfh) cell expansion and function, they can also promote B cell-mediated
IgA secretion via IL-10.
October 2020 | Volume 11 | Article 600973
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RORgt+ Treg cells comprise the majority of the Helios- Nrp1-

Foxp3+ pTreg cells in the intestine that differentiate locally in
response to commensal microbes in an antigen-specific manner
(22–25). Consistently, RORgt+ pTreg cells are selectively
decreased in germ-free and antibiotic-treated mice (14, 15).
Likewise, during postnatal development, the generation of
RORgt+ pTreg cells coincides with the increased uptake of
luminal antigens and diversification of the microbiota during
weaning, which is critical for the development of tolerance to gut
bacteria (26, 27).

Functionally, RORgt+ pTreg cells express particularly high
levels of IL-10, CTLA-4 and ICOS, indicative of a superior
suppressive capacity (13, 28). Especially, secretion of the anti-
inflammatory cytokine IL-10 by Treg cells has proven to be
essential for maintaining intestinal tolerance, as evidenced by the
development of spontaneous colitis upon genetic deletion of
IL-10 selectively in Foxp3+ cells (29). RORgt+ pTreg cells were
shown to control intestinal inflammation in different models of
colitis (13–15), although the specific role of RORgt+ pTreg cells
has remained unclear, with different studies reporting different
conclusions. Whereas one study proposed that RORgt+ pTreg
cells are crucial in controlling aberrant Th2 cell responses (15), a
finding that is consistent with the selective Th2 cell dysregulation
observed in mice that specifically lack pTreg cells (30), another
report observed selective control of Th1 and Th17 cells (14). This
suggests that the function of RORgt+ pTreg cells is highly
context-dependent and most likely influenced by the
indigenous microbiota.

Our own work as well as that of others demonstrated a
specific role of gut-resident Foxp3+ Treg cells in controlling
intestinal microbiota-specific Th17 cell responses (31–34).
Importantly, we identified the transcription factor c-Maf to be
essential for gut-resident Treg cells to differentiate into RORgt+

pTreg cells, to express IL-10 and to maintain intestinal tolerance
(31–34). Notably, in comparison to RORgt, c-Maf appears to
have a more substantial role for the control of microbiota-
specific T cell responses, as inflammatory Th17 cell
accumulation and spontaneous intestinal inflammation was
only observed upon Treg cell-specific deletion of c-Maf but not
of RORgt (31, 32). Consistent with this, c-Maf-deficiency in Treg
cells also resulted in gut dysbiosis and breakdown of host-
microbiota homeostasis (32).

In accordance with the fact that expression of c-Maf (and
RORgt) in Treg cells is dependent on STAT3 activation (15, 32,
35), uncontrolled intestinal Th17 cell responses and
spontaneous colitis were also detected in Treg cell-specific
STAT3-deficient mice (36). In addition to c-Maf, RORgt+

pTreg cells also co-express high levels of the transcription
factor Blimp-1 (37). Blimp-1, together with IRF4, critically
contributes to the control of IL-10 production in Treg cells
(38, 39), although Foxp3+ Treg cell-specific deletion of Blimp-1
was not sufficient to cause severe chronic intestinal
inflammation as it was observed in CD4+ T cell-specific
Blimp-1-deficient mice (40).

Importantly, although tolerance induction to microbial
antigens has been mainly attributed to pTreg cells, there is
Frontiers in Immunology | www.frontiersin.org 3
evidence that also naturally occurring tTreg cells contribute to
this process (41).

Control of Humoral Immune Responses to
Microbial Antigens
In addition to the control of microbiota-specific T cell responses,
gut-resident Foxp3+ Treg cells also play an important role in
regulating humoral immune responses to the microbiota, such as
intestinal immunoglobulin A (IgA) production and selection
(Figure 1). IgA is the most abundant antibody in mucosal
secretions and essential to intestinal homeostasis by both
maintaining non-invasive commensal bacteria and neutralizing
invasive pathogens (42). Early reports demonstrated a supportive
role of Treg cells for intestinal IgA production based on the
findings that depletion of Treg cells resulted in a rapid loss of
intestinal IgA (43), and that Treg cells can contribute to the
germinal center (GC) reaction in Peyer’s Patches (PPs) by
conversion into T follicular helper (Tfh) cells (44). Later, a
specialized subset of Foxp3+ Treg cells within follicles, termed
T follicular regulatory (Tfr) cells, was identified (45–47). Tfr cells
share many characteristics with Tfh cells, including the
expression of PD-1, CXCR5, and dependency on the
transcription factor Bcl6, which allows them to gain access to
GCs while maintaining their suppressive capacity (45–47). Thus,
Tfr cells can specifically suppress excessive Tfh cell-mediated B
cell responses. Consistent with this, lack of Tfr cells was shown to
result in dysregulated Tfh cells and IgA selection in PPs, thereby
precipitating intestinal microbial dysbiosis (48).

