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Patients with psoriasis (Pso) and, in particular, psoriatic arthritis (PsoA) have an increased
risk of developing osteoporosis (OP). It has been shown that OP is among the more
common pathologies associated with Pso, mainly due to the well-known osteopenizing
conditions coexisting in these patients. Pso and OP share common risk factors, such as
vitamin D deficiency and chronic inflammation. Interestingly, the interleukin (IL)-33/ST2
axis, together with vitamin D, is closely related to both Pso and OP. Vitamin D and the IL-
33/ST2 signaling pathways are closely involved in bone remodeling, as well as in skin
barrier pathophysiology. The production of anti-osteoclastogenic cytokines, e.g., IL-4 and
IL-10, is promoted by IL-33 and vitamin D, which are stimulators of both regulatory and
Th2 cells. IL-33, together with other Th2 cytokines, shifts osteoclast precursor
differentiation towards macrophage and dendritic cells and inhibits receptor activator of
nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis by regulating the
expression of anti-osteoclastic genes. However, while the vitamin D protective functions in
OP and Pso have been definitively ascertained, the overall effect of IL-33 on bone and skin
homeostasis, because of its pleiotropic action, is still controversial. Emerging evidence
suggests a functional link between vitamin D and the IL-33/ST2 axis, which acts through
hormonal influences and immune-mediated effects, as well as cellular and metabolic
functions. Based on the actions of vitamin D and IL-33 in Pso and OP, here, we
hypothesize the role of their crosstalk in the pathogenesis of both these pathologies.
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INTRODUCTION

Psoriasis (Pso) is a chronic autoimmune multifactorial disease that is associated with systemic
inflammation. It presents with skin erythematous plaques, covered by characteristic white silvery
scales (1). It is characterized by increased proliferation of keratinocytes, perivascular skin infiltration
by cells belonging to both the adaptive and innate immune system, and imbalances in apoptotic and
autophagic pathways (2).

Through the production of inflammatory cytokines, activated and autoreactive immune cells play
central roles in its pathogenesis (3). In both skin and blood of psoriatic patients, there are increased
levels of various cytokines, growth factors, and chemokines (4). Patients suffering from Pso,
org January 2021 | Volume 11 | Article 6040551
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particularly those with psoriatic arthritis (PsoA) or more severe
forms of the disease, develop multiple comorbidities in addition to
joint diseases, including cardiovascular and rheumatologic
disorders, infections, obesity, and diabetes (5–7). The link
between these comorbidities is likely systemic inflammation (8).
Recently, osteoporosis (OP) is also considered to be a relevant
comorbidity in Pso (9). Therefore, patients with Pso are now
recognized to be at increased risk of pathologic fractures and OP,
so today, it is commonly believed that Pso patients might benefit
from increased screening for OP (10).

OP is defined as a generalized disease of the skeleton,
characterized by low bone mineral density (BMD) and altered
microarchitecture, leading to increased bone fragility and, as a
result, increased risk of fractures (11, 12). In addition to senile
and postmenopausal OP, secondary OP may also occur as a
consequence of various pathologies, including endocrinopathies,
rheumatic and neoplastic diseases, malnutrition, chronic
inflammatory conditions, and 1,25-dihydroxyvitamin D
(vitamin D) deficiency (13–17). Several potential mechanisms
may explain the association between Pso and OP, including a low
vitamin D level, chronic inflammation, and drug usage (18–20).
In particular, proinflammatory cytokines, such as interleukin
(IL)-1, IL-6, IL-11, IL-15, IL-17, and tumor necrosis factor
(TNF)-alpha, might accelerate bone loss, whereas other
cytokines, mostly of the Th2 profile, e.g., IL-4 and IL-33, are
usually considered osteoprotective (21).

IL-33 and vitamin D are emerging pathogenetic factors of
both Pso and OP. However, their role in the development of
these associated pathologies is complex and not yet fully clarified.
Here, we hypothesize a mechanistic link between vitamin D and
IL-33 in patients with Pso and associated OP.
PATHOGENIC MECHANISMS LINKING
PSO AND OP

