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Sepsis is a severe life-threatening syndrome caused by dysregulated host responses to
infection. Biomarkers that allow for monitoring the patient’s immune status are needed.
Recently, a flow cytometry-based detection of in vivo inflammasome activation by
formation of cytoplasmic aggregates of ASC (apoptosis-associated speck-like protein
containing a caspase recruitment domain) has been proposed. Here we report on the
frequency of ASC-speck+ leukocytes correlating with the survival of sepsis. 25 patients
with sepsis were sampled consecutively for 7 days. Blood, serum samples and patient
data were collected according to the guidelines of the PredARRT-Sep-Trial. Flow
cytometric analysis was performed on fresh whole blood samples to investigate the
formation of ASC-specks in leukocyte subsets. Serum samples were analyzed for
production of IL-1ß, IL-18 and additional inflammatory markers. ASC-speck formation
was found to be increased in leukocytes from sepsis patients compared to healthy donor
controls. The absolute number of ASC-speck+ neutrophils peaked on day 1. For
monocytes, the highest percentage and maximum absolute number of ASC-speck+

cells were detected on day 6 and day 7. Inflammatory cytokines were elevated on day 1
and declined thereafter, with exception of IL-18. Survival analysis showed that patients
with lower absolute numbers of ASC-speck+ monocytes (<1,650 cells/ml) on day 6 had a
lower probability to survive, with a hazard ratio (HR) of 10.178. Thus, the frequency of
ASC-speck+ monocytes on day 6 after onset of sepsis may serve to identify patients at
risk of death from sepsis.

Keywords: inflammasome, sepsis, monocytes, biomarker, ASC-speck
INTRODUCTION

Sepsis remains a major cause of mortality in intensive care units (ICU) worldwide (1–3). The
dysregulated host responses in sepsis allows for excessive inflammation and immunosuppression
(4). A hyper-inflammatory response predominates at the early stage, anti-inflammatory
mechanisms manifest concomitantly, leading to long-term immune suppression. Owing to
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advances in care, most patients with sepsis survive the initial
phase. However, if sepsis persists, patients enter a protracted
hypo-inflammatory phase with significant immunosuppression
(5–9) and the majority of non-surviving patients die in this phase
(9–11). Failure in controlling the primary infection or the
acquisition of secondary infections, caused by opportunistic
bacteria and fungi, are the major cause of death during this
period (10, 12). The risk of late-deaths from sepsis appears to be
directly related to the immunosuppressive state of leukocytes
(13, 14).

Monitoring the immune status of sepsis patients and the
application of biomarker-guided interventions are needed for
designing future therapeutic interventions allowing protection of
these patients from late death (13). Biomarkers identifying
patients at risk are largely missing (15). Inflammasome
activation is of central importance for immune defense against
infection and is a key component of sepsis pathophysiology (16–
21). Inflammasomes are large protein complexes formed on
encounter of microbial or damage associated stimuli (22). They
regulate at least two host responses during sepsis: maturation
and secretion of the pro-inflammatory cytokines interleukin-1b
(IL-1b) as well as IL-18 and induction of pyroptosis, a rapid lytic
form of programmed cell death (23–25). Central to the function
of most inflammasome structures is the adapter molecule
apoptosis-associated speck-like protein containing a caspase-
recruitment domain (ASC). When inflammasomes are
activated and assembled, ASC relocalizes from its diffuse
cytoplasmatic distribution at steady state into a single speck,
serving as a supramolecular signaling platform. This is followed
by caspase-1 activation, thereby, cleaving the pro-peptide to
generate mature and bioactive IL-1b and IL-18. The aberrant
activation of inflammasomes has been reported in several
autoimmune and chronic inflammatory diseases, such as
cryopyrin-associated periodic syndrome (CAPS), familial
mediterranean fever (FMF), gout and asthma. However, little
work has been devoted to the role of inflammasomes in acute
inflammatory diseases. Lee et al. reported that downregulation of
nucleotide-binding and oligomerization domain-like receptor
(NLR) family pyrin domain (PYD)containing 3 (NLRP3)
inflammasome activation leads to increased survival in a
polymicrobial sepsis mouse model (17). Another study found
that NLRP3 inflammasome knockout mice were more
susceptible to S. schenckii infection than wild-type mice,
suggesting that inflammasomes contribute to host protection
as well (26). Caspase-1 was shown to predict the outcome of
sepsis (27–29), in that high caspase-1 activation during the first
day of sepsis correlated with poor sepsis outcome (29). However,
little work has been devoted to the role of ASC, the upstream
process of caspase-1, in sepsis. The in vivo ASC-speck formation
within blood leukocytes is a distinguishing feature of
inflammasome formation and permits a direct and quantitative
study of blood samples by flow cytometry. This assay was well
validated (30–32) and has been implemented previously (33, 34).