Besides the suppressive effect of Tfr cells on GC, there is
growing evidence that Tfr cells can also act as “helper” cells for
humoral immune responses (49). Mechanistically, this positive
effect of Tfr cells on GC is associated with Tfr cell-derived IL-10
production (50). Indeed, IL-10 is known to promote the
proliferation of activated B cells and subsequent IgA production
(51, 52), as well as the development and maintenance of intestinal
microbiota-dependent IgA+ plasma cells (53). However, the
relative contribution of Treg cell-derived IL-10 production for
intestinal IgA production has remained unclear. We and others
recently showed that intestinal Foxp3+ Treg cells require the
transcription factor c-Maf to produce IL-10 and to adopt a Tfr
cell phenotype (32, 33). Interestingly, Treg cell-specific deletion of
c-Maf resulted in strongly elevated frequencies of lamina propria
IgA+ plasma cells (32). While c-Maf clearly controls multiple Treg
cell functions beyond their ability to produce IL-10, we also
observed a slight increase in intestinal IgA levels in Treg cell-
specific IL-10-deficient mice (32).

A very recent report discovered that microbiota-dependent
RORgt+ pTreg cells and IgA+ B cells can regulate each other in a
double-negative feedback loop that is transmitted through
multiple generations (54). While these findings suggest that
intestinal IgA level are also critically controlled by Foxp3+ Treg
cells outside of follicles, the cellular and molecular entities
involved in this reciprocal regulation remain to be defined.
Notably, given that RORgt+ pTreg cell differentiation is
dependent on c-Maf, these results also suggest that the hyper
IgA phenotype of Treg cell-specific c-Maf-deficient mice is at
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least partially driven by the lack of direct suppression of RORgt+

pTreg cells on IgA (32). Collectively, these findings suggest a
highly context-dependent function of Foxp3+ Treg cells for
intestinal IgA regulation. Clearly, more work is needed to
precisely define the role of Treg cells in regulating humoral
immunity in the gut.

Control of Immune Responses to
Dietary Antigens
Aside from microbial antigens, dietary antigens represent a major
source of natural antigenic stimulation in the gut. Tolerance to
food antigens is characterized by the absence and/or suppression
of antigen-specific immune responses, a phenomenon known as
oral tolerance. Foxp3+ Treg cells play a central role in installing
oral tolerance, as evidenced by the fact that loss-of-function
mutations affecting Foxp3 in mice and humans result in
spontaneous severe allergic inflammation, such as food allergies
(FA) (4, 55). Likewise, inducible depletion or functional
impairment of Foxp3+ Treg cells in mice tolerant to ovalbumin
was shown to be sufficient to abolish oral tolerance, demonstrating
a dominant role of antigen-specific Treg cells in conferring
tolerance to ingested antigens (56, 57).

Among the intestinal Foxp3+ Treg cell populations, pTreg cells
but not tTreg cells, appear to be essential for oral tolerance
induction (5, 30, 58) (Figure 1). More specifically, analysis of
germ-free mice fed with an elemental diet devoid of dietary
antigens identified a specific pTreg cell population that was
unaffected by the absence of the gut microbiota but disappeared
upon antigen-free diet (59). These food-induced pTreg cells were
distinguishable frommicrobiota-induced pTreg cells by their lack of
RORgt expression (59). Importantly, without this population, mice
showed an increased susceptibility to FA (59). Notably, although
directed against the microbiota, ablation of RORgt+ pTreg cells also
rendered mice more susceptible to FA (60). Vice versa, FA patients
manifest dynamic microbial dysbiosis and RORgt+ pTreg cell-
inducing microbiota therapy in mice promoted restoration of oral
tolerance in FA (60), demonstrating a hitherto unrecognized
mechanistical link between Treg cell-mediated tolerance induction
to microbial and dietary antigens.