Several pathogenetic mechanisms link Pso and OP (Box 1).
Although there are conflicting results in the literature about this
association and its pathogenetic mechanisms, the majority of
studies describe a decreased BMD in patients with long-term Pso
andPsoA (9, 22, 23). Like Pso,OP can also be considered a systemic
pathology (21). Although it is mainly linked to menopause and
aging (14, 24), OP can also accompany a wide range of pathologies,
in particular, those with an important inflammatory substrate,
including dermatological disorders (25–28).
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Many cytokines are involved in the regulation of bone
turnover, and most of them also underlie the inflammatory
background of Pso (4, 21, 29). Vitamin D deficiency is among
the main risk factors of both pathologies (29–31). The
hypothesized mechanisms underlying the potential association
between Pso and OP involves enhanced bone resorption
secondary to increased concentrations of osteoclastogenic
cytokines, such as TNF-alpha, IL-6, IL-12, IL-23, or IL-17 (31,
32). The central signal pathway in bone resorption is the system
of the receptor activator of nuclear factor kappa-B (NF-kB)
ligand (RANKL), mainly expressed by osteoblasts, that binds
to its receptor RANK on the osteoclast precursor cells,
inducing their differentiation into mature osteoclasts and thus
leading to bone resorption. Osteoprotegerin (OPG), the decoy
receptor of RANKL, prevents bone resorption by inhibiting
osteoclastogenesis. In the pathogenesis of OP, the RANKL-
RANK-OPG axis is unbalanced (12). Inflammatory cytokines,
whose production is increased in Pso, exert osteoclastogenic
effects mainly through the enhancement of RANKL expression.
In particular, IL-17, produced by T helper type 17 (Th17) cells,
plays a pivotal role in the bone loss of inflammatory conditions,
including Pso, by enhancing RANKL expression on osteoblasts
and synovial fibroblasts. Moreover, IL-17 stimulates the
production of other inflammatory and osteoclastogenic
cytokines, such as TNF-a, IL-1, and IL-6, which accelerate
osteoclastogenesis, further facilitating the development of OP.
High surface expression of RANKL on Th17 cells characterizes
the so-called osteoclast subsets of T lymphocytes, that strongly
enhance bone resorption. On the contrary, T regulatory (Treg)
cells inhibit osteoclastogenesis and support bone formation.
Therefore, while Th17 cells induce osteoclastogenesis,
mainly by secreting IL-17, IL-4 enhanced Treg exert anti-
osteoclastogenic activity by producing suppressor cytokines,
including IL-10, and transforming growth factor-beta (TGF-b)
(21). An impaired Th17/Treg cell balance is central in the
inflammatory background of both Pso and OP. Treg cells are
responsible for the maintenance of self-tolerance, thus inhibiting
autoimmune diseases, including Pso, and are also able to
suppress RANKL‐induced osteoclastogenesis, whereas pro-
inflammatory Th17 cells contribute to the induction and
propagation of inflammation. Th17 cells, converted from
Foxp3+ Treg in inflamed tissues, such as psoriatic skin lesions,
comprise the most potent osteoclastogenic T cell subset in
inflammatory bone loss (33). In the complex cytokine network
involved in Pso, a crucial role is also exerted by IL‐12/Th1 and
IL‐23/Th17 axis, by linking components of adaptive and
innate immunity in an inflammatory crosstalk. In the skin,
activated dendritic cells (DCs) trigger Th1 and Th17 cells to
differentiate and release IFN-g and TNF-a, and IL-17 and IL-22,
respectively, which promote keratinocyte proliferation. IL-23 is a
heterodimeric cytokine composed of two subunits, p19 and p40.
The latter subunit is shared by the Th1-inducing cytokine IL-12.
Upon skin injury, IL-23 produced by activated DCs, stressed
keratinocytes and other non-immune cells directly drives
expansion and survival of Th17 lymphocytes, stimulates IL-17
production, and induces downregulation of IL‐10, involved in
BOX 1 | Main pathogenetic mechanisms in Pso and OP.

Key points:
Vitamin D deficiency
Overexpression of IL-33/IL-31 axis
Chronic systemic inflammation
Increased production of inflammatory and osteoclastogenic cytokines
Unbalanced RANKL-RANK-OPG signaling pathway
Overexpression of IL-23/IL-17 axis
Impaired Th17/Treg cell balance
Increased secretion of IL-17 and IL-22 from IL-23-stimulated ILC3
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Treg cell function, thus creating a self-amplifying inflammatory
response that drives the development of skin lesions infiltrated
with a mixture of inflammatory cell populations. Innate
lymphoid cells (ILCs) represent a heterogeneous group of
immune cells lacking specific antigen receptors or T/B cell
markers. ILC3, which express the transcription factor retinoid‐
related orphan receptor gt (ROR gt) and are characterized by the
ability to produce Th17 and IL-22 cytokines, are increased in
Pso. ILC3 constitutively express the IL-23 receptor, thus
representing a target for IL-23-mediated IL-17 and IL-22
increased production. The secretion of IL-17 and IL-22 from
IL-23-stimulated ILC3 promotes the aberrant keratinocyte
differentiation and hyperproliferation, typically observed in Pso
(34). IL-12 and IL-23 involved in skin inflammation, are also
critical to inflammation-induced bone resorption, via a number
of direct and indirect effects that modulate osteoclast formation.
In the bone, IL-23 upregulates RANK on preosteoclasts and
induces Th17 cells to produce IL-17, which acts on osteoblasts to
secrete RANKL. Th17 cells also secrete RANKL directly and
further induce osteoclast formation and secretion of bone-
degrading enzymes leading to bone destruction (35). Many
other cytokines involved in bone remodeling have recently
been shown to also exert roles in the pathogenesis of Pso,
including, in particular, IL-33 (36–39). In addition, some
treatments used in Pso might contribute to bone loss, for
example, corticosteroids and cyclosporin, particularly when
used systemically (18–20), whereas treatments at the systemic
level aimed at reducing inflammation, e.g., biologics or
methotrexate, could reduce the risk associated with
osteoporotic fractures (40). Finally, psoriatic patients, especially
those with associated inflammatory arthritis, engage less in
physical activities and tend to cover affected body surfaces with
consequent decreases in osteoformation and vitamin D synthesis
(41, 42). In particular, the lack of sun exposure, which may affect
mainly psoriatic patients with extensive skin involvement and/or
arthritis through vitamin D deficiency, negatively affects calcium
metabolism, further increasing bone resorption and leading to
the onset of OP (43). Psoriatic patients of both sexes appear to
have a high prevalence of OP and vitamin D deficiency (10, 44).
Low levels of vitamin D metabolizing enzymes (CYP27A1 and
CYP27B1) within psoriatic lesions have also been documented
(9, 45), and vitamin-D treatment in psoriatic patients has been
associated with clinical improvement of skin lesions (46, 47).

