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The impact of human milk (HM) or dairy milk-based formula (MF) on the large intestine’s
metabolome was not investigated. Two-day old male piglets were randomly assigned to
HM or MF diet (n = 26/group), from postnatal day (PND) 2 through 21 and weaned to a
solid diet until PND 51. Piglets were euthanized at PND 21 and PND 51, luminal contents
of the cecum, proximal (PC) and distal colons (DC), and rectum were collected and
subjected to metabolomics analysis. Data analyses were performed using Metaboanalyst.
In comparison to MF, the HM diet resulted in higher levels of fatty acids in the lumen of the
cecum, PC, DC, and rectum at PND 21. Glutamic acid was greater in the lumen of cecum,
PC, and DC relative to the MF group at PND 21. Also, spermidine was higher in the DC
and rectal contents of HM relative to MF at PND 21. MF diet resulted in greater
abundances of amino acids in the cecal lumen relative to HM diet at PND 21.
Additionally, several sugar metabolites were higher in various regions of the distal gut of
MF fed piglets relative to HM group at PND 21. In contrast, at PND 51, in various regions
there were higher levels of erythritol, maltotriose, isomaltose in HM versus MF fed piglets.
This suggests a post weaning shift in sugar metabolism that is impacted by neonatal diet.
The data also suggest that infant diet type and host-microbiota interactions likely influence
the lower gut metabolome.

Keywords: human milk, infant formula, neonates, metabolism, host-microbiota
INTRODUCTION

Human milk (HM) contains a diversity of bioactive components including lipids, human milk
oligosaccharides (HMOs), a variety of cytokines, and microbiota that can influence the child’s
development, immune function, and microbiota colonization during early life (1–3). Although
studies have indicated the positive impact of HM diet on immune function (4, 5), microbiota
org December 2020 | Volume 11 | Article 6076091
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composition (6), and child’s growth (7), mechanisms behind
these outcomes are poorly understood due to limitations
associated with gut sample collection from infants. During
early life, cow’s milk-based formula (MF) has been chosen as
an alternative to human milk (8), but the degree to which MF
feeding alters the gastrointestinal tract (GI) milieu relative to HM
remains to be fully characterized.

The use of omics technologies such as metagenomics and
metabolomics provide platforms to gain new insights about the
mechanisms underlying diet-associated differences in the infant’s
growth and overall health during the neonatal period. For
instance, microbiota analysis of infant’s stool demonstrated
that HM diet shapes microbiota colonization and enriches
bacterial species Bifidobacteria and Bacteroides during exclusive
HM feeding relative to formula diet (9, 10). Furthermore,
previous studies using metabolomics investigated fecal and
serum metabolite profiles of HM versus MF fed infants (11–
14). While providing valuable insights, the GI bioregional aspects
of HM and MF feeding have remained difficult to study.

We and others reported the use of animal models (primate
and piglets) to investigate the impact of MF diet on gut
microbiota, immune system, and metabolism (15–22). These
models are valuable tools to explore the effects of neonatal
regimes on gastrointestinal tract development and maturation
(18, 23–25), since they allow the collection of multiple tissues and
GI regions for large scale analysis which is limited in human
studies (26). Our group developed a piglet model under
controlled conditions (i.e., an isocaloric diet of HM or MF,
vivarium housing), and have demonstrated that HM-fed piglets
had a higher abundance of Bacteroides which is similar to the
microbiota composition of breast-fed infants (17). Most recently,
using the same piglet model our group reported that formula diet
could alter the epithelial barrier integrity through disruption of
tight junctions in the small intestine of formula-fed piglets
compared to the HM-fed (18). These findings are indicative
that a piglet model is a promising tool to evaluate the influence of
neonatal diet on gut metabolism. Here, we present a comparative
metabolomics analysis of the distal gastrointestinal tract of
piglets fed HM or MF diet during the first 21 days of life and
post-weaning neonatal diet at day 51.
MATERIALS AND METHODS

Experimental Design
The animal study was conducted in accordance with the ethical
guidelines for animal research approved by the Institutional
Animal Care and Use Committee at the University of
Arkansas for Medical Sciences. The detailed experimental
design as well as the diet composition were previously
published (19). Briefly, White Dutch Landrace Duroc male
piglets within 2-d old were randomly assigned to two groups
(n = 26/group), fed an isocaloric diet of HM (Mother’s Milk Bank
of North Texas), or a dairy-based MF (milk formula; Similac
Advance powder; Ross products, Abbott Laboratories,
Columbus, OH) to meet the nutrient requirements of growing
Frontiers in Immunology | www.frontiersin.org 2
pigs as per the guidelines published by the National Research
Council (NRC) (27). At postnatal day (PND) 14 complementary
food (i.e., solid pellets) (starter pellets; Teklad, TD 140608;
Harlan Laboratories) was introduced to the piglets and weaned
to ad libitum solid pellets from PND21 to PND51 (19). Piglets
were immunized on PND 21 and PND 35 with oral
administration of 100 µg of cholera toxin (C8052, Millipore
Sigma) and 100 µg of cholera toxin subunit B (CTB; C9903,
Millipore Sigma). Piglets also received The DAPTACEL
[diphtheria, tetanus, pertussis (DTaP)] vaccine (0.5 mL;
Arkansas Children’s Hospital pharmacy) by intramuscular
injection. Control piglets received vehicle.

Tissue Collection
At PND 21 and 51 piglets were euthanized after anesthetization
with isoflurane, followed by exsanguination. Cecum, proximal
colon, distal colon, and rectum contents were collected within a
scintillation vial by pinching the tissue and sliding the constriction
toward the open end. All samples were immediately snap-frozen in
liquid nitrogen and stored at −80°C until further analysis.

