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Camels are domesticated animals that are highly adapted to the extreme desert
ecosystem with relatively higher resistance to a wide range of pathogens compared to
many other species from the same geographical region. Recently, there has been
increased interest in the field of camel immunology. As the progress in the analysis of
camel immunoglobulins has previously been covered in many recent reviews, this review
intends to summarize published findings related to camel cellular immunology with a focus
on the phenotype and functionality of camel leukocyte subpopulations. The review also
describes the impact of different physiological (age and pregnancy) and pathological (e.g.
infection) conditions on camel immune cells. Despite the progress achieved in the field of
camel immunology, there are gaps in our complete understanding of the camel immune
system. Questions remain regarding innate recognition mechanisms, the functional
characterization of antigen-presenting cells, and the characterization of camel NK and
cytotoxic T cells.

Keywords: camel (Camelus dromedarius ) , immune, overview, review—systematic, leukocytes,
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INTRODUCTION

Camels (Camelus spp.) are essential inhabitants of desert and semi-desert ecosystems (1). Unlike
many other domestic species, camels thrive despite extreme temperatures, scarce vegetation, and
very limited food and water resources (2, 3). The family of Camelidae comprises two major
subfamilies, namely Camelinae (OldWorld camelids) and Laminae (NewWorld camelids). The Old
World camelids include two domesticated species: the dromedary or one humped camel (Camelus
dromedarius) and the two humped camel or Bactrian camel (Camelus bactrianus) (4, 5). The wild
camel (Camelus ferus) is a third species of Old World camelids, which is a double-humped camel
living in central Asia and closely related to the Bactrian camel (6). The New World camelids, which
live in the high altitudes of South America, comprise four main species including two wild species
(guanaco and vicuña) and two domesticated species (llama and alpaca) (7).

In addition to their economic importance as domestic food animals in many regions of the world
including the Middle East, different parts of Africa, and most regions of Asia (8, 9), camels are also
found in circus or zoological collections in the northern hemisphere (10). Camels are of zoonotic
importance due to many pathogens that can be transmitted to humans. For example, dromedary
camels are considered as the main reservoir for the lethal zoonotic coronavirus, which is responsible
for Middle East Respiratory Syndrome (MERS) in humans (11).
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The immune system consists of a complex network of cellular
and non-cellular components, which contribute equally to
effective immune responses against pathogens. Whereas
considerable research has been devoted to studying camel
immunoglobulins (12), rather less attention has been paid to
the cellular compartment of the camel immune system. As the
progress achieved in the analysis of camel immunoglobulins has
previously been covered in many recent reviews (5, 12–14), the
present review will highlight the most important findings
concerning camel cellular immunology. The review will
especially focus on recent phenotyping and functional studies
characterizing camel blood leukocyte subpopulations. In
addition, the impact of different physiological (age and
pregnancy) and pathological (e.g. infection) conditions on the
cellular immune compartment will be discussed.

In comparison to other species from the same geographical
area, camels show higher resistance to some infectious diseases
and environmental stress (15–19). Compared to the severe course
of many Middle East Respiratory Syndrome Coronavirus (MERS-
CoV) infections in humans, camels show only mild and transient
respiratory symptoms with no need for veterinary care (15, 16).
Possible mechanisms for the higher resistance of camels to MERS-
CoV are discussed below (The camel immune response to MERS-
CoV). Dromedary camels also appeared to be resistant to
infectious doses of foot-and-mouth disease virus (FMDV),
which were sufficient to infect sheep in the same experiment
(18). This type of resistance is species-dependent, since FMDV is
more infectious for Bactrian than for dromedary camels (18).
FMDV utilizes different integrin heterodimers (avb1, avb3, avb6,
and avb8) as cellular receptors (20). Whether these integrins are
differentially expressed or regulated in the susceptible and resistant
species, and whether the higher resistance of camels to FMDV is
determined at the level of virus-integrin interaction, represents an
important question that has yet to be addressed. Dromedary
camels are also well adapted to extreme levels of heat stress (19).
Compared to humans, this may rely on a faster, stronger and
differential induction of heat-shock protein family members and
the higher resistance of general protein synthesis in response to
thermal stress (21, 22). Deeper insights into the mechanisms
behind the higher resistance of camels to some infectious agents
and the adaptation of camel immune cells towards thermal stress
are still pending.

Several immunogenomic studies described the genomic
diversity of immunity-related genes in domesticated and wild
camels, including genes encoding for B cell receptors, T cell
receptors, and MHC molecules (6, 23–29).
THE LEUKOGRAM PATTERN OF CAMELS
IN HEALTH AND DISEASE

The species-specific leukogram, which comprises the total white
blood cell (WBC) count and the relative proportions of the main
leukocyte subpopulation including neutrophils, eosinophils,
basophils, lymphocytes, and monocytes, provides a cost-
effective evaluation tool in human and veterinary medicine,
Frontiers in Immunology | www.frontiersin.org 2
supporting disease diagnosis and guiding therapy and
prognosis prediction.