Pso is related to vitamin D deficiency through both
inflammation and a lack of sun exposure (48). Interestingly,
vitamin D deficiency and OP are frequently recognized in the
great majority of associated Pso comorbidities (21, 49) For
example, Pso is frequently associated with metabolic syndrome,
increased body mass index, and obesity (50). All of these
associated conditions are characterized by both an
inflammatory background and increased fat deposits, in which
vitamin D tends to accumulate because of its liposolubility,
consequently reducing its circulating bioavailable levels. In
these patients, vitamin D deficiency is commonly related to
hyperglycemia and higher levels of cholesterol, low-density
lipoprotein, and triglycerides (51, 52). Therefore, despite the
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tendency for a higher body mass index in patients with Pso,
which might have a protective effect against OP, both vitamin D
deficiency and systemic inflammation can still induce BMD loss.

Chronic inflammation itself has been related to low vitamin D
levels and decreased BMD (53, 54). Under pathological conditions,
the equilibrium between bone formation and resorption, which
physiologically ensures skeletal homeostasis, is shifted towards
osteoclast-mediated bone resorption. Proinflammatory cytokines,
such as TNF-alpha and IL-17, are notoriously associated with
osteoclastic bone resorption in inflammatory diseases (21). These
cytokines trigger osteoclastogenesis through the activation of a
series of transcription factors, such as NF-kappa B. In PsoA,
synovial inflammation can further facilitate the onset of local and
systemic OP (29). In these patients, an increase in osteoclast
progenitors (OCP) correlates with the extent of joint erosions and
inflammation markers (41).

The association between Pso and OP is therefore supported
by the existence of pathophysiological mechanisms, namely,
excessive production of proinflammatory cytokines that are
able to activate osteoclastogenesis, and the frequent lack of
vitamin D characterizing psoriatic patients (55, 56).

However, studies on OP development and the increased risk
of fractures in patients with Pso are still somewhat controversial,
because of the complexity of the network of interconnected
cytokines and the regulatory factors linking the two pathologies.
THE ROLE OF VITAMIN D

Vitamin D has multiple functions, including hormonal and
immunological control (Box 2). Vitamin D regulates more
than 200 genes involved in cel l prol i ferat ion and
differentiation, the secretion of different hormones, and
immune cell activity (54, 57). The lack of vitamin D in Pso is
widely recognized as an important factor that contributes to the
development of OP (58). Vitamin D regulates calcium and
phosphorous metabolism and parathyroid hormone (PTH)
secretion and function. For these activities, it has important
implications for the maintenance of skeletal integrity. As a
consequence of vitamin D deficiency, bone mineralization
disorders arise, mainly through an imbalance in the calcium/
phosphorus ratio. Vitamin D is indispensable for physiological
bone turnover. In particular, in order to prevent OP,
supplementation with vitamin D is strongly recommended as a
support for anti-osteoporotic therapies (12, 15, 53). Moreover, in
BOX 2 | Vitamin D functions.

Key points:
Calcium/phosphorous metabolism regulation
Parathyroid hormone secretion and function control
Regulation of cutaneous barrier homeostasis
Keratinocyte proliferation, apoptosis and function control
Th1/Th2 cell development modulation
Induction of regulatory T cells
Down-regulation of Th17 cells
Down-regulation of nflammatory cytokine production
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addition to its effects on bone, vitamin D also exerts important
functions in skin homeostasis and its deficiency is linked with
Pso development (48, 59). Vitamin D is therefore no longer
considered to just be an essential factor for the maintenance of a
normal skeletal structure, but its extraskeletal effects, including
cell cycle regulation and immune modulation, are becoming
increasingly known (60–62).

The epidermis is the natural source of vitamin D synthesis
through the action of ultraviolet light (53), and in turn, vitamin D
functions as a key regulator of cutaneous barrier homeostasis. The
skin therefore acts as the site of vitamin D synthesis and also as the
target organ for its biologically active form (47). Keratinocytes
contain enzymes needed for the production of the active form of
vitamin D, 1,25 (OH)2D, and express its receptor, vitamin D
receptor (VDR), thus being able to synthesize and also respond to
vitaminD.Through this signalingpathway, vitaminD is involved in
regulating epidermal development, keratinocyte proliferation,
differentiation and apoptosis (54), and the synthesis of keratins,
involucrin, transglutaminase, loricrin, and filaggrin, helping to
modulate skin barrier function (63, 64). These control
mechanisms are partly due to its ability to increase intracellular
calcium by inducing the production of phospholipases and calcium
receptors needed for calcium-dependent keratinocyte
differentiation. After activation, VDRs interact with retinoid X
receptor (RXR) to exert their functions. VDRs, as well as enzymes
able to synthesize the active form of the vitamin, namely 1,25-
dihydroxy-vitamin D, are expressed in several tissues beyond the
kidneys and bones, including the skin and the immune system,
suggesting that vitamin D is involved in many other functions
besides the metabolic ones (53, 65). An association between Pso
susceptibility andVDRpolymorphisms, as well as between reduced
tight-junction proteins and decreased VDR expression in psoriatic
skin, has been described (57). It has been shown that vitaminD also
exerts central roles in both humoral and cellular regulation by
suppressing T-cell proliferation and Th2 cell development and
through the induction of regulatory T cells, cytokine production
modulation, and dendritic cell regulation (66–69).