Metabolite Profiling and Statistical
Analyses
Cecum, PC, DC, and rectum contents were subjected to
metabolomics analyses using gas chromatography/mass
spectrometry (GC/MS) at the West Coast Metabolomics
Center at University of California Davis. Approximately 4 mg
of contents from experimental samples from each region were
used to have a pool for quality control (QC) during the process of
the metabolome data. Detailed GC/MS instrument conditions
were reported previously (28). Briefly, a total of 0.5 µL of each
sample was injected splitless into an Agilent 6890 GC equipped
with a Gerstel automatic liner exchange system (ALEX) that
includes a multipurpose sample (MPS2) dual rail, and a Gerstel
CIS cold injection system (Gerstel, Muehlheim, Germany). The
gas chromatograph was controlled using Leco ChromaTOF
software. Constituted of helium mobile phase, the gas flow rate
through a 30 m long, 0.25 mm i.d. Rtx-5Sil MS column (0.25 mm
95% dimethyl 5% diphenyl polysiloxane film) with additional
10 m integrated guard column (Restek, Bellefonte PA) was 1 mL/
min. The transfer line temperature between gas chromatograph
and mass spectrometer was set to 280°C. Electron impact was
generated by a 70-eV ionization and with an ion source
temperature of 250°C. Acquisition rate is 17 spectra/second,
with a scan mass range of 85–500 Da. Compounds were
identified by comparison with Fiehn lab BinBase database
annotations (29), database identifier [i.e., InChI key (30)], the
compound annotation metadata (i.e., retention index,
quantification mass, BinBase identifier, and mass spectrum),
and PubChem annotation (31). A list of peak heights,
retention time and mass to charge (m/z) were obtained. 549
metabolites were detected in all samples, including 282
annotated and 267 unknown (non-annotated) metabolites. The
unknown metabolites were excluded from the current analysis.
The raw data was processed and analyzed in MetaboAnalyst 4.0
(32). On postnatal day 51, diet and immunization interactions
December 2020 | Volume 11 | Article 607609
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were assessed by Permutational multivariate ANOVA
(PERMANOVA) with 999 permutations (Supplemental Table
1). No Diet × immunization interaction was observed for cecum
(P > 0.25), PC and DC (P ≥ 0.42), and for rectum content
metabolites (P = 0.11). Therefore, control and immunized data
were pooled in the analysis of the PND 51. The QC samples were
subjected to multivariate analysis in MetaboAnalyst to check the
precision of the metabolomics analysis. The supervised partial
least squares discriminant analysis (PLS-DA) score plot for the
QC samples (Supplemental Figure 1) showed the tight
clustering of the QC samples indicating the precise outcome
from the metabolites process. Metabolites peak intensities were
normalized by the sum of all identified metabolites (33) and log
transformed prior to multivariate statistical analysis (34). The
PLS-DA score plots were used to see the overall difference
between metabolite profiles of HM and MF groups followed by
Pattern Hunter analysis in MetaboAnalyst to detect the
significant differences in metabolites between groups. A
metabolite was considered to be statistically different when P -
value ≤ 0.05, Benjamini-Hochberg adjusted false discovery rate
(FDR) ≤ 0.15, and variable importance in projection (VIP)
score > 1.0 (34, 35). Based on the identification of the
significantly altered metabolites in HM and MF-fed groups, we
calculated the fold change (FC) for each metabolite.
RESULTS

MF Diet-Fed Piglets Have a Distinct
Metabolite Profile in the Distal
Gastrointestinal Tract Relative to HM Fed
Piglets at PND 21
Previously we have demonstrated that microbiota changes were
predominant in the large intestine of piglets fed the MF diet
relative to the HM group (17). Thus, to evaluate the impact of
early diet on the large intestine metabolome, the cecum,
Frontiers in Immunology | www.frontiersin.org 3
proximal colon, distal colon, and rectum contents were
examined at PND 21. The PLS-DA model of metabolite
showed robust separation of dietary groups at PND 21 in
cecal, PC, DC, and rectal regions of the gastrointestinal tract
(Figures 1A–D).

Metabolite Profile in Different Regions
of the Distal Gastrointestinal Tract at PND
21 Is Impacted by Neonatal Diet
At PND 21, within the lumen of large intestine and rectum, a
total of 123 cecal, 111 PC, 95 DC, and 62 rectal metabolites from
diverse chemical classes including fatty acids, amino acids, lipids,
carbohydrates, vitamins, steroids, and co-metabolites were
significantly different between HM and MF diet-fed piglets
(Tables 1–7 and Supplemental Table 2). The complete list of
all detected metabolites (including non-annotated “unknown”
metabolites) within each intestinal region is presented in the
Supplementary Table 6.

Fatty Acids and Polyamines Had Higher
Abundances in the Distal Gut of HM
Relative to MF Fed Piglets at PND21
The fatty acids myristic, palmitic, linolenic, linoleic, oleic, and
palmitoleic were the common metabolites identified throughout
the lumen of cecum, PC, DC, and rectum at PND 21, which had
greater abundance in the HM than in the MF group. In the
lumen of cecum, the saturated fatty acid stearic acid was greater
in the HM-fed group relative to the MF group (Table 1). In the
PC and DC of HM fed piglets, the fatty acids cis-gondoic acid
was higher relative to the MF group (Table 1). In addition, the
fatty acids cis-gondoic had greater abundance in the DC lumen
of HM than MF-fed piglets (Table 1). Spermidine was another
metabolite common to the DC and rectal lumen that was higher
in the HM compared to the MF-fed piglets (Table 2). However,
Putrescine was lower in HM cecal lumen in comparison to
MF group.
A B C D

FIGURE 1 | Two-dimensional scores plot of partial least squares discriminant analysis (PLS-DA) model showing how distal gut content abundances of annotated
metabolites can discriminate human milk (HM) versus milk formula (MF) feeding groups during the neonatal period in piglets. Panels depict (A) cecum (B), proximal
colon (C), distal colon, and (D) rectal contents at postnatal day (PND) 21. PLS-DA scores (i.e., individual piglet scores) for PLS-DA components (dimensions) 1 and 2
are displayed. Shadows with color are 95% confidence regions. Pink circles indicate individual HM-fed piglets and green circles indicate MF-fed piglets. Sample
numbers were n = 8–11 per group.
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Carbohydrates and Amino Acids Were
Higher in MF Fed Piglets Relative to HM
Group at PND 21
The carbohydrates 1, 5-anhydroglucitol, galactitol, sorbitol, and
fructose were greater in the DC contents of HM-fed relative to
Frontiers in Immunology | www.frontiersin.org 4
MF-fed piglets, while the carbohydrates galactose-6-phosphate
and raffinose had greater abundances in the cecal, PC, and DC
lumen of MF relative to HM-fed piglets (Table 3). Isomaltose,
ribitol, and maltotriose were greater in the cecal contents of MF
relative to the HM group. In addition, 1, 5-anhydroglucitol,
TABLE 1 | Average abundances [quantifier ion (quantion) intensities] of fatty acids significantly different when comparing human milk (HM) or milk formula (MF) diet
groups, in cecum, proximal colon, distal colon, and rectum contents of piglets at postnatal day (PND) 21.

