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The junctional adhesion molecule-A (JAM-A) is a cell surface adhesion molecule
expressed on platelets, epithelial cells, endothelial cells and leukocytes (e. g.
monocytes and dendritic cells). JAM-A plays a relevant role in leukocyte trafficking and
its therapeutic potential has been studied in several pathological conditions due to its
capacity to induce leukocyte migration out of inflamed sites or infiltration into tumor sites.
However, disruption of JAM-A pathways may worsen clinical pathology in some cases. As
such, the effects of JAM-A manipulation on modulating immune responses in the context
of different diseases must be better understood. In this mini-review, we discuss the
potential of JAM-A as a therapeutic target, summarizing findings from studies
manipulating JAM-A in the context of inflammatory diseases (e.g. autoimmune
diseases) and cancer and highlighting described mechanisms.

Keywords: autoimmune diseases, cell adhesion, epithelial barrier, F11 receptor, inflammation, junctional adhesion
molecule-A
INTRODUCTION

The junctional adhesion molecule-A (JAM-A), also called junctional adhesion molecule-1 (JAM-1),
is a member of the immunoglobulin superfamily and received its first denomination as F11 receptor
(F11R), a molecule expressed on the surface of human platelets (1). Only a few years later, this
molecule was detected in epithelial and endothelial intercellular tight junctions (2). JAM-A
interactions with extracellular ligands assure firm cell-cell adhesion, playing important roles in
endothelial cell migration (3–5) and proliferation (6) and epithelial cell barrier functions (7).
Changes in barrier integrity caused by disruption of JAM-A pathways can indirectly modulate
immune responses by modifying migratory patterns of antigen presenting cells (APC). However,
JAM-A is also expressed by immune cells themselves, such as monocytes (2) and dendritic cells
(DC) (8, 9). Thus, immune mediated processes are also likely to be directly influenced by JAM-A
activity. As our understanding of the contributions of JAM-A to inflammatory process increases so
does interest in the therapeutic value in targeting of JAM-A. In this regard, we summarize findings
on the disruption of JAM-A pathways in murine models of inflammation and cancer, highlighting
possible opposing immunological mechanisms mainly involving leukocyte migration.
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JAM-A BIOLOGY

JAM-A is a transmembrane glycoprotein composed of a
cytoplasmatic tail and an extra-cellular region consisting of a
membrane-distal domain (D1) and a membrane-proximal
domain (D2) (Figure 1). JAM-A homophilic binding (JAM-A-
JAM-A) was first suggested to occur in epithelial-epithelial and
endothelial-endothelial cell interactions, due to the presence of
JAM-A in tight junctions (2). The detection of JAM-A dimers on
the surface of JAM-A-transfected epithelial cells strengthened this
hypothesis (11), being confirmed by protein- (11, 12) and cell-
based (12, 13) assays. Homophilic ligation is mediated by JAM-A
D1 domain and allows the formation of JAM-A dimers (14).
Dimerization occurs by interaction of JAM-A monomers within
the surface of the same cell (cis interactions). JAM-A dimers can
then interact with other JAM-A dimers (trans interactions) to
bridge epithelial cells in tight junctions (see Figure 1C).

Besides homophilic binding, JAM-A can also undergo
heterophilic cis or trans interactions with other extracellular
ligands (Table 1). JAM-A can bind to the b2 chain of the
lymphocyte function-associated antigen 1 (LFA-1), but not of the
macrophage-1 antigen (MAC-1), via the JAM-A D2 domain (16,
18). The D2 domain was also found to be important in stabilizing
Frontiers in Immunology | www.frontiersin.org 2
homophilic interactions (13). However, the ligation of JAM-A D2
domain to LFA-1 was found to reduce the dynamic strength of
JAM-Ahomophilic interactions inassayswith immobilized JAM-A
and Jurkat T cells (13), a human cell line expressing considerable
levels of JAM-A (16). Immunoprecipitation assays revealed
formation of JAM-A and b3 integrin (CD61) aggregates in
endothelial cell lysates (3), suggesting a direct interaction between
these molecules. However, this interaction was later found to be
dependent onCD9, as absence of this tetraspanin inhibited JAM-A
coimmunoprecipitat ion with b3 integrin (3) . Other
immunoprecipitation assays suggest that JAM-A can also bind to
aIIb integrin (CD41) (15), as well as the b2 chain of LFA-1, as
previouslymentioned.However,CD9 is also known to interactwith
some of these integrins (19), whichmay point a dependence on this
tetraspanin for the interaction of these integrins with JAM-A. In
addition to these ligands, JAM-A can bind to anothermember of its
family, the junctional adhesion molecule-B (JAM-B) (17), and can
also work as a receptor for a few strains of murine and human
viruses (14, 20–22). While JAM-A cis interactions are mainly
responsible for cell signaling processes that may indirectly
regulate cell migration (4, 15, 23), trans interactions directly
mediate cell-cell adhesion and are essential for JAM-A role in
leukocyte migration.
A