Through the downregulation of IL-12 production, vitamin D
suppresses the maturation of Th1 cells, leading to increased Th2
lymphocyteproliferation (47, 70).However, vitaminDalsopromotes
regulatory T cell maturation and increases IL-10 synthesis, exerting
inhibitory effects on Th2 immune responses (71).

Moreover, vitamin D inhibits proliferation and induces
apoptosis in various cell types (54). Following dysregulation of
the cell cycle, autophagy and apoptosis have important roles in
inflammatory processes (72) underlying both OP and Pso. This
could represent a further mechanism through which vitamin D
deficiency contributes to their pathogeneses (73–76). In psoriatic
skin inflammation, cytokines and chemokines produced by
dysregulated T lymphocytes play key roles (77). As in Pso, in the
pathogenesis of OP, these immune-mediated mechanisms are
strongly involved (21). By inhibiting the production of Th1 and
Th17 cytokines and stimulating T cells to secrete anti-
inflammatory Th2 cytokines in both the skin and bone immune
systems, vitamin D reduces the production of osteoclastogenic
cytokines as well as the psoriatic inflammatory process (64, 78, 79).
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Moreover, since vitamin D promotes Th2 and Treg differentiation
rather than Th1 and Th17 proinflammatory lymphocytes (48) and
inhibits B cell differentiation, thus interfering with the production
of antibodies by plasma cells (70), its deficiency is also associated
with an increased risk of developing autoimmune diseases (80–82),
including Pso, which is a Th1-Th17-Th22-based inflammatory
disease involving innate and acquired immunity (53). Therefore,
despite being historically associated with rickets, osteomalacia, and
OP, now considered an inflammatory Th1-mediated disease (83),
vitaminDdeficiencyhas recently beenrecognizedas a risk factor for
chronic systemic diseases, including diabetes, neoplasia, allergies,
infections, autoimmune, cardiovascular, and neurodegenerative
diseases (76). Pso is histologically characterized by keratinocyte
hyperproliferation, derangement of the epidermal barrier function,
and infiltration of the skin bymultiple activated inflammatory cells
(53). As a key modulator of systemic inflammation, vitamin D
normalizes the dysregulated distribution of CD26 and ICAM-1
integrins in the dermal–epidermal junction of psoriatic skin and
suppresses the inflammatory profile of monocytes/macrophages
(55), down-regulating the production of cytokines, such as IL-1b,
IL-6, IL-8, and TNF-alpha (48, 80). All of these cytokines are
involved in inflammatory processes leading to Pso and OP (47,
83, 84). Indeed, vitamin D and its analogues suppress the
proliferation of keratinocytes and their proinflammatory
molecule production, therefore improving psoriatic lesions and
contributing to skeletal health by suppressing bone resorption and
favoring bone formation.
THE ROLE OF IL-33

IL-33 is a cytokine that can promote Th2 response, but also has
broad activities (Box 3) including the promotion of activated Th1
and CD8+ cytotoxic cells and also Treg cells that express ST2
receptor (85, 86). As well as vitamin D, also IL-33 is involved in
various biological processes, including tissue homeostasis and
repair, cell proliferation, and the immune response, and it plays
key roles in the pathogenetic mechanisms of several diseases, such
as allergic, autoimmune, neoplastic, and cardiovascular diseases.
In particular, IL-33 is involved in skin diseases, including Pso (39,
87, 88), and in OP through its role in bone remodeling (89–92). Its
receptor complex consists of a primary receptor, ST2, and an
accessory IL-1 receptor protein. The ST2 receptor exists in two
different forms: a transmembrane isoform acts as a cellular
receptor, whereas a soluble form (sST2) plays the role of decoy
receptor inhibiting IL-33 activity (93, 94). Interestingly, the IL-33/
BOX 3 | IL-33 functions.