Cecum HM1 SEM2 MF1 SEM2 FC3 P4 FDR5 VIP6

Myristic acid 145,457 21,036 73,124 18,704 1.99 0.01 0.03 1.2
Palmitic acid 625,873 39,506 444,733 43,594 1.41 0.01 0.02 1.23
Linolenic acid 16,553 2,620 6,639 1,319 2.49 <0.01 0.02 1.24
Linoleic acid 9,148 1,503 3,055 604 2.99 <0.01 0.01 1.43
Oleic acid 58,553 22,709 7,959 1,415 7.36 <0.01 0.01 1.31
Palmitoleic acid 1,581 214 604 89 2.62 <0.01 <0.01 1.6
Stearic acid 4,829,607 212,505 3,878,986 321,597 1.25 0.03 0.06 1.03
Proximal colon
Myristic acid 332,535 78,155 121,609 23,150 2.73 <0.01 0.01 1.55
Palmitic acid 1,127,510 94,825 752,618 45,928 1.5 <0.01 0.01 1.55
Linolenic acid 32,957 3,956 17,855 4,297 1.85 0.02 0.06 1.2
Linoleic acid 32,011 5,977 11,235 2,916 2.85 <0.01 0.01 1.51
Oleic acid 159,855 62,469 39,707 21,273 4.03 0.02 0.06 1.18
Palmitoleic acid 4,320 1,317 785 112 5.51 <0.01 <0.01 1.91
Cis-gondoic acid 3,097 327 2,050 225 1.51 0.03 0.09 1.08
Distal colon
Myristic acid 700,211 64,821 291,343 48,434 2.4 <0.01 0 1.87
Palmitic acid 2,023,370 165,035 1,354,469 78,078 1.49 <0.01 0 1.73
Linolenic acid 75,731 14,902 18,827 4,014 4.02 <0.01 0.01 1.68
Oleic acid 469,449 50,482 73,856 23,936 6.36 <0.01 0 2
Palmitoleic acid 8,349 1,340 615 72 13.57 <0.01 <0.01 2.6
Cis-gondoic acid 5,677 977 2,122 345 2.68 <0.01 0.01 1.65
Stearic acid 8,584,424 666,445 10,187,891 291,167 0.84 0.05 0.15 1.06
Rectum
Myristic acid 632,851 53,966 401,123 85,521 1.58 0.01 0.07 1.51
Palmitic acid 1,515,125 64,253 1,102,436 96,584 1.37 <0.01 0.02 1.79
Linolenic acid 67,665 12,297 21,882 3,716 3.09 0.01 0.06 1.57
Linoleic acid 54,138 8,348 13,835 3,649 3.91 <0.01 <0.01 2.05
Oleic acid 440,191 80,906 85,398 47,031 5.15 <0.01 0.01 1.89
Palmitoleic acid 8,349 1,340 615 72 13.57 <0.01 <0.01 2.6
Decemb
er 2020 | Volum
e 11 | Article 60
1Mean of normalized (mTIC) peak intensities (mz/rt) for human milk (HM) or milk formula (MF) after MetaboAnalyst analyses; n=8–11/group.
2SEM, Standard error of the mean.
3Fold change of HM mean to MF mean.
4P-value ≤ 0.05.
5FDR, Benjamini-Hochberg adjusted P-value.
6VIP, Variable importance in projection in PLS-DA models using all annotated metabolites to compare HM and MF within each bio-region. The table only presents metabolites with
significant differences between diet groups; all detected metabolites are provided in Supplementary Table 6.
TABLE 2 | Average abundances [quantifier ion (quantion) intensities] of polyamines significantly different when comparing human milk (HM) or milk formula (MF) diet
groups, in cecum, proximal colon, distal colon, and rectum contents of piglets at postnatal day (PND) 21.

Cecum HM1 SEM2 MF1 SEM2 FC3 P4 FDR5 VIP6

Putrescine 4,460 3,457 5,720 1,288 0.78 0.03 0.07 1.01
Distal Colon
Spermidine 58,259 7,924 14,837 7,484 3.93 <0.01 0.01 1.62
Rectum
Spermidine 23,474 6,506 4,243 3,592 5.53 <0.01 0.04 1.65
1Mean of normalized (mTIC) peak intensities (mz/rt) for human milk (HM) or milk formula (MF) after MetaboAnalyst analyses; n=8–11/group.
2SEM, Standard error of the mean.
3Fold change of HM mean to MF mean.
4P-value ≤ 0.05.
5FDR, Benjamini-Hochberg adjusted P-value.
6VIP, Variable importance in projection in PLS-DA models using all annotated metabolites to compare HM and MF within each bio-region. The table only presents metabolites with
significant differences between diet groups; all detected metabolites are provided in Supplementary Table 6.
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mannose and maltotriose were higher in rectal contents in MF
group relative to HM group. The essential amino acids histidine,
valine, and leucine were greater in the cecal lumen and rectal
contents of MF-fed piglets relative to the HM group (Table 4).
Additionally, threonine, isoleucine, and phenylalanine were
greater in the rectal contents of the MF-fed group compared to
HM-group. While the non-essential amino acids glycine and
proline were greater in the rectal contents, and taurine and
cysteine were greater in the cecal contents of MF-fed compared
to the HM-fed piglets. In rectal contents, a higher abundance of
the amino acids N-acetylornithine, and N-acetylaspartic acid was
observed in the HM group (Table 3). However, glutamic acid
was higher in the HM lumen of cecal, PC, and DC while N-acetyl
aspartic acid was higher in PC, DC and rectal contents relative to
MF-fed piglets.

Cholesterol and Bile Acids Were Higher
in MF Diet-Fed Piglets at PND 21
Cholesterol was significantly higher in the MF group in cecal, PC,
and DC lumen (Table 5). Interestingly, secondary bile acid
deoxycholic acid had greater abundance throughout the 4
regions of the distal gut in comparison to HM-fed piglets.
Also, the primary bile acid chenodeoxycholic acid was higher
in the luminal contents of PC and DC in the MF group relative to
the HM group.
Frontiers in Immunology | www.frontiersin.org 5
Tryptophan Metabolites Were Impacted
by Neonatal Diet in the Large Intestine
at PND 21
Themetabolites indole-3-propionic acid and 3-hydroxyphenylacetic
acid had greater abundance in MF-fed piglets relative to the HM
group in the cecal lumen. Within the DC lumen, 5-hydroxy-3-
indoleacetic acid and tryptophan were higher in the HM than in the
MF group. Additionally, the tryptophan metabolite 5-hydroxy-3-
indoleacetic acid was greater in the rectum of the HM relative to the
MF group (Table 6).