A broad total WBC count range in the healthy dromedary
camel, from 8.3 to 19.6 cell x103/µl blood, has been reported in
the literature (30, 31). Lower (32) as well as higher (33) WBC
counts were reported for the Bactrian camel in comparison to the
dromedary camel. In general, camels have a higher WBC count
than domestic ruminants (33, 34). This is mainly due to higher
numbers of neutrophils in camel blood. The fraction of
neutrophils among blood leukocytes accounts for up to 77%
followed by lymphocytes (30% on average) (32, 35–38). This is in
contrast to domestic ruminants, where lymphocytes outnumber
the leukocyte population in blood (33). The dominance of
neutrophils among camel blood leukocytes results on average
in a very high neutrophils to lymphocyte ratio (NLR) of 5:1
compared to a NLR of 1:2 found in domestic ruminants (39, 40).
The NLR is a novel marker which has been found to be
associated with systemic inflammatory responses (41–44). In
other species, high NLR has been linked to impaired immune cell
function and was indicative of poor patient survival in different
diseases including sepsis (45, 46) and autoimmune diseases (47).
The clinical relevance of the relatively high NLR in camels and its
impact on the functionality of the camel immune system still
needs to be investigated.

Historically, there has been a great deal of discrepency in the
literature regarding leukocyte composition in camels, depending
on the techniques used to analyze the samples. Earlier studies
mostly applied hemocytometers to estimate the camel leukogram
with settings adapted from other species. According to those
studies, lymphocytes represent the most abundant leukocyte
subpopulation in camel blood followed by neutrophils (48–54).
However, recent hemocytometer and flow cytometric studies
(55–57) identified neutrophils as the main fraction of camel
leukocytes (36, 58–62).

Numerous studies investigated the changes in the camel
leukogram pattern under different physiologic (age, sex,
pregnancy) (63–65) and pathologic (infection) conditions (66,
67). As most camel leukogram studies presented leukocyte
composition as relative values (fractions) rather than absolute
values, it is difficult to compare the results obtained from
different studies.

Impact of Animal Age and Sex
on the Camel Leukogram
The impact of age on the camel leukogram has been described in
different studies (35, 68). In comparison to adults, young camels
show higher WBC counts with higher percentages of
lymphocytes and eosinophilic granulocytes but lower
percentage of neutrophilic granulocytes (35). The leukogram
pattern of the newborn camel calf is discussed below in detail.

Although some studies reported higher WBC counts in male
camels (69), in general the animal sex shows no impact on total
WBC count or differential leukocyte composition (32, 70, 71).
Some authors reported a higher proportion of lymphocytes among
leukocytes in males compared to female camels (70, 72), while the
eosinophil fraction was higher in females compared to males (70).
January 2021 | Volume 11 | Article 614150
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The impact of pregnancy on the camel leukogram (60) and the
detailed immunophenotype of leukocytes in pregnant she-camels
will be discussed in a separate section below.

Seasonal Effects on the Camel Leukogram
There have been inconsistent observations regarding the impact of
seasonal effects on the camel leukogram (70, 72, 73). For instance,
according to Mehrotra and Gupta (74), the number of leukocytes
tends to decline during the summer season. In contrast, Babeker
et al. reported higher numbers of WBC with increased total
numbers of neutrophils, lymphocytes, eosinophils, and basophils
in camel blood during the summer season in comparison to the
winter (73).

The Camel Leukogram Pattern During
Infectious Diseases
Changes in leukocytes count and composition during different
parasitic and bacterial infections have been frequently described.
For example, trypanosomiasis in camels induces a marked increase
in the number of WBC with increased percentages of neutrophils
and reduced percentages of lymphocytes (49). Relative eosinophilia
(elevated fraction of eosinophils in blood) has been reported in
camels suffering from different parasitic infestations, including
Trypanosoma evansi (75), gastrointestinal helminths (71), and
nasal Cephalopina titillator (76). In camels infected with the
blood parasite Theileria anulata, the leukogram pattern was
characterized by leukocytosis, neutrophilia, eosinophilia, and
lymphopenia (67). Bacterial pathogens are mainly responsible for
post-partal infections in camels, including mastitis and metritis
(77–80).The leukogrampattern associatedwithcamel endometritis
has been described for the clinical and subclinical form of the
disease. Clinical endometritis in camels is characterized by a
significant rise in the total cell count of blood leukocytes, which is
mainly due to higher cell numbers of neutrophils (37, 81).However,
in the case of subclinical endometritis she-camels did not show a
different leukogram in comparison to healthy animals (82).
CHARACTERIZATION OF PHENOTYPE
AND FUNCTION OF CAMEL LEUKOCYTE
SUBPOPULATIONS

Early attempts to study the cellular immune system in camels were
hampered by the limited availability of camel-specific monoclonal
antibodies (83, 84). As the production of monoclonal antibodies is
a very costly process, attempts have been made to evaluate the
cross-reactivity of commercially available monoclonal antibodies
raised against leukocyte antigens of ruminants, swine, or human,
with camel leukocyte antigens. Using the identified cross-reactive
antibodies (Table 1) and flow cytometry, several camel myeloid
and lymphoid immune cell populations and subpopulations have
been recently characterized (59, 83–85, 87–89). The antibody
toolbox for camel leukocyte antigens includes antibodies to
several myeloid markers such as CD172a, CD14, and CD163,
and major histocompatibility complex (MHC) class I and II
molecules. Using those monoclonal antibodies in combination
Frontiers in Immunology | www.frontiersin.org 3
with antibodies against cell adhesion molecules (CD11a, CD11b,
CD18, and CD62L) has enabled the characterization of camel
monocyte subsets. Monoclonal antibodies specific for CD4 and
WC1 molecules allowed for the chracterization of camel CD4-
positive T cells and gd-T cells. The characterization of other
important lymphocyte subpopulation, especially CD8-positive T
cells and NK cells, still requires the identification of monoclonal
antibodies to camel CD8 and CD335 (NKp46) molecules.

