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Regulatory T cells (Tregs) are essential for regulating immune reactions and maintaining
immune homeostasis. Non-coding RNAs (ncRNAs), including microRNAs and long non-
coding RNAs, usually do not encode proteins but regulate intracellular biological
processes at post-transcriptional levels. These ncRNAs have been demonstrated as
key post-transcriptional regulators in the commitment of Tregs lineage and the plasticity of
Tregs function. These ncRNAs can further be manipulated to benefit human
immunological disorders caused by Tregs dysfunction. This review summarizes the
effects of ncRNAs on Tregs and their potentials to be targets or approaches for the
treatment of immunological diseases involving Tregs.
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INTRODUCTION

Regulatory T cells (Tregs), recognized as a specialized subset of CD4+ T cells, are essential mediators
in maintaining immune tolerance by suppressing immune reactions (1). Three subsets of CD4+

Tregs have been characterized, namely thymus-derived Treg (tTreg) and the peripherally induced
Treg (pTreg) developed from mature CD4+ conventional T cells outside of the thymus and in vitro-
induced regulatory T (iTreg) cells (2). Forkhead box P3 (Foxp3) has been identified as a master
transcriptional factor in maintaining differentiation and suppressive function of Tregs (3).
Downregulated Foxp3 expression commonly causes immune dysregulation, which elicits
autoimmune diseases (4). Mutation in the Foxp3 gene impairs Tregs development and function,
which further causes immune dysregulation polyendocrinopathy and enteropathy X-linked
syndrome along with other grievous autoimmune diseases. Likewise, Foxp3-depleted or Foxp3-
mutated mice have Tregs deficiency and development of autoimmunity (3, 5, 6).

Transcriptome and proteome studies of Tregs unveil post-transcriptional regulators manipulating
Tregs development and function, which highlights the importance of non-coding RNA regulation (7).
Non-coding RNAs (ncRNAs), comprising microRNA and long non-coding RNAs etc., are not able to
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encode proteins but still contain important information (8).
MicroRNAs (miRNA) commonly contain ~22 nucleotides, which
have function inRNA silencing and post-transcriptional regulation
of gene expression. Their altered expression is observed in specific
biological and pathological processes. MiRNAs bind to their
respective target RNAs either in the translational regions or in the
3’ untranslated regions (3’UTR). Particularly, miRNAs modifies
mouse Tregs development, homeostasis, and normal function but
inhumans, their roles remainelusive (9).miRNAsplay a crucial role
in preserving Tregs suppressive function throughDicer-dependent
pathway (10).LncRNAsharbor anabundantproportionof thenon-
coding transcriptomes.However, lncRNAscharacteristics, function
mechanisms in Tregs still remain obscure.

In this review, we firstly introduce the biogenesis of non-coding
RNAs and exertion of suppressive function in Tregs. Then we
summarize ncRNA-mediated post-transcriptionalmodifications of
Tregs and discuss the potential therapeutic strategies for human
immunological disorders with dysfunctional Tregs involved.

CD4+CD25+Foxp3+ regulatory T cells (Tregs) play a crucial role
in maintaining immune homeostasis and self-tolerance through
suppressing excess immune responses. Foxp3, the master
transcription factor, is highly expressed in Tregs. Researchers found
that Foxp3 programs development and function of Tregs since
ectopic Foxp3 expression confers suppressor function in Tregs
(11). Targeted deletion of mice Foxp3 resulted in severe
lymphoproliferative autoimmune syndrome with evidently
enlarged spleen and lymph nodes. Mutations of FOXP3 in human
trigger several immune disorders, polyendocrinopathy, enteropathy
and X-linked syndrome (IPEX) (12).