At PND 51 the Metabolite Profile
in the Distal Gastrointestinal Tract Is Less
Distinct and Showed a Lower Number
of Metabolite Differences Between HM
and MF
PLS-DA plots demonstrated that the distribution of metabolites
had less separation between HM and MF groups at PND 51
(Figures 2A–D), except for the rectal contents that had a robust
separation of the metabolite profile between HM and MF groups.
At PND 51 between HM and MF fed piglets, 15 metabolites were
significantly different in cecum and PC, 37 in DC, and 21 in the
rectum by using the P < 0.05 and a VIP > 1.0 criteria
(Supplemental Table 3). The lumen of the cecum of HM fed
TABLE 3 | Average abundances [quantifier ion (quantion) intensities] of sugar metabolites significantly different when comparing human milk (HM) or milk formula (MF)
diet groups, in cecum, proximal colon, distal colon, and rectum contents of piglets at postnatal day (PND) 21.

Cecum HM1 SEM2 MF1 SEM2 FC3 P4 FDR5 VIP6

Galactose-6-phosphate 82 11 216 39 0.38 <0.01 <0.01 1.46
Glucose-1-phosphate 1,059 240 2,373 262 0.45 <0.01 <0.01 1.48
Raffinose 157 34 328 95 0.48 0.03 0.07 1.01
Glycerol 231,576 20,963 340,232 34,945 0.68 0.02 0.05 1.08
Isomaltose 428 59 717 60 0.60 <0.01 0.01 1.37
Maltotriose 356 81 1,456 515 0.24 0.02 0.05 1.08
Ribitol 1,465 195 2,561 325 0.57 0.02 0.05 1.07
Proximal colon
Galactitol 5,648 2,174 1,427 613 3.96 <0.01 0.02 1.46
Galactose-6-phosphate 153 21 373 80 0.41 0.01 0.03 1.34
Glycerol 400,598 34,375 568,545 43,853 0.7 <0.01 0.02 1.4
Raffinose 180 28 303 42 0.6 0.02 0.08 1.13
Distal colon
1,5-anhydroglucitol 2,825 495 1,337 156 2.11 <0.01 0.02 1.54
Galactitol 8,608 3,342 882 76 9.76 <0.01 <0.01 1.96
Sorbitol 12,441 4,608 3,973 518 3.13 0.01 0.06 1.29
Fructose 8,678 1,031 5,426 1,139 1.6 0.03 0.1 1.19
Xylulose 7,403 984 3,784 569 1.96 <0.01 0.02 1.49
Ribose 271,496 42,458 143,274 20,425 1.89 0.01 0.03 1.43
Galactose-6-phosphate 136 22 354 80 0.38 <0.01 0.02 1.53
Raffinose 157 17 248 34 0.63 0.01 0.06 1.31
Rectum
1,5-anhydroglucitol 2,209 130 1,674 224 1.32 0.02 0.12 1.36
Maltotriose 247 33 391 53 0.63 0.02 0.1 1.4
Mannose 5,318 867 9,690 1,390 0.55 0.02 0.1 1.4
Decem
ber 2020 | Volum
e 11 | Article 60
1Mean of normalized (mTIC) peak intensities (mz/rt) for human milk (HM) or milk formula (MF) after MetaboAnalyst analyses; n=8–11/group.
2SEM, Standard error of the mean.
3Fold change of HM mean to MF mean.
4P-value ≤ 0.05.
5FDR, Benjamini-Hochberg adjusted P-value.
6VIP, Variable importance in projection in PLS-DA models using all annotated metabolites to compare HM and MF within each bio-region. The table only presents metabolites with
significant differences between diet groups; all detected metabolites are provided in Supplementary Table 6.
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TABLE 4 | Average abundances [quantifier ion (quantion) intensities] of amino acids significantly different when comparing human milk (HM) or milk formula (MF) diet
groups, in cecum, proximal colon, distal colon, and rectum contents of piglets at postnatal day (PND) 21.

Cecum HM1 SEM2 MF1 SEM2 FC3 P4 FDR5 VIP6

Histidine 2,041 607 4,831 639 0.42 <0.01 0.01 1.43
Valine 47,321 11,157 121,492 16,114 0.39 <0.01 0.01 1.42
Leucine 68,267 14,347 118,450 16,248 0.58 0.01 0.04 1.12
Isoleucine 39,144 7,645 81,579 12,819 0.48 0.01 0.02 1.22
Methionine 6,886 1,252 11,264 1,274 0.61 0.01 0.04 1.12
Taurine 75 5 152 23 0.49 <0.01 0.01 1.31
Cysteine 832 135 2,285 382 0.36 <0.01 0.01 1.4
Glutamic acid 611,642 67,690 383,277 44,281 1.6 0.03 0.07 1
Proximal colon
Cysteine 3,074 561 7,987 1,215 0.38 <0.01 <0.01 1.7
N-acetylornithine 1,295 171 2,047 236 0.63 0.03 0.09 1.1
Glutamic acid 1,176,854 153,757 697,884 65,464 1.69 0.01 0.05 1.25
N-acetylaspartic acid 24,555 7,547 12,064 4,117 2.04 0.02 0.07 1.16
Distal colon
Cysteine 1,494 229 2,757 403 0.54 0.01 0.06 1.3
Glutamic acid 930,473 150,262 306,803 36,781 3.03 <0.01 0 1.86
N-acetylaspartic acid 24,116 10,159 5,426 869 4.44 0.02 0.07 1.27
Rectum
Histidine 6,240 1,424 14,434 3,220 0.43 0.03 0.14 1.32
Valine 236,629 26,908 517,077 87,043 0.46 <0.01 0.03 1.74
Leucine 262,738 27,431 588,107 113,109 0.45 0.01 0.05 1.61
Threonine 30,098 4,222 70,540 14,278 0.43 <0.01 0.04 1.64
Isoleucine 145,147 17,537 354,847 68,488 0.41 <0.01 0.04 1.66
Glycine 44,615 3,944 89,099 11,985 0.5 <0.01 0.02 1.85
Proline 71,923 9,809 235,145 56,370 0.31 <0.01 0.03 1.75
Methionine 21,104 3,049 53,916 13,521 0.39 0.01 0.08 1.49
Phenylalanine 48,286 6,454 108,093 25,076 0.45 0.03 0.13 1.33
N-acetylornithine 1,798 312 974 238 1.85 0.02 0.11 1.38
Glutamic acid 521,372 106,688 246,722 34,239 2.11 0.01 0.08 1.46
N-acetylaspartic acid 10,420 3,025 3,625 1,075 2.87 0.01 0.06 1.55
Frontiers in Immunology | www
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1Mean of normalized (mTIC) peak intensities (mz/rt) for human milk (HM) or milk formula (MF) after MetaboAnalyst analyses; n=8–11/group.
2SEM, Standard error of the mean.
3Fold change of HM mean to MF mean.
4P-value ≤ 0.05.
5FDR, Benjamini-Hochberg adjusted P-value.
6VIP, Variable importance in projection in PLS-DA models using all annotated metabolites to compare HM and MF within each bio-region. The table only presents metabolites with
significant differences between diet groups; all detected metabolites are provided in Supplementary Table 6.
TABLE 5 | Average abundances [quantifier ion (quantion) intensities] of cholesterol and bile acids significantly different when comparing human milk (HM) or milk formula
(MF) diet groups, in cecum, proximal colon, distal colon, and rectum contents of piglets at postnatal day (PND) 21.