Camel Neutrophilic Granulocytes
Flow cytometric analyses identified camel blood neutrophils as
highly complex/granular cells (side scatter, SSChigh) expressing
CD45 and CD172a (35, 62). The higher green autofluorescence
of eosinophils can be used to differentiate between camel
eosinophils and neutrophils within the granulocyte population
(35, 60).

Neutrophil recruitment is a cascade process organized by a set of
cell adhesionmolecules, whichmediate their adhesion to endothelial
cells of blood vessels and the subsequent steps of extravasation (90).
Compared with human neutrophils, dromedary camel neutrophils
express similar levels of the integrins LFA1 (CD11b/CD18) and
MAC1 (also known as aMb2; CD11b/CD18) (59).

Similar to bovine neutrophils (91), camel neutrophils show a
low but distinct expression level of the LPS co-receptor CD14,
suggesting a role in the sensing of gram-negative bacteria (35).
This has been partially proven in whole blood stimulation assays
(Figure 1) where LPS induced the activation and degranulation
of camel neutrophils. In addition, LPS stimulation reduced the
phagocytosis activity of camel neutrophils, while their ROS
generating potential remained unchanged (62).
TABLE 1 | Camel leukocyte antigen cross-reactive monoclonal antibodies.

Antigen Clone Isotype Source

CD4 GC50A1 mIgM WSU
CD11a G43-25B mIgG2a BD
CD11a HUH73A mIgG1 WSU
CD11b ICRF44 mIgG1 BD
CD14 TÜK4 mIgG2a Biorad
CD14 M5E2 mIgG2a BD
CD14 CAM36A mIgG1 WSU
CD18 6.7 mIgG1 BD
CD18 HUH82A mIgG2a WSU
CD26 polyclonal gIgG R&D systems
CD44 LT41A mIgG2a WSU
CD45 LT12A mIgG2a WSU
CD62L MEL14 mIgG2a Biolegend
CD163 LND68A mIgG1 Kingfisher
CD172a DH59b mIgG1 WSU
B cells GC26A mIgM WSU
MHCI H58A mIgG2a WSU
MHCII TH81A5 mIgG2a WSU
MHCII TH14B mIgG2a WSU
MHCII L243 mIgG2a BD
WC1 BAQ128A mIgG1 Kingfisher
WC1N2 BAQ4A mIgG1 WSU
Activation marker LH9A mIgM WSU
Activation marker VPM30 mIgM Biorad
January 202
1 | Volume 11 | A
MHC, Major Histocompatibility Complex; WSU, Washington State University; BD, Becton
Dickinson; mIgM, mouse immunoglobulin M; mIgG, mouse immunoglobulin G; gIgG, goat
IgG (36, 59, 61, 85, 86).
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A series of recent studies on human neutrophils has indicated
that distinct neutrophil subsets exist within the whole neutrophil
population with diverse roles in infection and inflammation (92–
95). For the camel, the heterogeneity of blood neutrophils remains
an open issue. In addition, the interplay between camel
neutrophils and other innate immune cells such as monocyte
subsets and macrophages (96) has not yet been studied.

Camel Monocyte Subsets
Monocytes are circulating immune cells with an essential role in the
innate immune defense against pathogens (97). Upon migration
into tissues, monocytes are responsible for the replenishment of
other immune cells of themononuclear phagocyte system including
macrophages and dendritic cells, which bridge the innate and
adaptive immune responses (98, 99). For their effective
antimicrobial functions, monocytes are equipped with several
receptors enabling pathogen sensing, engulfment, and elimination
(100, 101). The cell surface cluster of differentiation (CD) antigens
CD172a, CD14, CD16, CD163, and MHCII have been proven as
reliable markers to describe monocyte heterogeneity, their
functional status, and their polarized differentiation into distinct
macrophage subtypes (102–105). CD172a, which is known as
signal-regulatory protein alpha (SIRPa), is a glycosylated cell
surface receptor expressed on myeloid cells and functions as a
regulatory receptor that inhibits cell signaling (106). CD14 is
membrane protein mainly expressed on monocytes and functions
with TLR-4 as a bacterial pattern recognition receptor responsible
for binding lipopolysaccharide (LPS), the cell wall component of
gram-negative bacteria (107). CD163 is a scavenger receptor for
haptoglobin–hemoglobin complexes that is mainly expressed on
monocytes andmacrophages and is consideredas amarker for anti-
inflammatory functional subtypes of these cells (108). Major
histocompatibility (MHC) class II molecules are antigen receptors
expressed onbloodmonocytes andB cells and present antigens toT
helper cells (109).