Given the potential relevance of in vivo ASC-speck formation
as a biomarker of systemic immune activation, we studied ASC-
speck formation in leukocytes of sepsis patients during the first
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week after onset. Here, we report on a flow cytometry-based
detection of ASC-specks in monocytes serving as a potential
biomarker of patients at risk of death from sepsis.
METHODS

Sample Collection
We report data of 141 samples from 25 patients with sepsis or
septic shock, representing a subgroup of patients participating in
the PredARRT-Sep-Trial (DRKS-ID: DRKS00012446) (35),
hospitalized in the surgical ICU of Heidelberg University
Hospital from September 2017 to February 2018. Some factors
resulted in missing samples, which were, death of the patient,
surgery during the time period of sampling, technical errors,
vascular conditions not allowing to draw blood and transfer to
another hospital unit (Supplementary Figure 1). Demographics
and clinical characteristics of enrolled patients are shown in
Supplementary Table 1. The study has been approved by the
local Ethics Committee (file number: S-200/2017) according to
the latest Declaration of Helsinki. All patients or their legal
designees gave written informed consent before sample
collection. The criteria for inclusion were based on the Sepsis-3
definition and clinical criteria (36). 19 samples of healthy controls
were obtained from volunteers (file number: S-305/2010) without
immunosuppression, autoimmune or infectious diseases. Upon
the onset of sepsis, heparinized blood and serum tubes were drawn
once daily for seven days. Within blood samples, leukocytes were
stained directly and analyzed by flow cytometry. Serum sample
were stored at -80°C for further investigation.

Patient Data Collection
Parallel to collecting blood samples to investigate ASC-speck
formation, clinical and laboratory data were recorded. Disease
severity was determined using acute physiology and chronic
health evaluation II (APACHE II), sequential organ failure
assessment (SOFA) and simplified acute physiology score II
(SAPS II) scores. The white blood cell count (WBC) and the
concentration of c-reactive protein (CRP), lactate dehydrogenase
(LDH) and procalcitonin (PCT) were also measured. Patient
survival was followed up for 90 days.

Determination of Intracellular ASC-Specks
Intracellular ASC-speck formation in vivo was determined by
flow cytometry on fresh whole blood samples according to
previous studies (30–32). The gating strategy is shown in
Supplementary Figure 2. The following antibodies were used:
CD3-PerCP, CD19-PerCP, CD56-PerCP, CD66b-PerCP, ASC-
PE, and HLA-DR PE-Cy7 are from BioLegend (San Diego, CA);
CD14 APC-Cy7 and CD16 Krome Orange are from BD
Bioscience (Heidelberg, Germany) and Beckman Coulter
(Krefeld, Germany), respectively. Samples of sepsis patients
and healthy controls were processed in exactly the same way.
In brief, 300 µl of fresh whole blood was incubated with the
antibodies (CD3, CD19, CD56, CD66b, HLA-DR, CD14, and
CD16) for 15 min at room temperature (RT) in the dark.
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Erythrocytes were lysed using FACS lysing solution (BD
Biosciences) and leukocytes were fixed simultaneously. Cells
were washed and permeabilized using 0.1% saponin followed by
incubation with anti-ASC monoclonal antibody for 40 min at 4°C
in the dark. After staining, cells were washed and flow cytometry
was performed on a Gallios Flow Cytometer (Beckman Coulter).
Counting beads (Molecular Probes Invitrogen, Paisley, UK) were
added into each sample before acquisition to study absolute
numbers of different leukocytes subsets. Flowjo software (Version
10.0.7 for windows) was used for flow cytometric analysis.