Key points:
Induction of Th2 responses and Th2 cytokine production
Promotion of activated Th1 and CD8+ cytotoxic cells
Activation of Treg cells expressing ST2 receptor
Gene expression regulation
Activation of inflammation and tissue ripair upon danger signals
Mast cell and neutrophil activation in inflamed skin
Enhancement of TNFa induced secretion of IL-6, VEGF, and MCP-1
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ST2 axis is involved in both Th2 and Th1/Th17 responses (88) as
well as in the activation of Treg and natural killer (NKT) cells, B
and NK lymphocytes, neutrophils, and macrophages (91, 95–98).
A regulatory feedback axis exists between stromal cells expressing
IL-33 and adipose resident ST2+ Tregs (99, 100). Obesity alters
this homeostatic cellular network and promotes the inflammatory
response (101, 102). Several immune cells involved in the type 2
immune response express ST2. Among others, examples of such
immune cells are the group 2 innate lymphoid cells (ILC2),
eosinophils, basophils, and DCs, as well as mast cells and Th2
cells (103). Increased amphiregulin (AREG) levels are associated
with vitamin D deficiency. The ILC2-associated marker AREG,
whose encoding gene is a target of vitamin D, activates IL-33-
responsive ST2 T cells and ILC2s (104), which function as key
effectors producing Th2 cytokines, including IL-4, IL-5, IL-9, and
IL-13 (105), when released from necrotic and/or apoptotic
epithelial cells. On the other hand, TNF-alpha, INF-gamma, and
IL-17, major effectors of the Th1/Th17 responses in Pso and OP
pathogenesis, stimulate the release of IL-33. Both skin lesions and
unaffected skin biopsies of Pso patients (36, 37, 95) express high
IL-33 levels (103, 106). The rapid IL-33 release from keratinocytes
after skin injury could be a crucial mechanism involved in the
pathogenesis of Pso (107–110). Once released in the local
microenvironment, IL-33 could activate mast cells and
neutrophils as well as Th1/Th17 cells, triggering both innate and
adaptive immune responses. Mast cells can activate other innate
immune cells, such as eosinophils and neutrophils, and, in turn,
can recruit and activate keratinocytes. The above-mentioned
interactions are pivotal for the emergence of skin inflammation
and Pso lesions (111). Both TNF-alpha and INF-gamma in
psoriatic skin increase the expression of IL-33 which, in turn, is
able to suppress the actions of other cytokines (38). Also, IL-17
upregulates IL-33 expression in normal human epidermal
keratinocyte (NHEK) cultures through the activation of the p38/
MAPK, ERK, and JAK/STAT pathways (112). IL-33 reinforces the
TNF-alpha induced secretion of IL-6, VEGF, and MCP-1.
However, data on IL-33 serum levels in Pso are controversial
(113). A large number of studies suggest that a localized, rather
than a generalized, IL-33 linked inflammatory pattern is evident in
Pso (114). IL-33 serum levels are not always increased in the
serum of patients with Pso, notwithstanding the increased levels of
this cytokine in inflamed skin (103, 111, 114). It has also been
suggested that IL-33 expression in the nuclei of keratinocytes
following IL-17 stimulation may represent a regulatory
mechanism aimed at attenuating immune reactions (110).

The expression levels of both IL-33 and ST2 are up-regulated in
psoriasis, likely as a consequence of keratinocyte damage. IL-33/
ST2 signals may subsequently trigger the activation of neutrophils
and mast cells, leading to Pso development. This pathogenetic
hypothesis assumes interplay between keratinocytes and the
immune system (88, 107, 108). IL-33 exerts a dual function. It
acts as a cytokine or as a nuclear factor when involved
extracellularly or intracellularly, respectively, thus participating
in both inflammation processes and gene expression regulation
(4). Upon cellular stress and tissue damage, released IL-33
functions as an alarmin and activates innate and adaptive
Frontiers in Immunology | www.frontiersin.org 5
immune cells, inflammation, or tissue repair. IL-33 is considered
a key alarmin in both Pso and OP, although it exerts contrasting
effects in these pathological conditions (115). Continuous alarmin
release promotes polarization toward a Th1 phenotype, and this
effect contributes to the initial background of the local
hyperinflammatory environment that characterizes Pso (92, 107).

The IL-33/ST2 pathway intervenes in the pathogenesis of Th2-
related diseases, such as allergies (103), but could also exert some
protective effects in other inflammatory pathologies, such as
cardiovascular diseases and OP, mainly depending on genetics,
disease duration, and the cytokine microenvironment (116). In
particular, the role of IL-33 in OP and Pso is still debated. Some
authors have reported IL-33 inhibition of osteoclast formation
(117), whereas others described an IL-33-induced reduction in
osteoprotegerin expression by osteoblasts and an increase in
osteoclastogenic factor release (118), thus suggesting an IL-33
mediated bone resorption induction during inflammation (98). IL-
33 stimulates mast cells to produce IL-6 and IL-13 via the
canonical NF-kB signaling and p38 pathways. The MAPK-
activated protein kinases MK2 and MK3, function as sensors of
cell injury and exert pivotal roles in IL-33-induced cytokine
production by mast cells in inflammatory responses (87, 98,
107). Due to its pleiotropic nature, IL-33 exerts contrasting roles
in different diseases (87, 88), i.e., IL-33 can either drive the
underlying inflammation or promote its resolution (99, 113)
according to the individual inflammatory context. Disease
severity and changes in relation to hormonal influences
contribute to the bone remodeling effects of IL-33. For example,
notwithstanding the decreased serum IL-33 levels in women
undergoing menopause with OP, its protective effect on the
bone disappears as OP progresses, likely due to the interference
of other proinflammatory osteoclastogenic cytokines. In
particular, IL-33 has controversial roles in bone remodeling
(115, 119, 120). The majority of studies suggest prevalent anti-
osteoclastogenic and osteoanabolic functions of IL-33, but the
reduced expression of OPG by osteoblasts and the induced
production of the osteoclastogenic cytokine IL-31 (97), have also
been reported, suggesting that in particular inflammatory
conditions, including arthritis and Pso, IL-33 can induce bone
resorption. This hypothesis seems to be supported by the finding
of periarticular bone erosions and systemic OP in PsoA, in which
IL-33 plays a pathogenetically important role.
THE RELATIONSHIP BETWEEN VITAMIN
D AND THE IL-33/ST2 AXIS IN PSORIASIS-
ASSOCIATED OSTEOPOROSIS

Link Between Vitamin D and IL-33
There is a close relationship between vitamin D and the IL-33/
ST2 axis in bone and skin homeostasis. Nonetheless, the exact
role of vitamin D in IL-33 activities, which creates vicious circles
in the pathogenesis of Pso-associated OP, remains controversial
(91, 93). It is likely that vitamin D and IL-33 share some signal
pathways and need each other to perform some important
January 2021 | Volume 11 | Article 604055
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immunological and metabolic functions both the skin and bone
levels. In particular, there is evidence that, in some biological
processes, they act in synergy, while in other cases, they act by
controlling and modulating each other (71). Here, we
hypothesize a mechanistic link between vitamin D and IL-33
in patients with Pso and associated OP.