Cecum HM1 SEM2 MF1 SEM2 FC3 P4 FDR5 VIP6

Cholesterol 8,019 1,200 30,126 3,223 0.27 <0.01 <0.01 1.79
Deoxycholic acid 1,040 193 7,030 1,706 0.15 <0.01 <0.01 1.62
Proximal Colon
Cholesterol 6,901 883 23,671 2,835 0.29 <0.01 <0.01 1.88
Deoxycholic acid 1,570 393 4,101 852 0.38 0.02 0.06 1.2
Chenodeoxycholic acid 37,595 13,813 89,407 29,531 0.42 0.02 0.08 1.13
Distal Colon
Cholesterol 18,311 3,627 49,675 4,448 0.37 <0.01 0 1.9
Deoxycholic acid 2,647 713 11,300 1,845 0.23 <0.01 0.01 1.63
Chenodeoxycholic acid 33,830 11,018 82,652 30,280 0.41 0.04 0.13 1.12
Rectum
Deoxycholic acid 2,805 974 7,852 1,377 0.36 <0.01 0.04 1.68
1Mean of normalized (mTIC) peak intensities (mz/rt) for human milk (HM) or milk formula (MF) after MetaboAnalyst analyses; n=8–11/group.
2SEM, Standard error of the mean.
3Fold change of HM mean to MF mean.
4P-value ≤ 0.05.
5FDR, Benjamini-Hochberg adjusted P-value.
6VIP, Variable importance in projection in PLS-DA models using all annotated metabolites to compare HM and MF within each bio-region. The table only presents metabolites with
significant differences between diet groups; all detected metabolites are provided in Supplementary Table 6.
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piglets had higher abundance of indole-3-propionic acid relative
to the MF-fed piglets. The sugar alcohol erythritol was a
common metabolite in the cecum, DC, and rectum, with
higher abundance in the HM group in comparison to the MF
group. Additionally, behenic acid was a common fatty acid in the
DC and rectal lumen which was higher in the HM-fed relative to
the MF-fed piglets at PND 51 (Table 7).

Serum Metabolome Impacted by Neonatal
Diet at PND 21 and 51
At PND 21, serum metabolome revealed higher abundance of
threonic acid and cysteine in the MF relative to the HM fed
group. While palmitoleic acid was higher in the HM group. At
Frontiers in Immunology | www.frontiersin.org 7
PND 51, the HM diet resulted in greater abundances of sugar
metabolites including maltotriose and xylitol, and greater indole-
3-propionic acid relative to MF-fed group. The complete list of
serum metabolites impacted by HM and MF diets are presented
in the Supplemental Table 4.
DISCUSSION

The present study provides metabolite profiles in the cecum,
colon, and rectal lumen of HM versus MF feeding regimens in a
porcine model at PND 21 and PND 51. We found that diet has a
pronounced effect on metabolite profiles in the lumen of the
TABLE 6 | Average abundances [quantifier ion (quantion) intensities] of tryptophan metabolites significantly different when comparing human milk (HM) or milk formula
(MF) diet groups, in cecum, proximal colon, distal colon, and rectum contents of piglets at postnatal day (PND) 21.

Cecum HM1 SEM2 MF1 SEM2 FC3 P4 FDR5 VIP6

Indole-3-propionic acid 2,155 539 5,569 989 0.39 <0.01 0.01 1.31
3-hydroxyphenylacetic acid 620 67 1,421 159 0.44 <0.01 <0.01 1.65
Proximal Colon
3-hydroxyphenylacetic acid 884 137 1,806 306 0.49 0.01 0.05 1.24
Distal Colon
Tryptophan 24,762 4,056 13,072 3,373 1.89 0.01 0.05 1.35
5-hydroxy-3-indoleacetic acid 776 80 344 77 2.25 <0.01 0.01 1.69
Rectum
5-hydroxy-3-indoleacetic acid 824 87 429 83 1.92 <0.01 0.02 1.79
Decem
ber 2020 | Volum
e 11 | Article 60
1Mean of normalized (mTIC) peak intensities (mz/rt) for human milk (HM) or milk formula (MF) after MetaboAnalyst analyses; n=8–11/group.
2SEM, Standard error of the mean.
3Fold change of HM mean to MF mean.
4P-value ≤ 0.05.
5FDR, Benjamini-Hochberg adjusted P-value.
6VIP, Variable importance in projection in PLS-DA models using all annotated metabolites to compare HM and MF within each bio-region. The table only presents metabolites with
significant differences between diet groups; all detected metabolites are provided in Supplementary Table 6.
TABLE 7 | Average abundances [quantifier ion (quantion) intensities] of sugar metabolites (erythritol, lyxose, xylitol, xylose, pentose, xylulose, ribose, maltotriose,
isomaltose), tryptophan metabolites (indole-3-propionic acid), and fatty acids (behenic acid) significantly different when comparing human milk (HM) or milk formula (MF)
diet groups, in cecum, proximal colon, distal colon, and rectum contents of piglets at postnatal day (PND) 51.