Due to the lack of monoclonal antibodies cross-reactive with
camelCD16 (59), three subpopulations ofmonocytes in dromedary
camels have recently been identified based on the expression
profiles of CD172a, CD14, MHCII, and CD163 (61). Similar to
Frontiers in Immunology | www.frontiersin.org 4
the porcine and bovine systems (104, 106, 110–112), the signal-
regulatory protein alpha (CD172a) has been identified as a pan
monocyte marker for camel monocytes. The most abundant
subset of camel monocytes (87% of total monocytes) expresses
high levels of CD14 and CD163, but low levels of MHCII
(CD14highCD163highMHCIIlow) and is classified as camel
monocyte (cMo)-I. A small fraction of camel monocytes (6 % of
total monocytes) expresses high levels of CD14, CD163, and
MHCII (CD14highCD163highMHCIIhigh) and is designated as
cMo-II. The third minor monocyte subpopulation cMo-III (5 %
of total monocytes) displays high expression of MHCII but low
expression of CD14 and CD163 (CD14lowCD163lowMHCIIhigh)
(61) (Figure 2).

Different monocyte classification systems have been used in
different species (113). Human and bovine monocytes were
classified into the major population of CD14++ CD16- classical
monocytes and two minor populations of CD14++ CD16+
intermediate monocytes and CD14+ CD16++ non-classical
monocytes (104, 106, 112, 114, 115). Due to their low expression
ofCD14,murinemonocyteswere classified into three subsets based
on their expression of the myeloid markers Ly6C and CD43 (116,
117).Whereas for the analysis ofmonocyte heterogeneity in the pig
(110, 118) and the dog (119), other monocytic markers including
CD163, CD172a and MHCII have been used.

The expression of high levels of CD14 and CD163 on cMo-I
and the low MHCII expression together with their dominance
among all blood monocytes suggests close similarity with bovine
and human classical monocytes (104, 115). The phenotypic and
functional properties (highest anti-bacterial activity) of cMo-II
suggests this subset is an equivalent to human and bovine
intermediate monocytes (106, 113). Similarly, high levels of
surface MHCII and adhesion molecule leukocyte function-
associated antigen (LFA)-1 (a1b2; b2 integrin; CD11a/CD18)
and the low expression density of surface CD14 and CD163
together with a reduced phagocytic and ROS generation activity,
suggest that cMo-III represent the counterparts of bovine non-
classical monocytes (96, 104, 106).

In a recent report, the clinical relevance of camel monocyte
subsets in camel clinical endometritis has been investigated (81).
FIGURE 1 | Modulation of phenotype and function of camel neutrophils by LPS stimulation. Camel neutrophils can be identified as CD172ahighSSChigh leukocytes
(CD45+) with low expression of CD14. Stimulation of whole camel blood with LPS induces the modulation of the expression pattern of different adhesion molecules
and different antimicrobial functions (reduced SSC values as an indicator for neutrophil granularity, decreased phagocytosis capacity but no change in ROS
production). Degra, Degranulation; Phago, phagocytosis; ROS, generation of reactive oxygen species.
January 2021 | Volume 11 | Article 614150
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In this study, animals with endometritis showed a significant
expansion in the fraction of camel inflammatory monocytes
(cMo-II). In addition, increased numbers of cMo-II were
indicative for the severity of endometritis. The study suggested
camel cMo-II as a disease biomarker for clinical endometritis in
camels (81).

Camel monocytes appear to be the only leukocyte population
that exclusively express CD26, the MersCoV receptor and are
therefore suggested to play a key role in either disease pathogenesis
or immune response to the virus (86, 120). Whether the
mentioned camel monocyte subsets differ in their expression
intensity of CD26 is unknown. More work is needed to further
Frontiers in Immunology | www.frontiersin.org 5
explore the subset-specific function in health and disease for
camels as for human and bovine monocyte subsets. Their role in
the pathogenesis of different infectious and non-infectious diseases
has been indicated in a series of recent studies (121–124). A
further open question is, whether camel monocytes show subset-
specific potential to differentiate into distinct functional subsets of
macrophages or dendritic cells.

Camel Lymphoid Cell Subpopulations
Due to the lack of camel-specific antibodies, only selected
subpopulations of camel lymphoid cells are identifiable. Thus, a
comparison of camel lymphoid cell populations with cells of other
FIGURE 2 | Heterogeneity of camel monocyte subsets. Camel monocytes are subdivided according to the surface expression of CD14 and MHCII into three
monocyte subsets. (1) Camel monocyte I (cM-I) with high expression of CD14 and low expression of MHCII (CD14highMHCIIlow), cM-II with high levels of both CD14
and MHCII (CD14highMHCIIhigh) and cM-III with high expression of MHCII but low expression of CD14 (CD14lowMHCIIhigh). The expression levels of cell surface
molecules are presented as ± for very low to no-expression, + for weak expression, ++ for intermediate expression, and +++ for high expression. Functional
capacities of monocyte subsets are presented as + for weak, ++ for intermediate, and +++ for strong capacity.
January 2021 | Volume 11 | Article 614150

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Hussen and Schuberth Camel Immunology
domestic animal species and humans is very limited. Notably,
CD8+ T-cells, cytotoxic T cells and NK cells cannot be identified
in camels, which severely inhibits the analysis of anti-viral and
vaccination responses. Based on the TCR type, T cells are divided
into ab T cells recognizing peptide antigens presented on MHC
molecules and gd T cells recognizing antigen epitopes in an MHC
independent manner (125). Using monoclonal antibodies cross-
reactive to the camel CD4 antigen, the bovine gd T cell marker
WC1, the B cell antigen GC26A together with monoclonal
antibodies specific to CD14 to exclude monocytes, it was
possible to identify camel CD4-positive T cells, WC1-positive gd
T cells, and GC26A-positive B cells in the blood of dromedary
camels (Table 2) (36).