Serum Cytokines and Chemokine Levels
Serum samples of patients on day 1, day 3, day 5, day 6, and day 7
were investigated. Levels of different cytokines including IL-1b,
IL-18, IL-6, tumor necrosis factor-a (TNF-a), monocyte
chemoattractant protein-1 (MCP-1), interferon-g (IFN-g),
IL-12p70, IL-8, IL-10, thymic stromal lymphopoietin (TSLP),
IL-1a, granulocyte macrophage colony stimulating factor
(GM-CSF), IFN-a2, IL-23, IL-12p40, IL-15, IL-11, IL-27,
IL-33, and IL-17A were determined using the legendplex
multi-analyte flow assay kit human inflammation panel and
human cytokine panel 2 (BioLegend). Assays were performed
according to the manufacturer’s instructions.

Statistical Analysis
Statistical analysis was undertaken using legendplex data analysis
software (version 8.0), prism (version 5.0, graph pad software, La
Jolla, CA, USA) and SPSS (version 21.0; SPSS Inc., Chicago, IL,
USA). Comparisons of demographics and clinical characteristics
between different groups were assessed using independent samples
t tests, Mann-Whitney U tests, chi-square tests, or Fisher’s exact
tests, as appropriate. Dot plots and bar-graph data are represented as
median ormean ± standard error of themean (SEM). The difference
of ASC-speck+ cells between healthy controls and patients was
determined by Mann-Whitney U test. Multiple comparisons
among different time points of patient samples were analyzed by
Kruskal–Wallis test. Correlations were assessed by Pearson
coefficient. Receiver operating characteristic (ROC) curve analysis
and the area under the ROC curve (AUROC) was applied to identify
the optimal cutoff value. Kaplan-Meier analysis was used to calculate
overall survival and the log-rank test was performed to assess the
differences between survival curves. In univariate analysis, variables
associated with mortality were assessed using the log-rank test. The
predictors with a p value of <0.05 from the univariate analyses were
included in multivariate analysis using a Cox proportional hazards
model. Independent predictors of mortality were identified in the
multivariate analysis and hazard ratios were computed for
significant risk factors. For complete analysis, a two-tailed p value
of less than 0.05 was considered as statistically significant.
RESULTS

ASC-Speck Formation Among Blood
Leukocytes of Sepsis Patients
After inflammasome activation, ASC assembles to a protein
complex, termed “speck”. The intracytoplasmic redistribution
Frontiers in Immunology | www.frontiersin.org 3
of ASC from a diffuse state into a single speck can be detected by
a decreased width of the pulse of emitted fluorescence after
staining with ASC-specific antibodies. Initially, we validated this
flow cytometric assay (30–32) by using peripheral blood
mononuclear cells (PBMCs) stimulated with lipopolysaccharide
(LPS) and/or adenosine triphosphate (ATP) (Supplementary
Figure 2A and Figure 1A). As expected, following cell
stimulation with LPS and ATP, we observed a marked increase
of inflammasome formation in monocytes. When studying
patient samples and healthy controls (Supplementary Figures
2B, C and Figure 1B) we detected a far higher frequency of ASC-
speck formation in monocytes and neutrophils in a
representative sepsis patient. Further analysis showed that
most of the ASC-speck+ monocytes belong to the population
of CD14++CD16- classical monocytes (Supplementary Figure 3).
The flow cytometric gating strategy and respective isotype
controls are shown in Supplementary Figure 2 and the patient
characteristics are provided in Supplementary Table 1.

ASC-Speck+ Neutrophils and Monocytes
Are Increased at Different Time Points in
Sepsis Patients
During the first week of sepsis we observed dynamic changes in
the frequency of ASC-speck+ leukocytes in sepsis patients. Both
the absolute number (Figure 2A) and percentage (Figure 2B) of
ASC-speck+ monocytes were found increased on day 6 and day 7
compared to healthy donors. An increased absolute number of
ASC-speck+ neutrophils was only observed on day 1 (Figure
2C). Over time we did not observe significant changes in the
percentage of ASC-speck+ neutrophils (Figure 2D).