In vitro model systems identify the mechanisms by Tregs to
suppress a large range of target cell types. Thesemechanisms can be
divided into those that target responder Foxp3- T cells and those
that initially target antigen-presenting cells. Tregs secret multiple
suppressive cytokines like IL-10, TGF-b and IL-35 to regulate the
activity of effector T cells. Tregs also overexpress CD25 (IL-2
receptor) to deprive local IL-2 resulting in the suppression of
effector T cells. Activated Tregs may directly kill effector cells in a
perforin-dependent and granzyme-mediated manner (13). On the
other hand, Tregs may affect the function of APC indirectly
inhibiting the activation of effector T cells. CTLA-4 on Tregs
surface interacts with CD80 or CD86 on dendritic cells to
downregulate costiulation, which is important for Tregs to exert
their suppressive function. One other antigen on Tregs surface that
affect Tregs function is LAG-3. LAG-3 binds to MHC class II
molecules on immature DCs surface resulting in downregulated
costimulatory capacity (14).

In vivo, Tregs residing in visceral adipose tissue (VAT) display
distinct suppressive features in homeostasis maintenance (14).
VAT-Tregs highly express the enzyme hydroxyprostaglandin
dehydrogenase (HPGD), which converts PGE2 into the
metabolite 15-keto PGE2. Once HPGD expression is promoted by
PPARg, the generation of 15-keto PGE2 inhibited other T cells
activation and proliferation (14). Skeletal muscle Tregs and colonic
Tregs also play an important part in local tissue homeostasis but
their detailed mechanisms still need more research (14).
Frontiers in Immunology | www.frontiersin.org 2
BIOGENESIS OF NON-CODING RNAS TO
REGULATE THE POST-TRANSCRIPTION
MODIFICATION

The RNA world is divided into two parts——RNAs with coding
potential and those without, also referred to as non-coding RNAs
(ncRNAs).ThoughncRNAsseemnot to encodeprotein, theyplay an
essential role in cell development and physiology. Also, the huge
amount of ncRNAs form a complex regulation network in cells.
ncRNAcanbe classified into two subclasses roughly by sequence size:
small non-codingRNAs (ncRNAs smaller than 200 nucleotides) and
long non-coding RNAs (lncRNAs, longer than 200 nt). Herein, we
introduce biogenesis andmechanisms ofmicroRNAs (miRNAs) and
long non-coding RNAs in general (15, 16).

MicroRNAs (miRNAs) are commonly generated from
transcriptional units or non-coding regions (17). In the beginning,
miRNA genes are transcribed by RNA polymerase II into primary
miRNAtranscripts (pri-miRNA).pri-miRNAis relatively longwitha
5’7-methyl guanosine cap and a 3’ poly-adenylated hairpin structure
(18). Pri-miRNA processing needs two ribonuclease III (RNase III)
enzymes——Drosha and Dicer. Firstly, in nucleus pri-miRNA
transcripts are cleaved into 60-70 nucleotides precursor miRNA
(pre-miRNA) by Drosha and its cofactor DiGeorge syndrome
critical region gene 8 (DGCR8) forming a small hairpin structure
(19, 20). Then pre-miRNAs are transported into the cytoplasm via
Exportin5andbecutbyanotherRNase III enzyme,Dicer into several
small double-stranded RNA which is about 19–22 nucleotides long
(21–23). One strand of the duplex is loaded into the RNA-induced
silencing complex (RISC) while the other strand is degraded. RISC
which consists ofDicer, TRBP, and theArgonaute proteins recognize
target mRNAs in their 3’UTR to promote target mRNA degradation
(24). According to such a unique mechanism, miRNA is able to
specifically affect many key genes in the signal pathway.