In healthy dromedary camels, blood lymphocytes are
composed of a major fraction of B cells (mean percentage of
26.6%) followed by CD4-positive T cells (24.6%) and a minor
fraction of gd-T cells (7.4%) (36). In comparison to their nearest
relatives (Lamini), healthy camels show some similarties in their
lymphocyte composition (126, 127). Similar to their dominance
among camel blood lymphocytes, B cells represent the main
lymphocyte population in blood from healthy alpacas (126, 127).
In addition, the fractions of CD4+ T cells and gd -T cells in blood
from alpacas (126, 127) and dromedary camels (36) are
comparable. It is unknown, whether camel CD8+ T cells are
present in the same frequency as in blood of alpacas (126, 127).
The significant expansion of CD8+ T cells in the gut-associated
lymphoid tissue (GALT) of alpacas 9 days postinfection with
bovine virus diarrhea virus (BVDV) indicates a key role for this
lymphocyte subset in the immune response of camelids to viral
infections (127).

The analysis of the expression pattern of the adhesion molecules
CD11a, CD11b, CD18, and CD62L, which play essential roles in
lymphocyte trafficking to peripheral tissues (128), revealed similar
expression patterns on camel and bovine CD4+ T cells and gd T
cells (36, 129).

T helper cells are key players in the adaptive immune response
through their essential role in managing both humoral and cell-
mediated immune responses. Upon antigen-specific stimulation,
Frontiers in Immunology | www.frontiersin.org 6
naïve CD4+ T cells differentiate into effector T helper cells, which
can be distinguished based on the differential expression of cell
surface adhesion molecules such as CD45, CD44, CD62L, and
CD11a (130–134). Similar to their human counterparts (135),
camel naïve (CD11alow CD44low) and effector (CD11ahi CD44hi) T
helper cells have recently been identified with an elevated
proportion of effector T helper cells in animals with respiratory
infections (23.5% of total CD4-positive lymphocytes compared to
17.1% in healthy camels) (36).

Camel Cytokines
Functional properties of camel lymphocyte subpopulations have
not been investigated so far. Especially the characterization of camel
subsets of helper T cells and the innate signals required for their
functional polarization into Th1, Th2, or Th17 subsets requires
further investigation. T cell polarization is one of the key factors that
determine the outcome of infectious diseases (136). The
characterization of T effector cell subsets is limited by the lack of
monoclonal antibodies specific for camel Th1, Th2, and Th17
cytokines. The characterized genes of Th1 (IL-2, IL-12, and
IFN-g) and Th2 (IL-4, IL-10 and IL-13) cytokines in the Bactrian
camel (137, 138), however, could represent a valuable tool for
conducting functional studies on T cell polarization in camels. The
high homology between Bactrian camels and other species,
including the llama, pig, cow, and horse regarding the nucleotide
sequencesof their cytokine genes (137) also suggests the necessity of
testingmonoclonal antibodies specific for cytokines of these species
for their cross-reactivity with camel cytokines. However, the lack of
characterized camel antigen-presenting cells and the establishment
of in vitro systems for thedifferentiationof camelmonocyte-derived
macrophages and monocyte-derived dendritic cells hamper
antigen-specific activation and T-cell polarization studies.

Studies on cytokine responses in vivo relied on the
measurement of mRNA expression. Bactrian camels vaccinated
with a live attenuated Brucella abortus S19 vaccine responded with
an upregulated expression of the Th-1 cytokine IFNg with low or
no expression of the Th2 cytokines IL-10 and IL-4, indicating the
activation of a cell-mediated immune response (138). To address
TABLE 2 | Phenotypic properties of T cells and B cells in camel blood.

CD4+ T cells (CD4+WC1-) gd T cells (WC1+CD4-) B cells (GC26A+MHC-II+CD14-)

Frequency in blood
% of lymphocytes (Mean ± SEM) 24.6 ± 1.7 7.4 ± 0.3 26.6 ± 1.9
% of lymphocytes
(Min. – Max.)

14.2–33.1 1.0–20.1 18.4–42.0

Phenotype
CD4 +++ – –

WC1 – +++ –

GC26A – – +++
MHC-II – – +++
CD18 ++ ++ ?
CD11a ++ ++ ?
CD11b + ++ ?
CD62L + ++ ?
Effector cells CD11ahighCD44high

(17.0 ± 1.2) %
? ?
January 20
The expression levels of cell surface molecules are presented as - for very low to no-expression, + for weak expression, ++ for intermediate expression, and +++ for high expression. Non
investigated parameters are presented as ? (36).
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the humoral immune response and the production of antigen-
specific antibodies, a recent immunization study with ovalbumin
proved that the upregulated cytokine expression pattern of
Bactrian camel lymphocytes was restricted to Th-2 cytokines
(IL-4, IL-10, and IL-13) (139). At present, these studies basically
indicate a high degree of similarity in the polarized cytokine
response towards vaccines and antigens in other mammalian
species, namely cattle (140, 141).