Vitamin D and IL-33 Immunological
Crosstalk
IL-33 shares many of the immunoregulatory effects of vitamin
D, either potentiating or modulating them (Box 4). IL-33 is
produced by cells regulated by vitamin D, and often their tissue
targets and signal pathways are shared. For example, both
vitamin D and IL-33 promote the differentiation of Th2
lymphocytes by inhibiting Th1 differentiation and also act as
inducers of immunoregulatory cells. Vitamin D can
downregulate the production of inflammatory cytokines and
chemokines (121). Moreover, vitamin D activity is determined
through vitamin D receptors, which are present not only in the
skeleton but also in different types of cells, including antigen-
presenting-cells, immune cells, and keratinocytes. In particular,
DCs, lymphocytes, monocytes/macrophages, neutrophils, and
epithelial cells can produce IL-33 and other cytokines involved
in both bone remodeling and Pso inflammation, including IL-
31, IL-17, and TNF-alpha (29, 62, 107). IL-33 therefore
orchestrates the immune cascade of Pso. Moreover, it takes
part in the bone remodeling process (115). Vitamin D plays a
central role in both bone turnover and immune regulation. In
addition, vitamin D is also implicated in skin homeostasis,
acting as a potent immune system modulator and suppressing
dendritic cell maturation. Serum vitamin D levels are decreased
in Pso patients and, in particular, in those with associated OP.

The impact of low vitamin D levels has been widely
investigated in both Pso and OP, as has the role of IL-33. Th2-
related cytokines, including IL-4, IL-31, and IL-33, have recently
been shown to play important roles in bone remodeling as well as
in Pso skin inflammation and PsoA (47, 65). IL-33 may act as an
alarmin, exerting both repairing and damaging processes and
functioning as a nuclear transcription factor. Similarly, the
vitamin D receptor, functioning as a ligand-activated
transcription factor, regulates the activation or repression of
Frontiers in Immunology | www.frontiersin.org 6
gene transcription (121). Moreover, vitamin D deficiency likely
independently contributes to the increased incidence of OP in
Pso patients.

The relationship between IL-33 and vitamin D is highly
complex and extremely variable. For example, IL-33 contributes
to inflammatory reactions involving vitamin D deficiency but
could also counteract some of its deleterious effects, mainly
depending on the clinical context as well as on the cytokine and
hormonal milieu. As a consequence, it is conceivable that although
both vitamin D and IL-33 in the bone environment exert
protective effects against OP, in inflamed Pso skin and in PsoA,
the deleterious effects of vitamin D deficiency and IL-33/ST2 axis
activation potentiate each other (85, 100). Decreased vitamin D
and increased IL-33 levels are also both associated to Th2
immunity in allergic inflammatory diseases (122), suggesting
that they play contrasting roles in allergies (71). Based on these
considerations, a potential complex interaction between vitamin D
and IL-33 has been hypothesized, not only in allergic diseases but
also in other clinical conditions in which their roles have also
been demonstrated, including Pso and OP. Vitamin D promotes
anti-inflammatory IL-10 synthesis by inducing a-1-antitrypsin
expression in CD4+ T cells (123). IL-10, as an immunosuppressive
cytokine, directly limits Th2 cell differentiation and survival
during allergic airway inflammation (124). On the other hand,
IL-33 induces Th2 cytokines, including IL-31, thus exerting a
pivotal role in orchestrating the recruitment and activation of
effector cells of the allergic response. IL-31 is a cytokine produced
by CD4+ T cells which has a potent immunological link with IL-33
and plays important roles in allergic inflammation and atopic
dermatitis as well as in Pso (38, 88). A similar close link has been
highlighted as being an important factor in the alteration of the
bone remodeling process that underlies OP (92). The IL-31
receptor IL-31RA, the oncostatin M receptor, and the IL-33
receptor ST2 are related to the immunopathological
mechanisms of Pso and OP. The ST2 receptor of IL-33, which is
a critical component of Th2 responses, stimulates the
production of IL-31 (88). At the same time, sST2, which is
increased in Pso patients and acts as a decoy receptor for IL-33,
is a negative modulator of the IL-33/ST2 axis. There is
evidence that a perturbation of this axis exerts essential roles in
OP (91). Plasma sST2 levels were found to be correlated with
decreased cortical BMD and deterioration of the bone
microstructure in Pso. Vitamin D enhances the synthesis of the
IL-33 inhibitor sST2, counteracting inflammation in psoriatic skin
(66). The association between increased sST2 and decreased
vitamin D in Pso might synergistically contribute to the effect of
inflammatory mediators in inducing compromised bone quality
and OP.