Other examples of how nutritional signals impact on mucosal
immune responses stem from studies focussing on the
manipulation of the host nutritional status (61–63).
Intermittent fasting, for instance, was shown to strongly affect
the abundance and functionality of intestinal lymphocytes,
including Treg cells, as well as the susceptibility to
inflammatory diseases (61, 62), highlighting the close link
between diet, Treg cells and intestinal immune homeostasis.
TREG CELLS CONTROL INTESTINAL
INFLAMMATION AND HOST DEFENSE

Control of Intestinal Inflammation and
Tissue Damage
Gut-resident Foxp3+ Treg cells not only operate during
homeostasis to establish and maintain a tolerogenic
Frontiers in Immunology | www.frontiersin.org 4
environment in the intestine. In fact, Treg cells are able to
specifically sense inflammatory signals, which leads to their
activation and heightening of their suppressive capacity to
counteract e.g. inflammation and inflammation-driven tissue
damage (64, 65).

A substantial fraction of intestinal Foxp3+ Treg cells has a
phenotypic signature specifically linked to tissue repair, such as
expression of ST2, the receptor for the alarmin IL-33, and the
growth factor amphiregulin (66) (Figure 2). In addition,
enhanced production and activation of IL-10 and TGF-ß has
been detected in ST2+ Treg cells, demonstrating their highly
activated and suppressive phenotype (67). ST2+ Treg cells co-
express the canonical transcription factor of type 2 immunity
GATA3, are mostly Helios+/Nrp1+ and are unaffected by the
absence of the gut microbiota, indicative of a thymic origin (15).
GATA3 directly interacts with Foxp3 both on protein and gene
level to regulate expression of Foxp3 itself as well as the
downstream Foxp3-dependent transcriptional program (68,
69). Developmentally, ST2+ tTreg cells rely on IRF4 and BATF
for their differentiation (70–72).

Since IL-33 is primarily produced by intestinal epithelial
cells upon local damage (73), and ST2+ tTreg cells exhibit
high expression of the gut-homing receptors CCR9 and a4b7
(67, 74), the prevailing model for ST2+ tTreg cell function is
that they specifically home to sites of damage in the intestine
and mediate repair, although this has not been formally proven
yet. In support of a specific role of ST2+ GATA3+ tTreg cells
in controlling local inflammation, it was shown that
GATA3 expression was not required at steady state, but was
essential under inflammatory conditions to enable Treg cell
accumulation at inflammatory sites (75). Furthermore, Treg
cell-specific GATA3 deletion led to spontaneous inflammation
in mice, including development of intestinal pathologies (68,
69), although these disorders were not present in young mice,
but only observed upon aging (ca. after 6 months) (68, 69, 75,
76). Notably, since Helios+ Nrp1+ tTreg cells are thought to be
positively selected against self-antigens, they may also be
involved in preventing autoimmune inflammation in the gut.
In an experimental system, in which a model self-antigen was
specifically expressed in the intestinal epithelium, activation
and expansion of autoreactive T cells was inhibited by self-
antigen-specific tTreg cells (77).

While ST2+ GATA3+ tTreg cells are clearly linked to the
regulation of type 2 inflammation, type 1 inflammatory immune
responses appear to be specifically controlled by Foxp3+ Treg
cells co-expressing the transcription factor T-bet (78, 79). In fact,
type 1 inflammation selectively induces T-bet expression in Treg
cells via IFN-g- or IL-27-dependent signalling to endow Treg
cells with the homeostatic and migratory properties required for
the suppression of type 1 immune responses (76, 78–80).
Functionally, T-bet+ Treg cells were shown to limit Th1-
mediated autoimmune- or infection-induced pathology in the
intestine but also at extra-intestinal sites (76, 78–80). However,
T-bet+ Foxp3+ Treg cells may also acquire pro-inflammatory
IFN-g co-expression during intestinal inflammation, thereby
promoting gut inflammatory diseases (81, 82).
October 2020 | Volume 11 | Article 600973
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Control of Host Defense Against
Intestinal Pathogens
Foxp3+ Treg cells are also important in regulating host defense
against invading intestinal pathogens. In this context, it has become
clear that the functional role of Treg cell-mediated control of immune
responses to infectious agents is highly context-dependent, ranging
from detrimental to advantageous outcomes for the host.