Dynamic Change of Downstream
Cytokines and Clinical Parameters
IL-1b and IL-18, the downstream cytokines secreted upon
inflammasome activation, were determined in serum samples to
further confirm the role of ASC-speck+ leukocytes in sepsis patients
(Figure 3 and Supplementary table 2). The concentration of IL-1b
and IL-18 were found increased on day 1 compared to healthy
controls. IL-1b values decreased back to baseline levels on day 7,
whereas increased levels of IL-18 were maintained in the serum
during the first week of sepsis. Other inflammatory cytokines were
found elevated on day 1 and decreased thereafter (Supplementary
Figure 4 and Supplementary Table 2). The differences of cytokines
between survivors and non-survivors were not significant
(Supplementary Table 3).

The dynamic changes of LDH, WBC and PCT are depicted in
Supplementary Figure 5A. There was a positive correlation
between the frequency of ASC-speck+ monocytes (days 5–7)
and the concentration of LDH and the WBC on days 5–7
(Supplementary Figures 5B–D).

Low Absolute Number of ASC-Speck+

Blood Monocytes in Sepsis Non-Survivors
Next, we asked whether 90-day sepsis survivors and non-
survivors differ in their frequency of ASC-speck+ blood
leukocytes. As shown in Figure 4A this analysis revealed that
February 2021 | Volume 11 | Article 613745
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sepsis non-survivors have significantly lower absolute number of
ASC-speck+ monocytes on day 6 after the onset of sepsis. A
further analysis was undertaken using ROC curves demonstrating
that the absolute number of ASC-speck+ monocytes on day 6
discriminated with highest accuracy between survivors and non-
survivors (Figure 4B). The AUROC for predicting survival was
0.875 [95% confidence interval (CI): 0.699–1.051]. The cut-off
level of ASC-speck positive monocytes was 1,650 cells/ml with a
specificity 83.33% (95% CI: 51.59–97.91%) and a sensitivity
83.33% (95% CI: 35.88–99.58%). Correspondingly, Kaplan-
Meier curves were calculated to investigate whether the absolute
Frontiers in Immunology | www.frontiersin.org 4
number of ASC-speck+ monocytes serves as a putative biomarker
in sepsis. These studies revealed that patients with lower absolute
number of ASC-speck+ monocytes (<1,650 cells/ml) on day 6
showed an inferior survival [p = 0.0079, hazard ratio (HR) =
10.23, 95% CI: 1.840–56.94] (Figure 4C). Demographics and
clinical characteristics of patients with high (>1,650 cells/ml)
and low (<1,650 cells/ml) absolute number of ASC-speck+

monocytes are shown in Supplementary Table 4. The cut-off
values for other parameters were also calculated by ROC
curve analysis (Supplementary Table 5). Finally, the univariate
and multivariate analysis (Table 1) showed that absolute number
A B

FIGURE 1 | Formation of ASC-speck among leukocytes. (A) Detection of ASC-speck formation in peripheral blood mononuclear cells (PBMCs) of healthy donors
after stimulation. Displayed are gated monocytes from gradient purified PBMCs (gating strategy is shown in Supplementary Figure 2A) cultured under different
conditions including stimulation with lipopolysaccharides (LPS), with adenosine triphosphate (ATP) and with LPS + ATP. Gates were placed to include cells with a
relatively low ASC-W: ASC-A profile (low W:A) that represent ASC-speck+ cells. Numbers shown next to the gates are the percentages of the ASC-speck+ cells from
the HLA-DR+ monocyte population. Here, we confirmed that this flow cytometry assay allows the quantification of ASC speck-positive cells in samples. (B) Detection
of ASC-speck formation in whole blood from sepsis patients and healthy donors. Displayed are gated monocytes and neutrophils from whole blood (gating strategy
is shown in Supplementary Figure 2B). ASC-speck+ cells were defined by relatively low W:A in monocytes and neutrophils. Numbers shown next to the gates are
the percentages of the ASC-speck+ cells from the HLA-DR+ monocyte and neutrophil population.
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of ASC-speck+ monocytes is an independent predictor of
90-day mortality in sepsis patients (p = 0.035, HR = 10.178, 95%
CI: 1.180–87.786).