Cecum HM1 SEM2 MF1 SEM2 FC3 P4 FDR5 VIP6

Erythritol 1,445 356 761 104 1.9 0.03 0.78 2.02
Indole-3-propionic acid 12,716 2,080 7,397 1,240 1.72 0.03 0.78 2.07
Distal Colon
Erythritol 1,116 255 652 40 1.71 0.05 0.39 1.57
Lyxose 19,364 3,196 9,660 950 2 <0.01 0.16 2.41
Xylitol 2,899 245 1,950 118 1.49 <0.01 0.16 2.36
Xylose 282,684 50,219 135,380 17,049 2.09 <0.01 0.16 2.25
Pentose 74,638 22,946 27,458 3,058 2.72 <0.01 0.16 2.25
Xylulose 12,922 1,177 8,456 1,028 1.53 0.01 0.22 2.03
Ribose 364,271 36,115 250,569 34,238 1.45 0.03 0.39 1.73
Behenic acid 65,712 3,150 54,919 3,179 1.2 0.02 0.3 1.87
Rectum
Erythritol 655 32 432 41 1.52 <0.01 0.08 2.96
Maltotriose 586 117 201 14 2.91 <0.01 0.3 2.53
Isomaltose 706 116 445 40 1.59 0.03 0.65 1.9
Behenic acid 40,727 1,532 35,181 1,820 1.16 0.03 0.65 1.92
1Mean of normalized (mTIC) peak intensities (mz/rt) for human milk (HM) or milk formula (MF) after MetaboAnalyst analyses; n=9–15/group.
2SEM, Standard error of the mean.
3Fold change of HM mean to MF mean.
4P-value ≤ 0.05.
5FDR, Benjamini-Hochberg adjusted P-value.
6VIP, Variable importance in projection in PLS-DA models using all annotated metabolites to compare HM and MF within each bio-region. The table only presents metabolites with
significant differences between diet groups; all detected metabolites are provided in Supplementary Table 6.
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cecum, PC, DC, and rectum at PND 21 (pre-weaning) but an
attenuated effect at PND 51 (~1-month post-weaning). We
observed a greater number of metabolite changes in the luminal
region of the cecum of HM-fed piglets compared to the MF group
at PND 21. A greater abundance of fatty acids and polyamines was
observed in HM, while amino acids were higher inMF at PND 21.
The persistent effect of the neonatal diet was observed at PND 51
with altered sugar metabolism in HM versus MF fed piglets.

Of particular note was the observation that HM feeding
impacted tryptophan metabolism differently than MF feeding,
at PND 21. The majority of ingested protein is digested and
absorbed by the small intestine (36); however, a significant
amount of proteins and amino acids may reach the colon,
which is degraded by different microbial species (37). Amino
acids in the lower gut may also derive in part from the host (e.g.,
sloughed tissue, mucous, and epithelial cells from the lining of
the intestines) (38–40). In the lumen of DC, tryptophan was
higher in the HM-fed group. In addition, a derivative of indole-
3-acetic acid (IAA), 5-hydroxy-3-indole acetic acid, was greater
in the DC and rectum of HM-fed piglets. Interestingly, we have
shown that IAA concentration was also higher in the feces of
HM-fed infants at 3 months of age in comparison to formula fed
infants (41). Bacteroides genera have been shown to convert
tryptophan to indole-3-acetic acid. In support of this notion, we
have reported a higher abundance of genera Bacteroides in
infants fed human milk and a higher abundance of genera
from class Bacteroidia in the rectal lumen of HM fed piglets
(17, 41). These results suggest that tryptophan in the HM group
is likely metabolized by distal gut microbiota. In addition,
bioactive microbial tryptophan metabolites, indole, indole-3-
propionic acid, and IAA have been reported to modulate
inflammatory response by promoting IL-22 production in the
gastrointestinal tract of mice through the activation of aryl
hydrocarbon receptor (AhR) (42, 43). We speculate that the
higher tryptophan metabolite levels with human milk feeding
promotes the interaction with the host-microbiota which might
dampen inflammation.
Frontiers in Immunology | www.frontiersin.org 8
Neonatal diet also resulted in a divergent fatty acid profile at
PND 21 in the large intestine. The human milk lipid profile is
variable, and several factors including maternal age, lactation
stage, metabolic disorders, maternal diet, among others can
modulate the lipid composition (44). HM is composed of more
than 200 fatty acids including high levels of oleic and linoleic
acids, and these are likely obtained from the mother’s diet (45).
Essential fatty acids such as linoleic and linolenic cannot be
synthesized by the mammalian body from the precursor oleic
acid due to the lack of specific enzymes (D12 and D15-desaturase
and hydrogenase), thus adequate intake of these fatty acids
through dietary regimens are needed (46). Furthermore, the
fatty acid composition of monogastric animals (i.e., piglets)
also depends on the dietary intake of fatty acids (47). In our
study, throughout the 4 regions evaluated (from cecum to
rectum) the linolenic and linoleic essential fatty acids were
higher in the HM fed piglets relative to MF at PND 21.
Additionally, other fatty acids, myristic, palmitic, oleic, and
palmitoleic were common metabolites identified throughout
the large intestine of HM-fed relative to the MF-fed group.
Studies from our laboratory and others identified higher
circulating fatty acids in the HM group. For example,
palmitoleic acid was higher in HM-fed serum in comparison to
MF-fed piglets (Supplemental Table 4), and free fatty acids such
as palmitic acid, oleic acid, and stearic acid were higher in the
plasma of infants fed HM relative to formula-fed (11). It is
suggestive that fatty acids are delivered to infants from HM and
in part from the mother’s diet. Dietary fatty acids have been
shown to exert immunomodulatory effects during inflammatory
conditions in humans (48) and in mouse models (49, 50). For
example, linolenic acid had an anti-inflammatory effect by
decreasing the secretion of the pro-inflammatory IL-6 in an
intestinal model using the Caco-2-cell line (51). Additionally,
essential fatty acids have been shown to be transferred from sow
milk into the piglets’ enteric tissues, which might play a role in the
immune response and in the epithelial integrity (52). For instance,
polyunsaturated fatty acids supplementation to pregnant sows
A B C D

FIGURE 2 | Two-dimensional scores plot of partial least squares discriminant analysis (PLS-DA) model showing how distal gut content abundances of annotated
metabolites can discriminate human milk (HM) versus milk formula (MF) feeding groups during the neonatal period in piglets. Panels depict (A) cecum (B), proximal
colon (C), distal colon, and (D) rectal contents at postnatal day (PND) 51. PLS-DA scores (i.e., individual piglet scores) for PLS-DA components (dimensions) 1 and 2
are displayed. Shadows with color are 95% confidence regions. Pink circles indicate individual HM-fed piglets and green circles indicate MF-fed piglets. Sample
numbers were n = 9–15 per group.
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resulted in lower markers of inflammation in the post weaning
period of piglets (53). These data, suggest that fatty acids from
mothers’milk exhibit immune protection to infants.