Long non-coding RNAs (LncRNAs) are relatively less studied in
ncRNA species due to their sequence heterogeneity. LncRNAs are
transcribedbyPol II orPol III and then lncRNAs areprocessedwith
m7G cap and polyadenylation (9). Subsequently, they are released
into cytoplasm for further processing and stabilization to form a
higher-order structure. LncRNAs exert their regulatory function
through acting as sponges formiRNAs or degradingmRNAs in the
cytoplasm. However, the detailed process of lncRNAs biogenesis
andcofactors to ensure lncRNAs functionremainelusive. Itwill be a
challenging discovery for researchers to explore further (9).
NON-CODING RNA MODIFICATIONS
INVOLVED IN TREG LINEAGE
COMMITMENT AND SUPPRESSIVE
FUNCTION

MicroRNAs
miRNAs play important regulatory roles in Tregs by pairing to
target mRNAs. MiRNAs finely manage gene expression by
directly interacting with 3’untranslated regions or other gene
November 2020 | Volume 11 | Article 612060
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regions. MiRNAs form a complex network of regulation in Tregs
(Figure 1).

miR15a/16, as studies showed in cord blood (CB) Tregs, were
negatively associated with FOXP3 expression (25). miR15a/16
expression were significantly lower in CB Tregs when compared
with conventional T cells. Overexpression of miR15a/16 in CB
Tregs was demonstrated to inhibit normal FOXP3 transcription as
well asCTLA4, a Foxp3-dependent gene inTregs (25).On the other
side, knockdown of miR15a/16 in CB T cells had been
demonstrated to promote expression of FOXP3 and CTLA4,
indicating that miR15a/16 play an important role in regulating
Treg plasticity. miR15a/16 were reported to directly target specific
regions of FOXP3 3’UTR. Thus, miR15a/16 are key regulators of
Treg ratio at the post-transcriptional level (25).

miR-155 is highly expressed in Tregs. Genome-wide analysis
reveals that Foxp3 bind to the B cell integration cluster (Bic) which
harbors the primary miR-155 transcript (26, 27). Kohlhaas et al.
reported thatmiR-155-deficientmice exhibited decreased numbers
of Tregs in both thymi and spleens, although the suppressive
function of Tregs in vitro remained unaffected (28). A high
amount of miR-155 was maintained by Foxp3 expression in
Tregs and sustained in a Foxp3-dependent pattern. miR-155
specifically targets suppressor of cytokine signaling 1 (SOCS1) to
facilitate Tregs homeostasis. The reduced numbers of Tregs in
miR155-deficient mice were in line with that in SOCS1-transgenic
mice (29). miR-155 deletion in CD4+ T cells compromised IL-2
production, which suggests that miR-155 likely regulates IL-2-
associated Tregs homeostasis via both cell-intrinsic and cell-
extrinsic mechanisms. Reduced STAT5 phosphorylation in
miR155-deficient Tregs offered an alternative explanation for
decreased Treg numbers in miR155-deficient mice (29).

miR-146 is prominently expressed in Tregs. Increased numbers
of Foxp3+ Tregs in the periphery were observed in miR-146a-
deficient mice. Moreover, miR-146a-deficient Tregs were
insufficient to restrain the activation of T effector cells (30). miR-
146a deficiency lead to development and exhibition of a serious
lymphoproliferative and myeloproliferative syndrome in mice at 6
months of age. Stat1 is the target of miR-146a in human peripheral
bloodmononuclear cells (hPBMCs) since the 3’UTRof the human
Stat1 gene perfectly matches the miR-146a sequence.
Phosphorylated Stat1 is increased in miR-146a-deficient Tregs.
Stat1 is a key transcription factor downstream of IFN-g receptor
signaling. miR-146a expression in Tregs is crucial to control Th1
immune responses mediated by IFN-g via targeting Stat1 (30).
Nevertheless, the role ofmiR-146a in autoimmunediseases remains
to be determined using conditional miR-146a-deficient mice, since
miR-146a-deficient myeloid cells promotes Tregs dysfunction and
autoimmunity (31, 32).