In addition, we analyzed the expression of HLA-DR on CD14+
monocytes (Supplementary Figure 6). Gating was done as shown
in Supplementary Figure 6A. When compared with healthy
donors, the HLA-DR expression of monocytes obtained from
sepsis patients was significantly reduced (Supplementary Figure
6B). Although not statistically significant monocyte HLA-DR
expression was higher in survivors than in non-survivors
(Supplementary Figures 6C–E).
DISCUSSION

Patients with prolonged immune suppression after sepsis
frequently die from recurrent or hospital acquired infections
Frontiers in Immunology | www.frontiersin.org 5
(6–10, 12, 13). Reliable biomarkers identifying patients at risk of
late death from sepsis are missing (15).

In the study presented here we identified a reduced in vivo
inflammasome activation of blood monocytes as a prognostic
factor of late death from sepsis. Recognition and killing of
invading organisms by monocytes are important mechanisms
of a protective innate inflammatory immune response. Equally
important is the role of monocytes in presenting antigens by
means of HLA molecules. Multiple studies have demonstrated
clearly that following sepsis, monocytes have a diminished
capacity for both of these responses. Specifically, they secrete
fewer cytokines when stimulated (37) and down-regulate
expression of HLA receptors (38, 39). This down-regulation of
monocyte function generally predicts increased risk of secondary
infection and poor prognosis (40).

Inflammasome activation is of central importance for the
immune defense against infections and its role in sepsis
A B

DC

FIGURE 2 | Dynamic change of ASC-speck+ cells in different leukocyte subsets. Both absolute number (A) and percentage (B) of ASC-speck+ monocytes
increased significantly on day 6 and 7. The absolute number (C) of ASC-speck+ neutrophils increased during the first three days. However, no significant change of
the percentage (D) of ASC-specks in neutrophils within seven days has been observed. The difference between healthy donors and patients was determined by
Mann-Whitney test. *p < 0.05, **p < 0.01. Healthy donors n = 19; Sepsis patients day1 n = 24, day 2 n = 24, day 3 n = 22, day 4 n = 20, day5 n = 17, day 6 n =
18, day 7 n = 16. Dot plots and bar graph data are represented as mean ± SEM.
A B

FIGURE 3 | Dynamic change of serum levels of IL-1b and IL-18 in sepsis patients. (A) The concentration of IL-1b in sepsis patients was higher than in healthy
donors on day 1 and decreased on day 7. (B) Values for IL-18 detected in sepsis patients remained increased. The difference was determined by Mann-Whitney
test. **p < 0.01, ***p< 0.001. ns, not significant. Healthy donors n = 19; Sepsis patients day1 n = 24, day 7 n = 16. Dot plots and bar graph data are represented as
mean ± SEM.
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pathophysiology has been highlighted by several studies recently
(16–21). Among the different inflammasomes, NLRP3 and
absent in melanoma 2 (AIM2) contain the adaptor molecule
ASC. Inflammasomes such as the NLR family PYD containing 1
(NLRP1) and the NLR Family Caspase Recruitment Domain
(CARD) Containing 4 (NLRC4) assemble in the absence of ASC,
however, the presence of ASC enhances their activation and
caspase-1 function (41, 42). Among the different inflammasomes
NLRP3 is activated in response to the widest array of stimuli,
including components from bacterial, viral, and fungal
pathogens as well as endogenous molecules, for example uric
acid crystals and stress signals, such as ATP and ion fluxes (43–
50) converge into a common activating signal, which is the
potassium efflux (51–54).

To monitor the systemic inflammatory responses in sepsis we
studied in vivo inflammasome activation identified by ASC-
speck formation in blood leukocytes during the first week of
sepsis. Both neutrophils and monocytes are important cell
subsets capable of inflammasome activation after stimulation.
Being the most abundant leukocytes in the blood, neutrophils are
the first line defense in protecting the host from infection or
tissue damage (55). In this initial phase of sepsis bacterial derived
pathogen-associated molecular patterns (PAMPs) may directly
stimulate cells through their pathogen recognition receptors
(PRRs). Activation of inflammasomes, release of cytokines,
phagocytosis, degranulation and neutrophil extracellular trap
formation are considered instrumental for this wave of host
defense (4, 52–54). During the first 3 days of sepsis, neutrophils
showed a significantly increased formation of ASC-specks.
A short-lived rise of multiple inflammatory serum parameters
Frontiers in Immunology | www.frontiersin.org 6
(IL-1ß, TNF-a, IL-6, IL-8, MCP-1, PCT and CRP) accompanied
this early response. Correspondingly, PCT values indicating
bacteremia peaked on day 1 and declined thereafter, showing
that infection in our patients was rapidly controlled (56).