Human milk contains low levels of putrescine compared to
spermine and spermidine in term and preterm milk (54).
Interestingly, we observed a significantly lower level of putrescine
in the lumen of the cecum while spermidine was significantly
higher in the lumen of DC and rectum in HM relative to MF. It is
possible thatHM is the source for these polyamines observed in the
distal gut and may provide benefits to infants by various
mechanisms. For example, spermine and spermidine play a role
in the maintenance of the colonic (55) and intestinal mucosa in
mammals (56). Spermidine is considered essential for postnatal
intestinal maturation and it has been reported to be higher in
human milk than in formulas (57, 58). In addition, spermidine
supplementation suppresses inflammatory DC function and
systemic inflammation in the psoriasis mouse model (59).
Interestingly, human infants fed dairy-based formula had greater
levels of the pro-inflammatory molecules (IL8 and IL1b) in the
feces compared to HM-fed infants at 1-month (60) and our most
recent report suggested higher inflammatory status in MF than
HM fed piglets (18). In addition, spermidine has been shown to
play a role in autophagy to rejuvenate memory B cell response in
older individuals (61). Reduced B cell function causes poor
vaccination efficacy and likely a higher incidence of infections.
Several studies have demonstrated that HM fed infants have
stronger vaccine response and lower respiratory tract infections
during the infancy period (1, 2, 62–64). Moreover, in the same
pigletsweobserved stronger vaccine response inHMversusMF fed
piglets (19). Also, infant formula supplemented with polyamines
increased the number of Bifidobacterium species in the large
intestine of mice resulting in greater mucin production (65).
Thus, the greater level of spermidine upon human milk feeding
may benefit the infants by maintaining colon health, microbiota
composition, and immune function.

While human milk cholesterol content varies from 90 to 150
mg/L, infant formulas have lower cholesterol content between
20–40 mg/L originated from dairy milk fat (66). Adequate
cholesterol dietary intake is essential, especially for growing
infants, for the production of steroid hormones, brain
development, and lipoprotein metabolism (67, 68). However, a
balance between cholesterol absorption and synthesis is required
for maintaining whole-body cholesterol homeostasis (69).
Formula-fed infants (70, 71) and piglets (24, 72, 73) have been
shown to have higher hepatic cholesterol synthesis and fecal bile
acid excretion. Fecal sterol excretion followed by intestinal
breakdown can be associated with reduced intestinal
absorption of cholesterol (68). In the current piglet study, the
greater cholesterol detected in the cecum and colon contents of
the MF group might be associated with a feedback mechanism
(e.g., increased cholesterol synthesis) in response to the low
dietary cholesterol uptake. In addition, the cholesterol
synthesized in the liver is converted to primary bile acids such
as cholic acid (CA), and chenodeoxycholic acid (CDCA) (74).
These primary bile acids synthesized from cholesterol in
hepatocytes are conjugated to the amino acids taurine or
Frontiers in Immunology | www.frontiersin.org 9
glycine for further biliary secretion (75). In our study, the
greater abundance of the bile acids CDCA in the PC and DC
lumen was associated with higher levels of amino acids taurine
and glycine in the cecal contents of the MF group. In the distal
colon, solely gut bacterial bile salt hydrolase (BSH) deconjugates
bile acids to form the secondary bile acids deoxycholic acid
(DCA) and lithocholic acid (LCA) (76). Importantly, we
observed higher DCA in all 4 regions of the distal gut with MF
diet suggesting as one of the mechanisms of maintaining
cholesterol homeostasis is likely by excretion of secondary bile
acids. The implications of a high level of cholesterol and bile
acids in the gut can be speculated based on previously published
literature (77). For example, bile acids can regulate the epithelial
barrier integrity through activation of the farnesoid X receptor
(FXR) on intestinal epithelial cells (74). DCA has been shown to
induce gut dysbiosis, disrupt bile acid enterohepatic circulation,
and promote intestinal inflammation (78). In addition, taurine
has been shown to activate Nlrp6 inflammasome and induce the
release of the proinflammatory IL-18 by the intestinal epithelial
cells (79). Moreover, the accumulation of DCA in the large
intestine has been associated with passive absorption through the
colon mucosa (76). Overall, these data suggest that cholesterol
and bile acid homeostasis is impacted by the formula diet.

Glutamic acid (glutamate), glutamine, and taurine are the most
abundant free amino acids (FAA) in human milk, accounting for
approximately 50% of total FAA (80–82) while in dairy-based
formulas taurine is the most prevalent FAA (83). In this study,
throughout the distal gut regions, higher glutamic acid was detected
in HM-fed piglets, likely derived from HM (82, 84). Glutamate
intake through the HM diet might benefit the overall neonatal gut
health since it has been reported to function as a major energy
substrate for intestinal cells (84, 85). Thus, non-essential amino
acids intake through human milk might supply infants with readily
available nitrogen-compounds. Previous studies demonstrated that
standard infant formulas have a lower concentration of free amino
acid compared to breastmilk (80, 83) while hydrolysate formulas
have a higher amount of amino acids relative to regular formulas
(86). In our study, several amino acids (i.e., valine, cysteine,
isoleucine, leucine, methionine, cysteine, glycine, histidine, and
phenylalanine) were higher in the cecal and rectal contents of
MF-fed piglets relative to HM at PND 21, likely due to higher
amount of protein in formula. Interestingly, previous studies
demonstrated higher levels of circulatory amino acids in formula-
fed relative to breastfed infants likely due to higher protein intake
with formula diet (11, 12, 87, 88). While we only observed higher
cysteine levels in the serum of MF fed piglets (Supplemental Table
4), it is possible that in our piglets fasting conditions (8 h) were
impacting the circulatory amino acid pool as most of the infant
studies measured metabolites after 2–3 h of fasting (11).

Sugar metabolism was impacted by the formula diet relative
to the HM diet in piglets. Several metabolites (UDP-glucuronic
acid, lyxose, ribonic acid, maltrotriose, UDP-N-acetyl
glucosamine, pyruvic acid, threonic acid, raffinose, melibiose,
erythrose, xylulose, panose, maltose, mannose) were significantly
higher in the MF group relative to the HM group in different
regions of distal gut at 8 h of fasting. Interestingly, serum
December 2020 | Volume 11 | Article 607609
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threonic acid (Supplemental Table 4) and urinary threonic acid,
ribonic acid, and maltotriose (Supplemental Table 5) were also
significantly higher in MF relative to HM piglets. Notably,
galactose concentration was higher in infant formulas
compared to mature human milk (89). In our piglet model MF
diet has impacted the carbohydrate metabolism as observed by a
higher abundance of galatcose-6-phosphate in the cecum and
colon followed by higher glucose-1-phosphate in the cecum of
MF-fed piglets at PND 21. Based on previous infant literature
and our current data, it is suggestive that formula-fed piglets
exhibited a trend to use more of the energy from carbohydrate
while HM-fed piglets may use fat as the energy fuel during
exclusive neonatal feeding (i.e., PND 21) (11, 13). Additionally,
others demonstrated that carbohydrate intake was lower in
breastfed infants at 3 and 6 months compared to formula-fed
infants (90). Also, metabolites shared between urine and large
intestine suggest that these could serve as biomarkers of host
health and likely microbial metabolism.