Treg activity is influenced by both vitamin D and IL-33.
Normal tissue repair, as well as bone and skin homeostasis,
requires both vitamin D and IL-33 to locally expand Treg cells.
The impact of Foxp3+ Treg cell derangement is involved in the
autoimmune inflammatory processes of Pso (125). IL-33
promotes the recruitment of Treg cells into the site of injury,
where they suppress inflammation. Through Treg recruitment
and inhibition of NF-kB mediated gene transcription, IL-33
BOX 4 | Vitamin D/IL-33 crosstalk.

Key points:
1. Shared immunoregulatory and homeostatic effects:
Promotion of Th2 lymphocyte differentiation
Induction of immunoregulatory cells
Downregulation of inflammatory cytokine and chemokine production
Regulation of bone remodeling process
Modulation of PTH control of bone turnover
2. Contrasting roles:
Protective role of vitamin D in allergic diseases vs the induction of allergic

inflammation by IL-33
Enhanced inflammatory osteoclastogenesis by IL-33-induced secretion of

IL-31 vs bone protection by vitamin D
IL-33 induced and amplified inflammatory circuits vs vitamin D anti-

inflammatory activity in Pso
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exerts protective effects on bone. Also, vitamin D may exert its
immune regulatory properties through the induction of Treg
cells. Low levels of vitamin D in Pso patients could dysregulate
immunological homeostasis by decreasing the number of
circulatory Tregs (46, 80). Vitamin D modulates CD4+
T cell function, reversing the defective induction of IL-10-
secreting regulatory T cells. IL-33 induces IL-10-producing
regulatory B cells and promotes IL-10 production in
macrophages (125, 126).

PTH Regulation by Vitamin D and IL-33
The links between vitamin D and IL-33 are both hormonal and
immunological. PTH, the main hormone that regulates bone
turnover and whose production is dependent on the levels of
calcium and vitamin D in the body, is, in turn, strictly dependent
on the IL-33/ST2 axis (127). Calcium metabolism is finely
regulated by vitamin D and IL-33 in concert with PTH. The
latter elevates calcium levels and reduces phosphorus levels in the
blood. Calcium is a major regulator of sequential keratinocyte
differentiation through the different layers of the epidermis until
the stratum corneum is formed and is involved in signaling
pathways that are central to desmosome and tight junction
formation. Calcium receptors initiate the intracellular signaling
cascade, driving differentiation in response to extracellular
calcium. Calcium metabolism is also central to bone turnover.
It is an essential component of hydroxyapatite crystals which
confer hardness and resistance to the skeleton through deposits
in the extracellular bone matrix. Vitamin D deficiency involves
modification of calcium–phosphorus metabolism and increased
secretion of PTH, which leads to increases in bone resorption
and matrix demineralization. However, PTH could also function
as an important osteoanabolic factor when administered
pharmacologically (120, 128).

IL-33 and its receptors have roles in the PTH control of bone
turnover (129). IL-33 mRNA levels in osteoblasts are increased
by PTH and M oncostatin (127), and a positive correlation
between PTH and IL-33 serum levels in postmenopausal OP has
been observed (99). IL-33 production is stimulated by PTH,
which contributes to the osteoanabolic effects of such a hormone.
Vitamin D deficiency increases PTH secretion (78). As a
consequence, IL-33 also increases, thus modulating the
effects of PTH on bone remodeling (127). Therefore, the
cytokine IL-33 represents a target of PTH and, synergistically
with vitamin D, increases bone matrix mineralization by
osteoblasts. IL-33 induced expression of the RANKL-encoding
gene has been demonstrated in osteoblasts. RANKL, the major
osteoclastogenic cytokine, is produced as a transmembrane
protein, whose proteolytic processing is promoted by PTH,
leading to the release of its soluble form. RANKL secretion,
therefore, depends on integrated actions of both IL-33 and PTH
(130). Moreover, both vitamin D and PTH control the levels of
sST2. Serum sST2 correlates positively with serum phosphorus
and negatively with serum calcium. The osteocyte-derived factor
FGF-23, which inhibits PTH and promotes renal phosphorus
excretion, also antagonizes some vitamin D effects. The IL-33/
ST2 axis is, therefore, a PTH target that is able to both promote
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osteoblastic calcium deposition in the bone matrix and inhibit
osteoclastogenesis (36). Increased levels of PTH induce elevation
of sST2 (129). These data suggest that sST2 may play important
roles in bone metabolism disorders, such as OP, as well as in
inflammatory diseases, such as Pso.
THE PARADOX OF THE VITAMIN D
AND IL-33 RELATIONSHIP IN
PSO-ASSOCIATED OP