For instance, during intestinal helminth infection, Foxp3+ Treg
cells are actively induced by the pathogen leading to a state of
hyporesponsiveness, which is key for parasite persistence (83, 84).
However, expansion of Treg cells not only enhances parasite
survival but also protects the host from excessive type 2
inflammatory immune responses against the pathogen, thereby
minimizing `collateral damage` to the gut tissue (85, 86). Notably,
upon helminth infection, selective expansion of Foxp3+ Helios+

tTreg as well as Foxp3+ Helios- pTreg cells has been described (87),
suggesting that control of anti-helminth immunity involves
multiple pathways of Treg cell recruitment. Indeed, ST2+ tTreg
cells, activated and expanded by helminth-induced epithelial
damage-mediated release of IL-33 (88), as well as pTreg cells,
induced by helminth-derived secretory products (89), were shown
to contribute to the control of mucosal helminth infection.

Importantly, in addition to suppressing anti-pathogen
immunity, Foxp3+ Treg cells can also directly promote host-
protective immune responses. Upon mucosal infections with
Frontiers in Immunology | www.frontiersin.org 5
Citrobacter rodentium or Candida albicans, Treg cells were
shown to support protective Th17 cell responses by
consumption of IL-2 (90–92), a potent inhibitor of Th17 cell
differentiation (93). This supportive role stands in opposition to
the suppressive function of Treg cells for microbiota-specific
Th17 cell responses during homeostasis (see section above) (31–
34, 36). Nevertheless, recent data indicate that Treg cells also
participate in the inhibition of inflammatory pathogen-specific
Th17 cell responses. For instance, susceptibility to infection with
the intestinal protozoan parasite Giardia lamblia correlated with
increased RORgt+ pTreg to Th17 cell ratios, suggesting that
RORgt+ pTreg cells also contribute to the suppression of Th17
cells during intestinal infection, thereby hampering protective
immunity (94). Similarly, induction of RORgt+ pTreg cells in
response to the pathobiont Helicobacter hepaticus prevented
expansion of pathogenic antigen-specific Th17 cells, thus
enabling immunological tolerance (31).
TREG CELLS PRESERVE GUT
PHYSIOLOGY

Control of Epithelial Barrier Functions
A novel concept in immunology is that tissue-resident immune cells
not only mediate immune homeostasis and host defense but also
FIGURE 2 | Intestinal Foxp3+ Treg cells engage in a functional crosstalk with intestinal epithelial cells. Gut-resident Foxp3+ Treg cells support tissue physiology by
maintaining intestinal epithelial cell (IEC) homeostasis. Vice versa, IEC-derived signals control the abundance and functionality of intestinal Treg cells. Treg cell-derived
IL-10 promotes the renewal of intestinal epithelial stem cells, while apoptotic IEC negatively regulate the proliferation and abundance of intestinal Treg cells.
Thymically-induced Helios+ Nrp1+ Foxp3+ Treg (tTreg) cells co-expressing GATA3 have been implicated in local tissue repair and regeneration. GATA3+ tTreg cells
express ST2, by which they can sense IL-33, an alarmin, which is produced by IEC e.g. upon infection-induced damage. In response, ST2+ GATA3+ tTreg cells get
activated, expand and produce the growth factor amphiregulin. Developmentally, ST2+ GATA3+ tTreg cells rely on IRF4 and BATF for their differentiation. pTreg cells
indirectly contribute to the maintenance of the epithelial barrier by controlling the abundance of IL-22-producing Th17 cells. IL-22 directly acts on IEC to control IEC
growth, permeability, production of mucus and antimicrobial proteins (AMPs). While Treg cells are mostly presented as suppressors of Th17 cells, they can also
promote Th17 cell responses via consumption of IL-2 during mucosal infections. Intestinal pTreg cells also show intra-tissue specialization. Upon migration to the IEC
barrier, pTreg cells downregulate Foxp3 and become CD4+ Foxp3- intraepithelial (IEL) T cells in order to control local inflammation, demonstrating a dominant role of
the IEC microenvironment in controlling Treg cell lineage stability and plasticity.
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critically contribute to the maintenance of organismal physiology.
In this regard, essential roles of Foxp3+ Treg cells in sustaining
homeostasis of diverse tissues are now emerging, although much
knowledge about these non-canonical tissue-specific functions is
still to be obtained (95). In the intestine, Foxp3+ Treg cells are
involved in preserving the function and homeostasis of intestinal
epithelial cells (IEC) (Figure 2). Positioned as a physical barrier
between the intestinal lumen and the immune cells in the lamina
propria, IEC spatially segregate host and microbiota (96). At the
same time IEC facilitate the crosstalk between microbes and host
cells by sensing and responding to immune as well as microbial
stimuli (96).