B

C

FIGURE 1 | Schematic representation of junctional adhesion molecule-A (JAM-A) structure and homophilic adhesion. (A) JAM-A is composed by an extracellular
region and a cytoplasmatic tail, connected by a transmembrane portion. JAM-A extracellular portion is formed by a membrane-distal V-type Ig-like domain (D1),
which also includes a N-terminal portion, and a membrane-proximal C2-type Ig domain (D2). These Ig-like domains are linked by a short connector region. JAM-A
cytoplasmatic tail contains a PDZ-binding motif that is linked to a C-terminal portion. JAM-A can be expressed on the cell surface as monomers, but can also
interact with JAM-A monomers in cis interactions to form (B) homodimers in a process called dimerization. While the D1 domain is the region in which JAM-A
monomers interact with each other, the D2 region can bind to other extracellular ligands in trans interactions [e.g. lymphocyte function-associated antigen 1 (LFA-1)].
In addition, the PDZ-binding domain allows JAM-A to bind to scaffold proteins, such as CD9, responsible to link JAM-A to b3 integrin. (C) Endothelial JAM-A
homophilic adhesion consists of dimers on opposing cells forming contacts via the D1 domain and allows strong cell-cell adhesion in tight junctions for the formation
of a molecular barrier that ensures the homeostasis of epithelial barrier integrity. JAM-A trans cell-cell arrangement was reported by Kostrewa et al. (10).
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JAM-A ROLE IN LEUKOCYTE
TRAFFICKING

The first report of a role for JAM-A in leukocyte migration
comes from Martìn-Padura et al. (2), in which JAM-A blockade
was found to inhibit spontaneous and chemokine-induced
monocyte transmigration through endothelial cell monolayers.
Tumor necrosis factor alpha (TNF-a) and interferon-gamma
(IFN-g)-stimulated endothelial cells redistribute JAM-A on their
surface from intercellular junctions to the apical region of the
cells, increasing leukocyte adhesion to the inflamed endothelia
(16, 24). As such, several other studies have shown endothelial
and epithelial cell expression of JAM-A contributes to
leukocyte trafficking.