miR-17-92 cluster is encoded by a single polycistronic host gene
which produces 6 individual mature miRNAs. These miRNAs can
be classified into 3 families based on sequence homology: the miR-
17 family (miR-17,miR-20, andmiR-18a), themiR-19 family (miR-
19a and miR-19b), and the miR-25 family (miR-92a). miR-17 and
miR-19b inhibit iTreg differentiation. Consistently, elimination of
the miR-17-92 cluster in CD4+ T cells promoted Foxp3 expression.
miR-17 directly targtes TGF-b receptor II (Tgfbr2) and cAMP-
Frontiers in Immunology | www.frontiersin.org 3
responsive element binding protein 1 (Creb1), both of which drive
Treg differentiation (33). In addition, miR-17-92 engaged in
costimulatory network of CD28, which is important for thymic
development and survival of Tregs. CD28-mediated costimulation
is crucial in the production of IL-10 in Tregs to ensure Treg
immunosuppressive function. The frequency of IL-10 producing
Tregs is remarkably reduced in miR-17-92 depleted Tregs
demonstrating that miR-17-92’s essential role in regulating Tregs
normal function (34). Conclusively, miR-17-92 plays an important
role in Tregs differentiation by interacting with certain important
proteins like TGF-br and CREB1 and regulating IL-10 secretion
in Tregs.

iTregs express high levels of miR-126. Disturbance of miR-126
using its antisense oligonucleotides (ASO) significantly inhibits the
induction of Tregs. In vivo miR-126 abrogation dramatically
downregulates the expression of Foxp3 in Tregs as well as CTLA-
4 and glucocorticoid induced tumor necrosis factor receptor
(GITR) (35). miR-126 directly targets the 3’UTR of p85b, which
is an important regulatory subunit of PI3K involved in PI3K/Akt
pathway (36). miR-126 ASO significantly elevate the expression of
p85b, contributing to the activation of PI3K/Akt pathway in Tregs,
the reduced expression of Foxp3, and the impaired suppressive
function of Tregs (37, 38).

miR-10a is aTreg-specificmiRNA(39, 40).miR-10agets involved
in long-term maintenance of pTreg stability. Combination of all-
transRetinoid acid (ATRA) andTGF-bdramatically boostsmiR-10a
in a dose-dependent manner, leading to optimal induction of miR-
10a in Tregs. miR-10a targets Bcl-6 and Ncor2 through binding to
their 3’UTRs (41). In Peyer’s patches (PP), Tregs can be converted to
T follicular helper (Tfh) cells, which is limited by miR-10a via
dampening Bcl-6 expression (41). Intriguingly, miR-10a is
dispensable for the direct regulation of Foxp3 or other related
factors in iTregs. In mice deficient of miR-10a, neither the number
nor function of Tregs was altered, when treated with RA and TGF-
b (41).

miR-142-3p regulates Tregs function in a unique way. Naturally,
Tregs maintain high levels of cAMP and transfer cAMP to
conventional T cells through gap junction channels to facilitate
immunomodulation. Intracellular adenylyl cyclases (ACs) are key
enzymes for cAMP generation. miR-142-3p directly targets the
3’UTR of AC9 in Tregs. Therefore, miR-142-3p restricts the
generation of cAMP and impairs the suppressive function of Tregs.
Blockage of miR-142-3p with inhibitors restores the cytokine
production and suppressive function of Tregs. Foxp3
downregulates miR-142-3p to maintain the activity of AC9 and the
production of cAMP. The downregulation of miR-142-3p might get
involved in the mechanisms of which Foxp3 upregulates the
expression of Treg-associated genes in the Tregs (42).

miR-125a is downregulated in peripheral CD4+ T cells of several
human auto-inflammatory diseases including systemic lupus
erythematosus and Crohn’s disease as well as relevant mouse
models (43). In miR-125a knockout mice, proportions of CD4+