Unlike other cytokines, IL-18 and IL-1ß are synthesized as
precursor proteins and require enzymatic cleavage by caspase-1
to generate soluble, biologically active cytokines. In general, IL-1ß
and IL-18 are produced and regulated differentially, and serum
levels may not run in parallel (Figure 3 and Supplementary
Figure 4A). Secretion of mature IL-1ß requires cell activation, is
usually short lived and largely inflammasome dependent (57, 58).
In contrast, IL-18 secretion is partially inflammasome-
independent, is increased and sustained after stimulation but
also constitutively expressed in neutrophils, monocytes, intestinal
epithelial cells and endocrine tissues, such as the adrenal gland
(42, 58–61).

The key finding of this study was an increase in the absolute
number and the percentage of ASC-speck+ monocytes on day 6
and 7 of sepsis. A detailed analysis then clearly revealed that
patients with lower absolute numbers of ASC-speck+ monocytes
on day 6 showed an inferior 90-day survival.

The stimulus of inflammasome activation in monocytes on
day 6 is not clear. Multiple molecular and cellular signaling
events, including ionic flux, mitochondrial dysfunction, the
production of reactive oxygen species (ROS), and lysosomal
damage, have been shown to activate the NLRP3 inflammasomes.
We found LDH values to be still upregulated. LDH levels are
directly related to tissue injury, serving as a marker of necrosis and
hypoxia; collectively called danger-associated molecular patterns
(DAMPs) (62, 63). Similar to PAMPs also DAMPs are recognized
A

B C

FIGURE 4 | The absolute number of ASC-speck+ monocytes predicted the 90-days survival of sepsis patients. (A) Patients with a higher absolute number of ASC-
specks on day 6 have a favorable outcome within 90 days *p < 0.05. Healthy donors n = 19; sepsis patients (survivors) day 1 n = 17, day 2 n = 17, day 3 n = 16,
day 4 n = 14, day 5 n = 11, day 6 n = 12, day 7 n = 10; sepsis patients (non-survivors) day 1 n = 7, day 2 n = n = 7, day 3 n = 6, day 4 n = 6, day 5 n = 6, day 6
n = 6, day 7 n = 6. (B) Receiver operating characteristic (ROC) curve analysis on day 6 showed the AUROC for the absolute number of ASC-speck+ monocytes
predicting survival was 0.875 (p = 0.011, 95% confidence interval (CI): 0.699–1.051) and the best the cutoff value was 1650 cells/ml with the highest sensitivity
(83.33%) and specificity (83.33%). (C) Kaplan-Meier analysis revealed that patients with higher levels of ASC-speck positive monocytes (>1650 cells/ml) on day 6
have better survival [p = 0.0079, hazard ratio (HR) = 10.23, 95% CI: 1.840–56.94]. The patient cohort included 11 survivors and 7 non-survivors.
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via PRR andmay have caused inflammasome activation of immune
cells on day 6 of sepsis. Interestingly, we found a correlation of
serum LDH levels and ASC-speck+ monocytes on days 5–7 of
sepsis (Supplemental Figure 5).

The role of inflammasome activation in sepsis has been
addressed recently. In a study by Giamarellos-Bourboulis et al.,
reduced in vitro NLRP3 inflammasome activation and IL-1ß
Frontiers in Immunology | www.frontiersin.org 7
production of monocytes stimulated with monosodium urate
crystal was observed in sepsis patients compared to healthy
controls (64). A study by Weighardt et al. found higher IL-1ß
production of ex vivo stimulated monocytes in sepsis survivors
compared to non-survivors (65). Similar results were obtained by
Martinez-Garcia et al. (20); interestingly, these authors also
addressed a molecular mechanism responsible for the
TABLE 1 | Univariable and multivariate analysis for 90-day mortality (n=18).