Increased bone resorption with consequent appearance of OP is
commonly associated with Pso and, in particular, with the more
evolutionary forms characterized by systemic inflammation and
joint involvement. It has been ascertained that vitamin D exerts
protective effects in both Pso and OP (9). On the contrary, IL-33
is considered a pathogenetic cytokine in Pso, whereas its effects
on bone are variable. Therefore, the role of IL-33 seems to be
contrasting (111). In reality, this apparent contradiction could be
explained by the multiplicity of functions of this cytokine which,
depending on the type of tissue, the immune environment, and
the presence of other associated factors, can have different effects.
It could be hypothesized that, notwithstanding increased IL-33
levels, the skeleton is instead more sensitive to a wide range of
osteoporotic risk factors that are increased during Pso,
including inflammation and vitamin D deficiency, which
potentiate each other. Furthermore, most studies have shown
compartmentalization of IL-33 in Pso with increased
concentrations in skin lesions but not in the serum (114),
potentially explaining the lack of protective effects on bone.
The final effect of the IL-33/ST2 axis in both Pso and OP
therefore depends on the reciprocal relationship between its
various components which influence each other through
complex regulatory mechanisms and positive and negative
feedback circuits (113). For example, the effect of an increase
in IL-33 could be counterbalanced by a consensual increase in its
decoy receptor sST2 or, on the contrary, it could be enhanced by
increased expression of its receptor on different cell types (66). In
turn, there are several types of IL-33 target cells, including
immune cells, mesenchymal stromal cells, and epithelial cells
(85). Therefore, depending on the target cell type, the effect of the
cytokine could vary from pro-inflammatory to anti-
inflammatory. In the immunopathogenetic processes driving
inflammation, the co-operation of IL-33 with IL-17, IL-22,
TNF-alpha, IFN-gamma, or other inflammatory factors has
been suggested. In this way, the proinflammatory functions of
IL-33 could prevail on its immunoregulatory properties, as observed
in several autoimmune diseases, including Pso (129).

The bone protective effect of IL-33 could be masked or
prevented by concomitant factors characterizing Pso, such as
the deficiency of vitamin D and the consequently altered PTH-
mediated calcium–phosphorus metabolism, the prevalence of
Th1/Th17 systemic inflammation with an increase in
osteoclastogenic cytokines, and mechanisms of counter-
regulation of IL-33 signaling associated with the inflammatory
process (99). On the other hand, IL-33 itself can perform
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different and contrasting functions: it can act as a pro-
inflammatory factor in some pathological conditions but also
as an alarmin with protective functions in response to danger
signals, cell injury, and tissue damage (37).

Both vitamin D deficiency and increased circulating sST2
decoy receptor in Pso negatively impact the bone, favoring the
production of Th1 rather than Th2 cytokines, suppressing the
development of Treg cells and the production of regulatory and
anti-inflammatory cytokines, thus promoting osteoclastogenesis
and bone resorption (88, 94). The frequent of onset of OP during
Pso could also be conditioned by the effective variability of effects
of IL-33 on bone remodeling, which are dependent on a wide
range of other factors (inflammatory microenvironment,
influence of other cytokines, hormones, and vitamins) (9).
A vitamin D deficiency could somehow nullify the protective
effect of IL-33 on bone through mechanisms that are still
unclear (121).
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Figure 1 summarizes the complex interaction between
vitamin D deficiency and increased IL-33/ST2 axis expression
leading to increased bone resorption and OP in Pso.
CONCLUSIONS

In summary, there is clinical evidence that Pso, especially if
associated with arthritis and a more advanced age, is associated
with hypovitaminosis D, inflammation, and OP, and these
factors might shift the effect of IL-33 from osteoprotective to
proinflammatory and osteoclastogenic (39). The IL-33 levels in
subjects with Pso reflect of increased inflammation, driving OP
development. Different hypotheses could explain this paradox.
For example, it has been recently demonstrated that the
production of the soluble decoy receptor sST2 is enhanced by
vitamin D (94). Since sST2 neutralizes the effect of IL-33, it is
FIGURE 1 | Vitamin D deficiency and increased IL-33/ST2 expression in Pso-associated OP. IL-33 could exert contrasting roles in Pso and OP: it might drive the
inflammation underlying Pso by inducing the production of dysfunctional keratinocytes and inflammatory cells but could exert protective effects in OP (dashed arrow).
Vitamin D, in synergy with IL-33, regulates bone metabolism through PTH release and function, but also increases the soluble decoy receptor sST2 production, thus
regulating IL-33 function. The direct action of vitamin D in inhibiting IL-33 function on bone cells is, however, less important than other vitamin D-mediated
osteoprotective mechanisms (e.g., the vitamin D capacity to both inhibit Th1 and Th17 inflammation and induce bone protective Th2-type responses). In Pso-
associated OP the complex interaction between vitamin D deficiency and increased IL-33/ST2 expression therefore leads to osteoclastogenesis and bone resorption
through several mechanisms: PTH hyperproduction, impaired Treg function, increased Th1 and Th17 inflammatory and osteoclastogenic cytokine production, and
decreased sST2 expression by lymphocytes and epithelial cells, resulting in an increase in IL-33 induced skin inflammation. Furthermore, the increase in IL-33 in
psoriatic patients leads to an increased production of IL-31 which contributes to the worsening of bone loss.
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considered an anti-inflammatory factor in conditions in which
IL-33 takes place in the driving inflammatory processes, such as
asthma and Pso, and IL-33 neutralization may represent a novel
therapeutic approach in these diseases. On the contrary, in the
skeleton, the role of IL-33 is likely protective against OP and its
sST2 mediated neutralization is detrimental (66). Therefore, in
Pso-associated OP, the final effect of vitamin D deficiency and
IL-33/ST2 axis overexpression is overall increased bone
Frontiers in Immunology | www.frontiersin.org 9
resorption due to the prevalence of proinflammatory and
dysmetabolic processes (9, 66).
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30. Uluçkan Ö, Wagner EF. Chronic systemic inflammation originating from
epithelial tissues. FEBS J (2017) 284(4):505–16. doi: 10.1111/febs.13904
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