and CD8+ T cells in lymph nodes and spleens were not affected
while the percentages and absolute numbers of Tregs suffered a
significant decline (43). miR-125a deficiency impaired the ability of
T cells to differentiate into Tregs in vitro. Mechanistically, miR-125a
November 2020 | Volume 11 | Article 612060
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FIGURE 1 | The regulatory network of miRNAs in Tregs. miR15a/16 directly binds FOXP3, which inhibits Treg differentiation. miR-155 compromises IL-2 p
downregulates Stat1 to alleviate IFN-g signaling. miR-17 directly targtes TGF-b receptor II and cAMP-responsive element binding protein 1 thus negatively r
p85b, an important regulatory subunit of PI3K, reducing the expression of Foxp3. miR-10a directly targets Bcl-6 and Ncor2. miR-142-3p binds with adeny
miR-125a regulate the function of Tregs by targeting Stat3. miR-181a directly inhibits NFAT5 which is an important transcriptional factor for Foxp3. miR-27
Tregs. Created with BioRender.com.
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directly represses several targets which inhibit Tregs differentiation,
including Stat3, IL-13, IFN-g and IL-6R (44). miR-125a also directly
modulates CCR2 expression of Tregs in pancreatic draining lymph
nodes, which limits Tregs migration and affects maintenance of
immune tolerance in the pancreas (45).

Expression levels of IL-10 and TGF-b are higher in miR-181a-
overexpressingCD4+T cells than controls. AlthoughmiR-181 does
not influence Treg differentiation, it elevates IL-10 and TGF-b via
PI3K/Akt and SIRT1pathways to enhance the suppressive function
of Tregs (46). On the other hand, another study showed that
enhancement of miR-181 up-regulated nuclear factor of activated
T cells 5 (NFAT5), restrainingFoxp3+Tregs induction in vitro. This
mechanism indicates that inhibited production of miR-181
promotes Tregs induction in mouse autoimmune model and
alleviates murine islet autoimmunity in vivo (47). These results
showed that miR-181a may play pro-inflammatory or anti-
inflammatory roles. Also, specific targeting miR-181a sheds light
onmedicine development aiming at limiting islet autoimmunity or
other autoimmune diseases (47).

miR-27 belongs to themiR-23~27~24 family and is upregulated
in T cells isolated from patients with multiple sclerosis (MS) (48).
miR-27directly repressedB lymphomaMo-MLVinsertionregion1
homolog (Bmi-1), whose protein stabilizes the Th2 transcription
factor,GATA3.Thus, forcedmiR-27overexpression repressesBmi-
1, facilitates GATA3 degradation and reduces Th2 responses. It
triggers pathogenic Th1 responses in mice with T cell miR-27
overexpression (49). On the other hand, Forced miR-27
overexpression in murine T cells severely impaired Tregs
generation by directly targeting runt-related transcription factor 1
(RUNX1), SMAD2/3, and c-Rel, which are known as members of
the NF-kB family and play indispensable roles in initiating Foxp3
transcription. In addition,miR-27 overexpression suppresses Tregs
function via targeting IL-10 (50) (Table 1).

LncRNAs
LncRNAs are commonly described to be longer than ~200
nucleotides with the ability to modulate chromatin structure and
regulate gene expression at both transcriptional and post-
transcriptional levels.

Hepatocellular carcinoma up-regulated lncRNA (HULC)
contributes to Tregs differentiation by targeting p18 and is
engaged in hepatocellular carcinoma (HCC) development and
progression (51).
Frontiers in Immunology | www.frontiersin.org 5
lncRNA SNHG1 promotes Tregs differentiation and drives the
progression of colorectal carcinoma. SNHG1 binds tomiR-448, the
latter directly targets Indoleamine 2,3-dioxygenase (IDO), which is
a inducer of Tregs. Thus, SNHG1 induces Tregs differentiation and
facilitates immune escape through suppressing miR-448 function
(52, 53).