Univariable analysis Multivariable analysis
Variables P value HR 95% CI P value HR 95% CI

mASC (AB)
(>1650 vs.<1650 /ml)

0.008 10.23 1.840-56.94 0.035a 10.178 1.180-87.786

mASC (%)
(>0.1994 vs. <0.1994 %)

0.039 6.446 1.095-37.97 0.637b – –

SOFA
(>6.5 vs. <6.5)

0.207 10.20 0.276-376.6 – – –

SAPS II
(>70.5 vs. <70.5)

0.115 0.259 0.048-1.387 – – –

APACHE II
(>34.5 vs.<34.5)

0.079 0.170 0.023-1.227 – – –

Weight
(>66.00 vs. <66.00 kg)

0.010 12.80 1.856-88.3 0.127 b
– –

Age
(>78 vs. <78 years)

0.017 0.065 0.007-0.616 0.383 b
– –

Gender
(Male vs. Female)

0.847 1.171 0.235-5.842 – – –

Grade
(Sepsis vs. Sepsis shock)

0.965 1.050 0.118-9.335 – – –

Lung
(Yes vs. no)

0.226 3.482 0.462-26.22 – – –

Abdomen
(Yes vs. no)

0.618 1.605 0.250-10.32 – – –

Gram-positive
(Yes vs.no)

0.104 0.264 0.053-1.315

Gram-negative
(Yes vs.no)

0.054 5.579 0.972-32.02

Fungal
(Yes vs. no)

0.521 0.533 0.078-3.644

Mixed
(Yes vs. no)

0.692 0.720 0.142-3.652

IFN-g
(>3.180 vs. <3.180 pg/ml)

0.087 0.225 0.041-1.243

IL-10
(>222.7 vs. <222.7 pg/ml)

0.069 0.089 0.007-1.212

IL-12p70
(>1.060 vs. <1.060 pg/ml)

0.226 0.287 0.038-2.163

IL-18
(>331.2 vs.<331.2 pg/ml)

0.064 0.219 0.044-1.095

IL-1b
(>6.840 vs. <6.840 pg/ml)

0.239 0.378 0.075-1.907

IL-6
(>53952 vs. <53952 pg/ml)

0.069 0.089 0.007-1.212

IL-8
(>99.80 vs. <99.80 pg/ml)

0.226 0.287 0.038-2.163

MCP-1
(>3179 vs. <3179 pg/ml)

0.604 0.649 0.126-3.336

TNFa
(>1.085 vs. <1.085 pg/ml)

0.226 0.287 0.0381-2.163
February 2021
 | Volume 11 |
Univariable analysis was performed by log-rank test. Predictors with p<0.05 from the univariate analyses were included in multivariate analysis. Multivariable analysis was performed using
multivariable Cox proportional hazards regression.
mASC (absolute number), absolute number of ASC speck positive monocytes; mASC (%), the percentage of ASC specks in monocytes. CI, confidence interval; bold values for p<0.05.
mASC (absolute number) and mASC (%) values are from day 6 after onset of sepsis; values of all the other variables are from day 1 after onset of sepsis. a,variables in the equation; b,
variables not in the equation.
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hyporesponsiveness of monocytes. The authors showed that
activation of cells via the purinergic ATP receptor P2X7 results
in mitochondrial dysfunction causing inflammasome inhibition
and immunosuppression of monocytes (20). Therefore, ATP
release with P2X7 receptor activation as a consequence of
different treatments or complications already prior to sepsis can
be seen as one possibility to disarm monocyte inflammasomes
causing immunoparalysis and late death from sepsis (20).

Interestingly, low level in vivo formation of ASC-specks in
monocytes during early sepsis (day 1 to 5) was found in all
patients, which happened despite the obvious PAMP-induced
neutrophil activation evidenced by increased numbers of ASC-
speck+ neutrophils and increased cytokine serum levels. A
reduced inflammasome activation of monocytes during early
sepsis was previously found in studies on in vitro activated
monocytes (64, 65) and appears to be a general phenomenon.
Whether this dysfunction of monocytes resulted from the initial
PAMP-induced and granulocyte-dominated inflammatory
response, is not known. Subsequent immunorestoration with
successful induction of ASC-speck+ monocytes (>1,650 cells/ml)
on day 6 of sepsis—possibly stimulated by DAMPs—appeared
highly beneficial in terms of sepsis survival. Thus, some patients
appear capable of escaping the hypo-inflammatory phase while
others with lower amount of ASC-speck+ monocytes on day 6
may still be locked in a state of “immunoparalysis” associated
with inferior survival. Enhanced inflammasome activation of
monocytes is associated with increased rates of cell death by
pyroptosis and indicative of a higher monocyte turnover (66).
Ultimately, it is currently unknown whether ASC-speck+

monocytes directly save patients from post sepsis mortality or
whether ASC-speck+ monocytes are indicative for a competent
immune system, with a higher monocyte turnover, ready to fight
off invading pathogens.