Type 1 interferons represent the most important cytokines in
innate immunity during infections with viruses in addition to
antitumor immune responses. The camel displays a similar
broad spectrum of IFN alpha family members as cattle (142)
and humans (143). For instance, eleven IFN-a subtypes (144)
and one member of the IFN epsilon family were identified (145).
The functional properties of type I interferons appear similar to
other mammalian species, including the antiviral effect, the
induction of interferon-responsive genes, and the tumor cell
cytotoxicity (144, 145). Studies describing other immune-
modulatory effects of type I interferons are still lacking (145).
CAMEL IMMUNOGENETICS

In comparison to other species inhabiting the same geographical
area, camels are more resistant to some pathogens (4, 15, 16, 18,
146). The ability to respond to a variety of antigens is affected by
the diversity of highly specialized antigen receptors (147). This
has been addressed in a series of immunogenomic studies which
investigated the polymorphism of genes encoding different camel
antigenic receptors, including the ab and gd T cell receptor, the
NK cell receptor, and the antigen-presenting molecules MHC-
class I and class II.

In comparison to other Artiodactyls, dromedary camels
display a limited repertoire of T cell receptor delta variable
(TRDV) and T cell receptor gamma variable (TRGV) genes
(26). However, the diversity of the camel dromedary gd T cell
repertoire is significantly expanded by somatic hypermutation of
the TRDV and TRGV genes (27, 28, 148). The diversity of the
variable domains of the ab T cell receptor is formed only by
classical combinatorial and junctional diversity and not by
somatic hypermutation (148).

Antigen recognition by T cell receptors on CD4+ or CD8+ T
cells requires the presentation of antigenic peptides by MHC class
II or class I molecules respectively (149, 150). As those
polymorphic antigen-presenting molecules display promiscuous
and selective interactions with antigen peptides, diversity in genes
and alleles encoding for MHC class I and class II molecules
contributes directly to the ability of a species to respond towards
a range of different pathogens (150). In a recent report, Plasil and
coworkers investigated the localization, organization, and
sequence of camel MHC genes (23). MHC genes are located on
chromosome 20 in camels and are organized in MHC class II,
MHC class III, and MHC class I genes, an organization that
follows the same pattern as in other mammalian species (148). The
camelMHC genomic structure more closely resembles the porcine
rather than the bovine MHC. Compared with other mammalian
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species, however, camels show a significantly lower molecular
diversity of both MHC class I and class II genes (23, 24).

Natural killer (NK) cells are innate lymphoid cells with key
roles in innate immune responses against intracellular pathogens
and tumor cells. These multiple functions are mediated by
different activating and inhibitory NK cell surface receptors,
which determine the activation status of an individual NK cell
(151). A recent work by Futas et al. investigated the diversity of
gene families encoding the camel NK cell receptors, including the
natural killer complex (NKC) and the leukocyte receptor complex
(LRC), which mediate their function through the interaction with
MHC class I molecules (25). Collectively, the study identified a low
polymorphism of the killer-cell immunoglobulin-like receptors
(KLR) genes in camels, which is similar to the polymorphism of
this complex in the domestic pig. The study also revealed
important differences in the genomic organization and
polymorphism of genes encoding NK cell receptors between
camels and cattle (25).

Recently, high quality genome assemblies have been developed
for domestic and wild camel species (6, 29). Computational
methods were employed for the improvement of genome
assemblies of the three Old World camel species (6). The authors
used the upgraded genome assemblies to investigate nucleotide
diversity of immune response genes in the three species. The highest
mean nucleotide diversity was identified in the domestic Bactrian
camel. The comparison between several innate and adaptive
immune response gene groups revealed the highest mean
nucleotide diversity in the major histocompatibility complex (6).

The overall reduced antigen receptor diversity and MHC
polymorphism, however, indicates the existence of other
mechanisms responsible for the higher resistance of camels to
infectious diseases. Whether camel-specific epigenetic regulatory
mechanisms of adaptive immune responses contribute to the
relatively higher resistance to infections is currently unknown.
THE IMMUNE SYSTEM OF THE
PREGNANT SHE-CAMEL

Pregnancy is a physiologic condition, usually associated with
modulations in different immune mechanisms, which ensure
protection against pathogens and at the same time prevent
immune mediated destruction of the conceptus (152–154).
Immunomodulation during pregnancy is not restricted to the
local uterine environment but extends also into the periphery
(155, 156). Pregnancy-associated immunomodulation has been
addressed by a large number of studies in pregnant women (157),
cows (158, 159), mares (160, 161), and sows (162–165). A recent
study investigated the impact of pregnancy on the phenotype and
function of she-camel blood leukocytes (60). The observed
significant leukocytosis of pregnant she-camels is similar to
findings reported for pregnant cows (166) and women (167),
which is usually linked with an increased cortisol level during
pregnancy (161). According to the same study, the leukocytosis
in pregnant she-camels is characterized by a reduced neutrophil
fraction and higher percentages of lymphocytes and monocytes.
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This leukocyte composition pattern, however, differs from the
pattern reported for pregnant cows (162). In cows, pregnancy is
associated with higher fractions of neutrophils, lower fractions of
lymphocytes but no changes in the fractions of monocytes
(166, 168).