Foxp3 long intergenic noncoding RNA (Flicr) impairs Tregs
differentiation via reducing the chromatin accessibility in the
Foxp3 locus under low IL-2 levels. Once Flicr is deleted, Treg
restores stabilized level of Foxp3 levels, suggesting that Flicr
modulation is likely to serve as a switch to enhance or inhibit
Treg suppressive function (54).
IMPLICATIONS FOR THE TREATMENT OF
HUMAN IMMUNOLOGICAL DISEASES

Kawasaki disease (KD) is an acute systemic inflammatory disease,
which subjects children to coronary artery aneurysms, myocardial
infarction or even sudden death (55). KD onset involves immune
dysfunction with descending Treg proportions and decreased
expression of Foxp3. As previously mentioned, miR-155 is
required for normal Tregs frequency and function. KD patients
show decreased miR-155, which is a factor contributing to Tregs
deficiency and KD progression (56). Restoring miR-155
expression in KD patients is a promising strategy.

MiR-21 has been demonstrated to play an important role in
regulating the Th17/Treg balance. miR-21 upregulates Foxp3 and
promotes Tregs differentiation. miR-21 alleviates rheumatoid
arthritis (RA) via boosting the immunomodulatory properties of
Tregs (57).

miR-31 was found to directly target Foxp3 and lentiviral
transduction of miR-31 evidently reduced Foxp3 expression (8).
In another study, miR-31 deficiency boosted Tregs differentiation
through targeting protein phosphatase 6c (Ppp6c), which then led
to decreased blood pressure, relieved vascular damage and
alleviated hypertension pathology. Studies also showed that miR-
31 inhibited pTreg generation via directly targeting Gprc5a (58).

miR-210 has been revealed to be critical for psoriasis pathology
in several aspects (59). miR-210 expression is upregulated in
peripheral blood CD4+ T cells as well as in the skin lesions of
patients with psoriasis. Functionally, overexpression of miR-210
aggravates psoriasis and deletion of miR-210 inhibits psoriasis
TABLE 1 | Characteristics of MiRNAs in Tregs.

MiRNAs Impact on Tregs Targets Human immunological diseases or animal models

miR15a/16 Impair suppressive function Foxp3 Human cord blood
miR-155 Maintain suppressive function SOCS1 Mice and Kawasaki diseases
miR-146 Promote suppressive function IFN-g signaling Mice
miR-17-92 Promote Tregs differentiation TGF-b signaling pathway Mice
miR-126 Promote suppressive function PI3K/Akt pathway Mice
miR-10a Maintain Tregs stability Bcl-6 and Ncor2 Mice
miR-142-3p Maintain Tregs suppressive function Adenylyl cyclases Mice
miR-125a Inhibit Tregs differentiation Stat3, IL-13 Lupus erythematosus and Crohn’s disease as well as mice
miR-181a Enhance the suppressive function NFAT5 Islet autoimmunity in mice
miR-27 Impair Tregs generation RUNX1, SMAD2/3 and c-Rel Human multiple sclerosis
November 2020 | Volume 11 | Article 612060
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development. Thus,miR-210 proves a promisingdrug target for the
treatment of psoriais (60).

miR-214, conventionally considered as an oncogenic miRNA,
promotes human ovarian cancer through directly targeting
phosphatase and tensin homolog (PTEN). Secreted miR-214 from
Lewis lung carcinoma (LLC) cells is a strong inducer of Tregs
expansion both in vitro and in vivo. Consistently, blockage of miR-
214 using ASOundermines Tregs induction and thus inhibits tumor
growth. Importantly, cell-derived microvesicles (MVs) were
employed to deliver miR-214 ASO to human peripheral CD4+ T
cells,which increasesPTENexpression and inhibitsTregs expansion.
This may offer an innovative avenue to tumor therapy (61).
CONCLUSION

Non-coding RNAs play an important role in regulating Tregs
differentiation and function. We conclude a range of miRNAs
and long-coding RNAs and reveal their effects on Tregs. These
miRNAs provide a pool of targets for treatments of Tregs-
mediated autoimmune disease. However, this field needs more
Frontiers in Immunology | www.frontiersin.org 6
exploration. The roles of several miRNA in Tregs and other T cell
subsets are still elusive both in vitro and in vivo. Therefore, what
we need is the big picture of interaction between miRNAs in
Tregs, which will be helpful for understanding underlying
mechanisms and discovering potential therapies.
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