JAM-A blockade was found to inhibit chemokine stimulated
neutrophil transmigration across TNF-a and IFN-g-inflamed
endothelium, but not neutrophil arrest (16). Treatment with
anti-JAM-A antibody or JAM-A-Fc fusion protein (human
JAM-A extracellular domains fused to the Fc portion of
human IgG1) inhibited transendothelial migration of human
memory (CD45RO+) CD4+ T cells triggered by para-
methoxyamphetamine (PMA) and CXC chemokine ligand 12a
(CXCL12a) in a LFA-1-depedent manner (16, 25). Splenic
CD11c+CD11b-B220+ plasmacytoid DCs (pDC) treated with a
different anti-JAM-A mAb also had diminished transmigration
through layers of high endothelial venule (HEV) cells, whereas
cell adhesion remained unaffected (26). In vivo, treatment with
anti-JAM-A mAb decreased leukocyte transendothelial
migration through cremaster venules induced by IL-1b, but
not by chemoattractants, leukotriene B4 (LTB4) or platelet-
activating factor (PAF) (27). This same effect was found in
JAM-A deficient mice in comparison with wild-type (WT)
mice. This reduction in leukocyte transendothelial migration
through venules was found to be mediated by JAM-A expressed
on endothelial cells, but not on leukocytes.
Frontiers in Immunology | www.frontiersin.org 3
Although studies in monocytes, neutrophils, memory T cells
and pDCs suggest that JAM-A blockade could have an inhibitory
effect on leukocyte migration, conventional DCs (cDC) show an
increased propensity to cross lymphatic endothelial cells when
JAM-A activity is lacking (8). While monocytes, neutrophils (2,
8, 9) and pDCs (26) express very low or undetectable levels of
JAM-A, cDCs express high levels of this transmembrane protein
(8, 9). Bone marrow-derived DCs (BMDC) treated with anti-
JAM-A mAb, or originating from JAM-A knockout (KO) mice,
showed increased random motility in vitro compared to their
respective controls (8). These JAM-A-deficient BMDCs
expressed similar levels of maturation markers (CD80 and
CD86), surface molecules related to DC migration (CD11a,
CD11b, CD11c, CD62L, JAM-B, and JAM-C) and antigen
uptake capacity in comparison to WT BMDCs, suggesting that
JAM-A may not participate in early stages of DC differentiation
and maturation. However, JAM-A deficient BMDCs display
increased transmigration across monolayers of lymphatic
endothelial cells, but unaffected transmigration across
microvascular endothelial cells. In vivo, BMDCs from JAM-A
deficient mice had increased migration from FITC-painted skin
to the LN. The selective transmigration of JAM-A-deleted DCs
suggests that DC JAM-A plays a role in homing steps during DC
trafficking to the LN from tissues but may not participate in
DC tissue infiltration from the vasculature. When analyzing the
role of endothelial JAM-A in DC migration, another study
reported higher in vitro transmigration of JAM-A-expressing
BMDCs through layers of JAM-A-deficient lung endothelial cells
in comparison with endothelial cells from JAM-A-/- mice
reconstituted with full-length JAM-A complementary DNA
(cDNA) (28). These studies indicate that while DC JAM-A
participates in DC trafficking through the lymphatics,
endothelial JAM-A play a dominant role in DC arrest and
migration functions through the vascular endothelium. The
effects of JAM-A manipulation to the migration of DCs and
TABLE 1 | Junctional adhesion molecule-A (JAM-A) described extracellular ligands.

Protein Family Expression Detection of interaction Ligation con-
formation

References

aIIbb3
(CD41/
CD61)

Integrin Platelets Human platelet lysates by co- immunoprecipitation (co-
IP)

Cis (15)

aLb2 (LFA-
1 CD11a/
CD18),

Integrin Lymphocytes, dendritic cells, NK cells, neutrophils JAM-A-transfected Chinese hamster ovary (CHO) cells
with immobilized LFA-1 by adhesion assay

Trans (16)

CD9 Tetraspanin Platelets, endothelial cells, lymphocytes,
monocytes, macrophages, dendritic cells,
eosinophils, basophils, mast cells

HeLa cell lysates by co-IP Human umbilical vein
endothelial cell (HUVEC); lysates by co-IP

Cis (4)

JAM-A
(JAM-1
F11R),

Junctional
adhesion
molecule

Platelets, epithelial cells, endothelial cells,
monocytes, dendritic cells

Human platelet with immobilized JAM-A by adhesion
assay; JAM-A-transfected CHO cells with immobilized
JAM-A by adhesion assay

Cis/trans (12, 13)

JAM-B
(JAM-2 VE-
JAM),

Junctional
adhesion
molecule

Endothelial cells JAM-A- and JAM-B-transfected HEK293T cells by co-
IP and proximity ligation assay

Cis/trans (17)
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other immune cells have raised interest in potential JAM-A-
targeted therapies for inflammatory diseases and cancer.
JAM-A MANIPULATION IN DISEASE
MODELS OF INFLAMMATION

Due to its expression in different cell types (platelets, endothelial
cells and leukocytes), its capacity to modulate cell adhesion and
migration and its upregulation in inflamed tissues, JAM-A has
been studied as a therapeutic target in a number of
disease models.