Although not proven, it was suggested that the enhanced
neutrophil extravasation and accumulation in the uterine tissue
might be responsible for the decreased proportion of neutrophils in
the blood, as neutrophils from pregnant animals expressed higher
densities of the cell adhesion molecule LFA-1 on their surface than
non-pregnant animals (60). Ex vivo functional analyses revealed an
enhanced antimicrobial activity of neutrophils from pregnant she-
camels. This finding is in line with reports of pregnantmares (169),
but is opposite to the dairy cow, where pregnancy is associated with
impaired antimicrobial functions of neutrophils (170, 171).
THE IMMUNE SYSTEM OF THE
NEWBORN CAMEL CALF

Similar to horses, pigs, and ruminants, the epitheliochorial
placenta of camels does not allow trans-placental passage of
maternal immunoglobulins to the fetus (172, 173). Therefore,
the newborn camel calf is born without serum immunoglobulins
and postnatal protection mainly relies on an adequate absorption
of maternal colostral antibodies until the maturation of the calf’s
own immune system (174, 175). The transfer of colostral
immunoglobulins to the newborn camel calf has been subject of
many investigations (176–182). Several immunoglobulin classes,
including the IgM, IgG, and IgA, have been identified in the camel
colostrum (182). However, only the uptake of maternal IgG,
representing the most abundant immunoglobulin in camel
colostrum, into the newborn’s blood has been studied.

In addition to the conventional IgG with its heterodimeric
structure, camelids also possess non-conventional single-chain
IgG antibodies, which are not found in any other mammalian
species (183). In contrast to conventional IgG structure, which
consists of two identical heavy chains (H) and two identical light
chains (L), camel single-chain IgG antibodies are devoid of the
light chain and the first heavy chain constant region CH1. The
camel IgG isotype is currently classified into three structurally
different subclasses: camel IgG1 with two light and two heavy
chains, camel IgG2 with a long-hinge heavy chain, and camel
IgG3 with a short-hinge heavy chain (Figure 3). The camel
heavy-chain antibodies (HCAbs) IgG2 and IgG3, which lack
light chains, contribute up to 75% of all serum IgG (13).

Both classical two-chain antibodies (IgG1) and HCAbs (IgG2
and IgG3) are present in camel colostrum (182), and both are
involved in the passive transfer of colostral IgG antibodies to the
newborn calf (178, 179). Some studies investigated the
development of IgG (176) and HCAbs (178) in the blood of
the newborn camel calf. The rise in serum IgG levels in calf
serum two months after birth is indicative of the production of
significant levels of the calf’s own IgG (177, 184). The role of
maternal colostral cells in neonatal immune system
development, and their responses to vaccination is of growing
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interest in other species (185–190). However, no studies have yet
been conducted on the role of colostral immune cells in the
modulation of the camel calf immune system.

Age-related changes of innate and adaptive cellular immune
responses have been described for different species (191, 192).
The immaturity of newborn immune cells was linked to a higher
susceptibility to infectious diseases and higher mortality rates
during the early weeks after birth (191, 193–200). As in other
ruminants, camel newborns and adult camels differ significantly
regarding their leukogram pattern, phenotype and functionality
of blood leukocyte subpopulations (201). During their first
month of life, the leukogram pattern of newborn camel calves
is characterized by higher leukocyte numbers, higher numbers of
neutrophils, monocytes, and lymphocytes, but lower numbers of
eosinophils in comparison to adult camels (201). The reduced
numbers of eosinophils in newborn camel calves, which play a
major role in parasitic immunity (39), has been related to lower
parasitic manifestation in comparison to adults (202).

High neutrophil to lymphocyte ratio (NLR) has been linked
to impaired immune cell function and poor patient survival in
different inflammatory diseases (45–47). Camel calves are born
with a higher NLR (12.1 in average) than found in adults (5.1 in
average) (184). NLRs drop within two months after birth to adult
camel values. It was suggested that initially high calf NLRs reflect
the pro-inflammatory nature of newborn camel immune
responses and a shift towards mature and correctly polarized
immune responses takes place in the two-month period after
birth (184).

Similar to other artiodactyls such as sheep, cows and pigs,
with higher frequencies of blood gd T cells in younger animals, gd
T cells account for up to 35% of blood lymphocytes in newborn
and young camel calves (36, 70). This indicates that camels
belong to the gd-high species, in contrast to gd-low mammalian
species like humans and mice, where gd T cells represent only a
minor subpopulation (< 5%) of circulating lymphocytes (203).

Compared to adult camels, the fraction of B cells among
blood lymphoid cells of newborn camels is higher than in adults,
whereas the fraction of CD4+ T cells is lower than in adults
(200). The authors discussed a link between elevated numbers of
circulating leukocyte populations in camels and their lower
expression density of cell adhesion molecules (CD11a, CD11b,
CD18) compared to adult leukocytes (201).

Monocytes from newborn and adult camels showed different
expression patterns of the monocyte-related surface molecules,
CD172a, CD14, CD163 and MHCII (61) (Figure 4). Compared
to adult camels, newborns display higher numbers of cMo-I and
cMo-III, and less numbers of inflammatory cMo-II (61).