Previous metabolomics studies of infants have shown that the
introduction of complementary food minimizes metabolic profile
Frontiers in Immunology | www.frontiersin.org 10
differences in serum while there are clear metabolic changes upon
exclusively HM or MF feeding in infants (11). Similarly, we
observed less separation of metabolite profile at PND 51 between
HM and MF fed piglets. However, sugar metabolites such as
erythritol, lyxose, xylitol, xylose, pentose, xylulose, ribose,
maltotriose, isomaltose were higher in HM fed relative to MF fed
post-weaned piglets. In addition, maltotriose, xylitol followed a
similar pattern in the serum of HM fed piglets (Supplemental
Table 4) suggesting a shift toward carbohydrate metabolism in HM
group post-weaning neonatal diet. Persistent effects on microbial
metabolism of tryptophan to indole-3-propionic acid was also
observed by a higher abundance of this metabolite in cecal lumen
and serum of HM fed piglets (Supplemental Table 4).
LIMITATIONS

The human milk fed to piglets was a pool from donors at 2 to 12
months of lactation, which is prone to variations on the milk
composition including fatty acids. The different stages of
A

C

D

B

FIGURE 3 | Schematic overview shows the divergent metabolite profile derived from human milk (HM) and dairy-based milk-formula (MF) and their potential effects
on neonates’ intestinal metabolism (A). Through metabolomics analysis higher fatty acids (myristic, palmitic, linolenic, linoleic, oleic, and palmitoleic acids), spermidine
(polyamine), the glutamic amino acid, tryptophan and its derivatives, pyrimidines (thymine, pseudo-uridine, and uracil), and carbohydrates (sugars) were detected in
different regions of the distal gastrointestinal tract (gut) [lumen of cecum, proximal colon (PC), distal colon (DC), and rectum] of HM-fed piglets (B). While cholesterol
abundance, bile acids (chenodeoxycholic and deoxycholic), essential amino acids (histidine, valine, and leucine), non-essential amino acids (taurine and glycine), and
carbohydrates were greater in the luminal distal gut of MF- fed piglets during the first 21 days of life (C). Sugar metabolites and tryptophan derivatives (i.e., indoles)
present in the distal gut suggest that neonatal diet interactions with the host-microbiota impact the intestinal metabolism which can be associated with the altered
serum metabolites from both diets (D). Diet- microbial interactions reflected in the excretion of mono- and oligosaccharides (i.e., 1,5-anhydroglucitol and raffinose,
respectively) in the urine of HM-group compared to sugar alcohols (i.e., threitol) and cholesterol abundance in the urine of MF-group. This model suggests that both
HM and MF can impact the host-microbial and the host-intermediate metabolism resulting in a different metabolic profile prior to weaning.
December 2020 | Volume 11 | Article 607609

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Rosa et al. Neonatal-Diet Impacts Large Intestinal Metabolome
lactation and the variability from the donor mothers might alter
the distal tract metabolite profile. The components added to the
HM and MF to maintain the requirement of a growing piglet
may impact the luminal metabolome.
CONCLUSIONS

Overall, our results showed a distinct metabolome signature
between HM and MF-fed during the first 21 days of life. The data
presented at PND 21 suggest that human milk feeding may favor
the fatty acid metabolism for energy source while MF feeding
utilized the sugar breakdown as fuel which is similar with the
findings in breastfed vs formula fed infants (11, 13). The greater
polyamines and tryptophan pathway metabolites within the distal
gut of the HM-fed group may indicate a robust immune response
upon human milk than with formula feeding. Also, at PND 21 the
higher cholesterol and bile acids in the distal gut of the MF-fed
piglets relative to the HM group suggests an impact of formula on
cholesterol homeostasis. In contrast, the addition of complementary
food (PND 51) resulted in ametabolite profile not as distinguishable
and likely shifted to carbohydrate metabolism in HM group. Thus,
diet and host-microbiota interactions likely played a role in luminal
metabolome (Figure 3). Future studies are needed to determine
how host physiology (liver and gut tissue) and immune system are
impacted at the molecular level by post-weaning neonatal diet.
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SUPPLEMENTARY FIGURE 1 | Two-dimensional scores plot of partial square
discriminant analysis (PLS-DA) model showing the distribution of the luminal
contents used as quality control pools in the metabolomic analysis. PLS-DA scores
(i.e., individual samples) for components 1 and 2 are displayed. Gray circle shadow
represents the 95% confidence region. Red circles indicate the individual luminal
content samples.

SUPPLEMENTARY TABLE 1 | Prior to metabolome data statistical analysis at
PND 51, metabolite abundance in cecum, proximal colon, distal colon, and rectum
contents were assessed by permutational multivariate ANOVA (PERMANOVA)
including Diet (human milk or milk formula), group (immunization vs control), and
their interactions (Diet:group).

SUPPLEMENTARY TABLE 2 | Average abundances (quantifier ion [quantion]
intensities) of metabolites significantly altered by diet at postnatal day (PND) 21
(n=8-11/group) across the cecum, proximal colon, distal colon, and rectum
contents of piglets fed with human milk (HM) or milk formula (MF) through PND 21.

SUPPLEMENTARY TABLE 3 | Average abundances (quantifier ion [quantion]
intensities) of metabolites significantly altered by diet at postnatal day (PND) 51
(n=9–15/group) across the cecum, proximal colon, distal colon, and rectum
contents of piglets fed with human milk (HM) or milk formula (MF) through PND 21.

SUPPLEMENTARY TABLE 4 | Average abundances (quantifier ion [quantion]
intensities) of serum metabolites significantly altered by diet at postnatal day (PND)
21 (n=25/group) and PND 51 (n=15/group) of piglets fed with human milk (HM) or
milk formula (MF) through PND 21.

SUPPLEMENTARY TABLE 5 | Average abundances (quantion peak intensities)
of urinary metabolites significantly altered by diet at postnatal day (PND) 21 (n=25/
group) and PND 51 (n=15/group), in piglets fed with human milk (HM) or milk
formula (MF) through PND 21.
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