Skin Inflammation
Inflammatory skin sites are characterized by proliferation of
dermal cells, dilated blood vessels and accumulation of immune
cells (29). In a model of skin inflammation, systemic treatment
with an antagonistic anti-JAM-A mAb inhibited leukocyte
infiltration upon chemokine administration in subcutaneous
air pouches (2). However, in a model of ear skin inflammation
driven in an antigen specific manner, JAM-A-deficient mice
displayed enhanced contact hypersensitivity (8). The increase in
ear swelling in this T-cell mediated model was linked to activity
of JAM-A-deficient DCs, most likely arising through their
augmented migration to LNs and enhancing activation of
antigen specific T cells.

Vascular Disease
Adhesion molecules have been implicated in vascular wall
integrity and play an important role in vascular diseases (30).
JAM-A ability to control platelet aggregation (12) have triggered
particular interest in this molecule in studies of vascular diseases
such as atherosclerosis, a cardiovascular disease caused by the
development of plaques on artery walls restricting or blocking
blood flow to specific organs or regions of the body (31). In
humans, elevated JAM-A gene expression was described in
atherosclerotic plaques compared with artery segments of
normal patients (32, 33) and in unstable carotid plaques in
comparison to stable plaques (33). In addition, JAM-A has
been found to be required for human platelet adhesion to
inflamed endothelial cells (34).

In models of ischemia-reperfusion (I/R) injury, both JAM-A
genetic depletion and blockade with anti-JAM-A mAb
suppressed leukocyte infiltration in response to cremaster
muscle (27) and liver I/R injury (35). However, no protective
effects on microvascular and hepatocellular injury were reported,
evidenced by unaffected levels of sinusoidal perfusion and liver
enzymes alanine aminotransferase (ALT) and aspartate
aminotransferase (AST). The use of mice with JAM-A selective
depletion in endothelial cells identified the requirement of
endothelial JAM-A in the reduction of T cell, but not
neutrophil, transmigration. This dependence on endothelial
JAM-A was also reported in a model of heart I/R injury, in
which JAM-A absence reduced leukocyte infiltration in the
myocardium by affecting transendothelial migration (36).

In mouse models of atherosclerosis, increased f11r messenger
ribonucleic acid (mRNA) expression was found in both early
Frontiers in Immunology | www.frontiersin.org 4
atherosclerotic endothelium of carotid arteries (25) and
advanced atherosclerotic plaques (32). A JAM-A-Fc fusion
protein was used in an ex vivo perfusion model to demonstrate
JAM-A role in early atherosclerosis. Treatment with this fusion
protein inhibited the arrest of human monocytes and memory
CD4+ T cells in murine atherosclerotic endothelium under
blockade of very late antigen 4 (VLA-4), an intercellular
adhesion molecule 1 (ICAM-1) ligand (25). These results show
the capacity of JAM-A targeting to modulate the recruitment of
leukocytes to atherosclerotic endothelium by blocking pathways
of competitor ligands.

In vitro, treatment with a JAM-A antagonistic peptide capable
of blocking homophilic binding (peptide 4D), decreased platelet
adhesion to inflamed endothelial cells, whereas agonistic
reagents promoted platelet aggregation (12, 37). This
antagonistic peptide also decreased plaque number and size
and increased survival of mice in an atherosclerosis model in
comparison with mice treated with a scrambled peptide (38), due
to a reduction on platelet adhesion to the inflamed endothelium.
However, in a murine model of thrombosis, lack of JAM-A
resulted in increased thrombus formation due to enhanced
aggregation of platelets (39). JAM-A-/- mice also had shorter
tail-bleeding time and faster vessel occlusion. Although no
studies have evaluated the capacity of the antagonistic peptide
to block other JAM-A pathways, these studies suggest that, while
JAM-A homophilic binding by platelets may be a useful target
for avoiding formation of atheroma, other JAM-A pathways may
have platelet stimulatory functions and promote blood
coagulation that can obstruct and impair the homeostasis of
the circulatory system.