Foxp3+ Treg cells promote IEC homeostasis by supporting
epithelial stem-cell renewal (97). In an in vitro organoid system,
addition of Treg cells or their major effector cytokine IL-10
supported stem-cell renewal (97). In vivo, depletion of Treg cells
decreased intestinal stem cell proportions while higher
differentiation rates of IEC were observed (97). Interestingly,
IL-10 was also shown to maintain IEC function by regulating
their fucosylation and by protecting IEC from endoplasmic
reticulum stress as well as from Fas-mediated apoptosis (98–
101), although the precise cellular source of IL-10 was not
elucidated in these studies. In addition to direct effects on IEC,
intestinal Foxp3+ Treg cells shape IEC function also indirectly by
controlling e.g. the abundance of IL-22-producing Th17 cells in
the gut (31–34, 36, 90). IEC constitutively express the IL-22
receptor, and IL-22 signalling in IEC is critical for maintaining
the integrity of the mucosal barrier (102).

Conversely to the effect of Treg cells on IEC, signals derived
from IEC also influence the function and abundancy of Foxp3+

Treg cells in the lamina propria, thereby establishing a reciprocal
regulatory circuit (Figure 2). For instance, intestinal ST2+

GATA3+ tTreg cell function is boosted by the release of IL-33
upon IEC damage (see section above) (66, 67). Another example
comes from a study analysing the effects of IEC apoptosis on
intestinal Treg cell homeostasis, in which apoptotic IEC reduced
the abundancy of gut-resident Foxp3+ Treg cells, thus lowering
the threshold for inflammatory immune responses (103). Even
expansion of intestinal Treg cells induced by direct antigen-
driven interaction with IEC has been suggested (104, 105),
although the role of IEC antigen presentation in shaping
intestinal immunity has not been thoroughly explored so far.
Recently, another unconventional interaction of Treg cells with
IEC has been identified. Upon migration to the epithelium,
intestinal pTreg cells were shown to downregulate Foxp3 and
convert to intraepithelial (IEL) CD4+ T cells in order to control
intestinal inflammation (106). These findings reveal an
unprecedented phenotypic and functional adaptability of
intestinal Treg cells. Moreover, they demonstrate a dominant
Frontiers in Immunology | www.frontiersin.org 6
role of the IEC microenvironment in controlling Treg cell lineage
stability and plasticity, highlighting the close interdependence
between Treg cells and IEC (106).
CONCLUDING REMARKS

It is now well established that intestinal Foxp3+ Treg cells are
critical for the tolerance to commensal microbes, the induction
of oral tolerance and for host defense against enteric pathogens,
thereby installing gut immune homeostasis. Beyond these
classical immune-related functions, novel roles of Treg cells in
gut organismal homeostasis are emerging, unrevealing a greater
functional and phenotypic diversity of the intestinal Treg cell
compartment than was previously recognized. Given these non-
canonical functions in tissue maintenance, regeneration and
repair, intestinal Treg cells can be considered not only as
mediators of immunological tolerance but also of disease
tolerance, a concept, which encompasses multiple mechanisms
that help decrease host susceptibility to tissue damage during
pro-inflammatory immune responses (107, 108).

Clearly, we are just beginning to understand the impact of
Treg cells on gut physiology and much remains to be uncovered
about the relationship and crosstalk between Treg cells and
distinct intestinal tissue cells, such as endothelial, epithelial,
stromal or neuronal populations. From a translational point of
view, impaired intestinal Treg cell functionality is associated with
chronic inflammatory diseases, such as inflammatory bowel
disease and food allergy. Thus, further explorations into the
characteristics, dependencies and targets of different intestinal
Treg cell subsets will undoubtedly help to develop more targeted
manipulation strategies, aiming at a selective enhancement or
inhibition of Treg cell function in a context- and tissue-
specific manner.
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