The activation of inflammasome involves two distinct steps.
Firstly, a transcription factor nuclear factor-kB (NF-kB)-
dependent manner, such as the binding of LPS to its receptor
Toll-like Receptor (TLR)4, induces elevated expression of pro-
IL-1ß. Secondly, P2X7 receptor-mediated K+ efflux induces
inflammasome assembly, as well as the subsequent maturation
and release of IL-1ß (52, 67, 68). ASC-speck+ monocyte numbers
increased significantly during the later phase of sepsis (day 6 and
day 7), when, however, serum IL-1ß levels were back to normal.
This may appear as a contradiction at first; however, detection of
ASC-speck in blood leukocytes represents only one source of the
total IL-1ß producing cells contributing to IL-1ß serum levels,
and the IL-1ß assay detected not only the inflammasome-
dependent mature form of IL-1ß but also the unprocessed pro-
IL-1ß, which is released upon cell lysis caused by multiple
pathways including pyroptosis. In addition, production of IL-
1ß depends on a two-step process regulated at the mRNA- in
addition to the inflammasome level.

Monocytes are not only essential elements in innate immune
responses, they also express MHC-class II and are regarded to
play an important role in orchestrating adaptive immunity.
Previous studies reported that persisting monocyte deactivation,
characterized by a decrease in HLA-DR expression from the
Frontiers in Immunology | www.frontiersin.org 8
initial period, was associated with higher mortality and the
recovery of function of monocytes was observed in survivors
within 10 days (11, 38, 69–72). As previously described, we noted
that HLA-DR expression of monocytes in sepsis patients was
significantly reduced (70, 71). There was a clear trend that the
difference of HLA-DR expression on day 6 compared to the first 4
days was higher in patients surviving sepsis. These differences did
not reach statistical significance in our cohort (Supplementary
Figure 6). In addition, for our patients we did not observe a
statistically significant association of survival and different clinical
scores (APACHE II, SOFA, or SAPS II).

Studies with murine sepsis models showed the different
roles of inflammasomes. Wegiel et al. reported that the NLRP3
inflammasome is relevant for bacterial clearance in mice (73).
While Lee et al. found that genetic deficiency of NLRP3 inhibited
inflammatory responses and permitted enhanced survival of
septic mice (17). In line with the notion that overwhelming
inflammation is detrimental Dolinay et al. reported that caspase-
1–dependent inflammatory responses involving the production
and activation of IL-18 may play a role in the propagation
of acute respiratory distress syndrome (74). The focus of many
studies is the overwhelming inflammatory response at the
beginning of sepsis leading to immunoparalysis and death. We
instead monitored the patients for one week and identified a
marker correlating with immune recovery and sepsis survival.
CONCLUSION

Inflammasome research and monocyte function are of particular
interest in sepsis (18, 20, 21). In the study presented here, in vivo
inflammasome activation was identified by ASC-speck formation
in blood leukocytes during the first week of sepsis. We found that
both neutrophils andmonocytes are important cell subsets capable
of inflammasome activation in sepsis. Statistical analysis
demonstrated that the frequency of ASC-speck+ monocytes on
day 6 after onset of sepsis may serve as a marker for immune
monitoring and identifying patients at risk of death.

Although it remains unclear how ASC-speck+ monocytes
rescue patients from death of sepsis, our present results provide a
novel link between in vivo inflammasome activation in monocytes,
immune competence and sepsis survival. The inflammasome has
well-known pleiotropic and potentially “double-edged sword”
effects in sepsis as a regulator of inflammation and as an
integral part of the immune response. Future studies are
required to describe the exact role of the rapidly performed
flow cytometric assay to identify ASC-speck+ monocytes in
making clinical decisions in sepsis.
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