Inflammatory Bowel Disease
The intestinal mucosa forms an important barrier against
potential hostile microorganisms and other foreign antigens.
The permeability of the intestinal epithelium is mediated by
tight junctions, formed of molecular components, such as
adhesion molecules, that link intestinal epithelial cells and
exert a control on the passage of environmental molecules.
Intestinal barrier defects have been associated with chronic
mucosal inflammation and inflammatory bowel diseases
(IBDs) (40). A few studies have addressed the role of JAM-A
in the regulation of intestinal barrier functions during IBDs.
Although JAM-A deficient mice displayed higher susceptibility
for development of dextran sulfate sodium (DSS)-induced colitis
in comparison with WT mice (41), JAM-A depletion increased
epithelial proliferation, which resulted in faster repair of
epithelial defects, evidenced by a reduction in damaged colonic
mucosa. The increase in clinical disease was attributed to a
higher permeability in the colonic mucosa of JAM-A-/- mice,
supposedly enhancing its vulnerability to acute DSS-induced
colitis (42). To address if this increased susceptibility was
mediated by the higher number of B and T cells found in the
lamina propria of JAM-A-/- mice, JAM-A-deficient mice crossed
to recombination activating gene 1 (RAG1) knockout animals
lacking B and T cell development were also investigated (43).
Lack of adaptive immunity in JAM-A-deficient RAG1-/- mice
promoted an even higher susceptibility for development of DSS-
November 2020 | Volume 11 | Article 602094
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induced colitis in comparison with JAM-A-/- animals. However,
administration of antibiotics in JAM-A-deficient RAG1-/- mice
reduced the susceptibility to disease development. These results
suggest an important compensatory role of the adaptive immune
system in JAM-A-/- mice that limits bacterial-driven colitis.
CD4+ T cells played a relevant role in this compensatory
mechanism, as depletion of these cells, but not CD8+ T cells,
enhanced susceptibility to colitis. In addition, increased gene and
protein expression of transforming growth factor beta 1 (TGF-b1)
in colonic tissues pointed to a possible role of this growth factor in
the compensatory mechanism. Treatment with anti-TGF-b1 mAb
decreased body weight and increased disease activity index scores
in JAM-A-deficient mice in comparison to anti-TGF-b1-treated
WT mice and to isotype-treated JAM-A-/- mice, demonstrating a
protective role of TGF-b1 in JAM-A-deficient mice from
developing a more severe acute colonic inflammation.

Mice with selective loss of JAM-A in myelomonocytic cells,
progenitors that can differentiate into monocytes, macrophages
and subtypes of conventional DCs (44), were used to investigate
the role of JAM-A expression on these cells during intestinal
inflammation. These mice showed no difference in neutrophil
recruitment into the peritoneum and macrophage chemokine
production in response to lipopolysaccharides (LPS) or zymosan
in comparison with control mice (45). However, these
parameters were significantly reduced in global JAM-A-/- mice
stimulated by these inflammatory mediators. Mice with selective
loss of JAM-A on intestinal epithelial cells demonstrated
increased intestinal permeability and reduced peritoneal
neutrophil migration and macrophage chemokine production.
These findings suggest that JAM-A expression in the epithelium
is fundamental for JAM-A -mediated intestinal inflammation.

Exposure of human intestinal epithelial cells to cytokines
(TNF-a, IFN-g, IL-22, or IL-17A) was found to induce JAM-A
cytoplasmatic tail tyrosine Y280 phosphorylation (46). Elevated
levels of this phosphorylated form were also detected in the
colonic mucosa of DSS-induced colitis mice and humans with
ulcerative colitis in comparison to healthy mucosa. Further
studies will investigate the role of JAM-A cytoplasmatic tail
phosphorylation as a regulator of epithelial intestinal barrier
functions during bowel inflammation.

Neurological Disorders
Disruption of the blood-brain barrier of the central nervous
system (CNS) leads to leukocyte accumulation in the
cerebrospinal fluid, a main component of brain disorders such
as meningitis (47) and multiple sclerosis (MS) (48). Surface
JAM-A is expressed in brain vessels of MS patients (49) and in
vessels of the brain parenchyma and choroid plexus of mice
subject to cytokine-induced meningitis (50). In this model of
cytokine-induced meningitis, intravenous treatment with anti-
JAM-A mAb attenuated meningeal inflammation (50). This
therapeutic effect was attributed to inhibition of monocyte and
neutrophil accumulation in the cerebrospinal fluid and
neutrophil infiltration into the brain parenchyma arising from
reduced blood–brain barrier permeability. Further pre-clinical
models that aim to discover the effects of JAM-A blockade/
promotion on other immunological components involved in
Frontiers in Immunology | www.frontiersin.org 5
neurological disorders may identify JAM-A as a potential
target for disease treatment.

Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a chronic systemic inflammatory
autoimmune disease that mainly affects the joints, with an
essential participation of the adaptive immune system in its
induction phase (51). A breach of self-tolerance led by failure in
immune regulatory mechanisms results in activation of immune
responses (52) and production of several autoantibodies, against
host proteins such as cartilage components, nuclear proteins,
stress proteins and citrullinated proteins (53). At the center of
these immune responses are leukocytes, that accumulate in the
joint, contributing to chronic joint pain (54). Evidence for of
JAM-A gene upregulation in human hypoxic cells (55, 56)
suggest that the hypoxia present in the synovial tissue of RA
patients (57–59) could potentially lead to increased JAM-A gene
and protein expression on cells from inflamed joints of these
patients. Recently, a study described increased expression of f11r
mRNA on PMBCs of RA patients (60). Nevertheless, this
upregulation could have been driven by the systemic
inflammation itself, as healthy individuals were used as control.
In addition, JAM-A is expressed in inflamed joints of K/BxN
mice (61), animals expressing transgenic T cell receptor (TCR)
and major histocompatibility complex class II (MHCII) that
develop severe inflammatory arthritis (62).

In a model of RA in which autoantibodies from arthritogenic
K/BxN drive inflammation and tissue destruction in serum-
recipient mice, treatment with anti-JAM-A mAb delayed the
disease onset and partially ameliorated overall disease (61).
Similar effects were found on mice treated with anti-ICAM-1
mAb, and a more prominent amelioration was found on
treatment with mAb targeting the alpha chain of LFA-1, but
not the beta chain. ICAM-1 is another ligand for LFA-1 (63),
which may suggest that the therapeutic effects in these arthritic
mice treated with both anti-JAM-A and anti-ICAM-1 mAbs
could have been caused by disruption of LFA-1 pathways.
However, more studies are required to investigate the
mechanisms involved in JAM-A blockade in models of
autoimmune diseases, which may be related to a modulation
on immune cells trafficking, as proposed in Figure 2.
JAM-A MANIPULATION IN CANCER
MODELS

The six hallmarks of cancer are sustained proliferative signaling,
resistance to cell death, replicative immortality, induction of
angiogenesis, evasion of growth suppressors and activation of
invasion and metastasis mechanisms (64). Interventions that aim
to enhance immune responses to tumor cells, such as increasing
tumor-derived antigen presentation to T cells are desirable for
cancer treatment. Evidence from the literature suggest that
circulating, soluble JAM-A could be used as a biomarker for
the detection of some types of cancer, such as multiple myeloma
(65) and head and neck squamous cell carcinoma (66). Although
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few studies show that JAM-A can be downregulated in tumor
sites of metastatic breast (67) and anaplastic thyroid carcinoma
tissues (68), high levels of JAM-A protein expression in tumor
tissues have been correlated with poor prognosis in breast cancer
(69) and nasopharyngeal carcinoma (70) patients.

In vitro studies using human triple negative breast cancer or
thyroid carcinoma cell lines showed increased tumor cell
proliferation and migration under JAM-A gene silencing (67,
68). Transfection of a JAM-A plasmid to these cell lines impaired
transendothelial migration and colony formation. However,
treatment with a JAM-A antagonistic peptide inhibited
transmigration of breast cancer cells through inflamed
endothelium (71), an important step in the initiation of
metastasis formation. Additionally, JAM-A inhibition increased
apoptosis and decreased proliferation of multiple myeloma cells
in vitro and inhibited the progression of this type of cancer in
vivo (65). In RIP1Tag2 mice, which express the SV40 T-antigen
under the rat insulin promoter resulting in carcinogenesis of b
Frontiers in Immunology | www.frontiersin.org 6
cells in pancreatic islets, JAM-A absence decreased growth and
aggressiveness of tumors in comparison with control mice (28).
An increased tumor specific immune response resulted in
diminished angiogenesis and increased apoptosis that was
attributed to a more efficient infiltration of JAM-A-deficient
DCs, but not macrophages, into tumor sites. This mechanism
was dependent on both CD4+ and CD8+ T cells. In a model of
multifocal mammary adenocarcinoma, mice lacking JAM-A
developed smaller mammary tumors than control mice (72).
Disruption of JAM-A pathways increased cell apoptosis and
decreased proliferation, however, no differences in angiogenesis
or infiltration of DCs or macrophages were found. In addition,
treatment with anti-JAM-A mAb suppressed progression of
malignant tumors by impairing cell proliferation and
angiogenesis in malignant myeloma xenograft murine models
(73). Altogether, these studies suggest that although JAM-A
expressed by tumor cells may have a protective role on
progression of cancer, JAM-A antagonism could enhance
FIGURE 2 | Proposed model for junctional adhesion molecule-A (JAM-A)-mediated dendritic cell (DC) role in cancer and autoimmunity. Although JAM-A may
contribute to disease through diverse cell types and signaling processes, mechanisms of DC trafficking mediated by JAM-A and their indirect effects in the immune
response might play an important role in the induction and/or promotion of cancer and autoimmunity. Among these is the (A) impaired infiltration of DCs that is found
in tumors that have achieved the hallmarks of cancer. (B) This diminished presence of DCs impairs the availability of tumor antigens that would be presented to
tumor-specific T cells in the LNs, (C) leading to reduced T cell activation and (D) decreased adaptive immune responses against the abnormal cells. (E) The lack of
immunity against these cells allows tumor to grow and cancer to be set. (F) On the other hand, in autoimmunity, JAM-A may assist the accumulation of immune cells
in the inflamed tissues by enhancing leukocyte adhesion to the inflamed endothelia. (G) The accumulation of DCs increases the availability of self-antigen not only in
peripheral tissues - such as arthritic joints of RA patients, where antigen presentation can occur - but also in the draining LN, by DCs carrying self-antigen captured
in the affected tissue. (H) This abundance of self-antigens possibly leads to the activation of a higher proportion of self-antigen specific T cells. (I) The induction of
adaptive immune responses against self-antigens leads to (J) inflammation and tissue destruction characteristic of autoimmune diseases.
November 2020 | Volume 11 | Article 602094
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immune response against these abnormal cells by possibly
facilitating leukocyte infiltration into tumors and DC egress to
LNs (see Figure 2). Nevertheless, in a recent study, JAM-A-
deficient female mice developed a more aggressive phenotype of
brain tumor in comparison with WT females and JAM-A–
deficient and WT males (74). This study highlights the impact
of other factors, such as sex difference, in the therapeutic effects
that JAM-A blockade might promote in the development of
tumors and demonstrates the complexity and challenges
involved in the potential development of a JAM-A-targeted
drug for cancer treatment.
CONCLUSION AND FUTURE
PERSPECTIVES

Upon recruitment of its extracellular ligands, JAM-A ensures
firm adhesion of leukocytes and platelets to the endothelia and
plays a definitive role in immune cell transmigration.
Antagonistic JAM-A targeting in preclinical models of
inflammatory diseases show promising results for controlling
inflammation caused by leukocyte or platelet accumulation. In
addition, in some cancer models, manipulation of JAM-A
pathways achieved agonism of immune responses by affecting
leukocyte infiltration into tumors, controlling the progression of
the disease. However, the possible disruption in multiple
pathways (endothelial cell-endothelial cell, leukocyte-
Frontiers in Immunology | www.frontiersin.org 7
endothelial cell, leukocyte-leukocyte, platelet-endothelial cell,
platelet-leukocyte and platelet-platelet interactions) caused by
JAM-A targeting suggests precaution in the interpretation of
results from preclinical model studies. As such, studies with cell-
selective JAM-A disruption that aim to distinguish pathway-
specific effects in different pathological conditions will further
our understanding of JAM-A role in autoimmunity and cancer
and may highlight JAM-A as a potential therapeutic target for
human disease.
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