Camel calf leukocytes show functional properties that are
different from adult camel leukocytes. Flow cytometric analysis
of cell granularity and cell size, which are widely used as
indicators of the cell activation status (204, 205), revealed a
reduced activation potential of calf leukocytes in comparison to
adults (120). Phagocytotic activity of newborn neutrophils and
monocytes was found to be lower than in adults, with a lower
percentage of phagocytosis-positive cells and a reduced number
of bacteria ingested per cell (58).
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MUCOSAL IMMUNITY IN CAMELS

Mucosal body surfaces are equipped with specialized mucosa-
associated lymphoid tissue (MALT), which represent the first
Frontiers in Immunology | www.frontiersin.org 9
defense barrier of the body preventing infectious agents from
invading the internal body tissues (206). Therefore, the
characterization of mucosal immune mechanisms has essential
impact on the understanding of disease pathogenesis of and the
FIGURE 3 | Structure of camel immunoglobulin (Ig) G subclasses. Camel IgGs are currently classified into three structurally different isotypes: Camel IgG1 consists
of two identical heavy chains (H) each composed of three constant domains (CH1–CH3) and a single variable domain (VH). Each heavy chain is covalently bound to
identical light chains (L) with a constant (CL) and a variable domain (VL). Camel IgG2 and IgG3 are composed of only two identical heavy chains (long-hinge heavy
chain in IgG2 and short-hinge heavy chain in IgG3). Camel single-chain IgG subclasses are devoid of the first heavy chain constant region CH1.
FIGURE 4 | Phenotypic and functional properties of neutrophils (PMN), monocytes, and lymphocytes in blood of newborn camel calves. ROS, Reactive Oxygen
Species amount in unstimulated cells; NLR, Neutrophil to lymphocyte ratio; Eff, effector cells. The direction of the arrows indicates higher (up arrow) or lower (down
arrow) values for calves compared to adults.
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development of effective vaccines against mucosal infections,
including mastitis, metritis, respiratory infections, and
gastrointestinal infections. Several studies adressed anatomical
structures of the gastrointestinal MALT of Bactrian and dromedary
camels (207–211). Detailed and comparative aspects of immune
mechanisms on camel body surfaces are still unkonwn.

The intestine represents themain surface of interaction between
the immune system and the huge numbers of microorganisms,
which play a pivotal role in guiding the maturation of the mucosal
immune system and shaping systemic immunity (212, 213).
Morphological studies of the gastrointestinal tract of Bactrian
camels revealed a distinct structure and distribution of the MALT
in this species (209, 214). Distributed along the whole small
intestine, four distinct types of Peyer’s patches, including nodular,
faviform, cup-shaped, and cystic form Peyer’s patches, have been
identified in Bactrian camels (214). The nodular and cystic forms of
Peyer’s patches are unique to this species. The number of Peyer’s
patches in the small intestine of Bactrian camels increases with age
and peaks in 5-year-old camels followed by a subsequent decline
(214). Peyer’s patches in the large intestine of Bactrian camels are
mainly located on the surface of the entire ileocecal orifice, the
beginningof the cecum,and thefirst thirdof the colon.The ileocecal
orifice has been suggested as the main inductive site for mucosal
immune responses in the Bactrian camel large intestine (209). In
the dromedary camel, Peyer’s patches have cup-shaped structures
and are distributed in the anti-mesenteric side of the ileum (211).
They are not present in the jejunum or duodenum (215). Whether
the distinct morphology, structure, and distribution of the MALT
structures in camels are reflected by species-specific functional
differences of mucosal immune responses, is currently unknown.
Mucosal immunoglobulins contribute to the immune homeostasis
at the mucosal interface (216). The distribution of secretory IgA
(SIgA) and IgG-secreting cells (ISCs) in the lamina propria of the
small intestine of Bactrian camels suggests their significant
contribution to mucosal immunity in this species (210, 217).
Similar to the age-related changes in the number of PP in the
intestine of Bactrian camels, SIgA and IgG ISC numbers increase
with age with a peak at puberty (210, 217).

The Camel Immune Response to Middle
East Respiratory Syndrome Coronavirus
Middle East respiratory syndrome Coronavirus (MERS-CoV) is
an emerging zoonotic pathogen that causes the Middle East
Respiratory Syndrome (MERS) (11, 218–220). Dromedary
camels are considered the only confirmed animal host for
MERS-CoV and the source of zoonotic infection (221–228). In
humans, MERS-CoV infection is associated with either
hospitalization or death, while MERS-CoV-infected camels
show only mild and transient respiratory symptoms with no
need for veterinary care (15). It is unknown whether special host-
pathogen interaction mechanisms in camels contribute to the
higher resistance of this species to MERS.

The very high seroprevalence rates (74–100%) ofMERS-CoV in
camel populations in Africa and the Arabian Peninsula indicate
high infection and transmission rates of the virus in camels (16).
The dipeptidyl peptidase 4 (DPP4; CD26), a type II transmembrane
glycoprotein involved in cleavage of dipeptides and degradation of
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incretins (229), has been identified as a functional receptor for
the MERS-CoV (230–232). The differential expression of DPP4
in the respiratory tracts ofhumans andcamelshasbeen suggested as
the primary cause of limited MERS-CoV replication in the human
upper respiratory tract and hence restrict transmission between
humans. While DPP4 is only expressed in the human lower
respiratory tract epithelium, only the upper respiratory tract
epithelium of camels show DPP4 expression (233). Whether the
interaction ofMERS-CoVwith epithelial cells in the lower (human)
or upper respiratory tract (camel) results in the secretion of
location-specific mediators, which may differently modulate the
onset and resolution of subsequent innate and adaptive immune
mechanisms, is still an open question.

In opposite to humans, where DPP4 is mainly found on human
T lymphocytes rather than monocytes (234), dromedary camels
display the highest expression of DPP4 on blood monocytes (86,
120). This may indicate different roles for innate and adaptive
immune responses to MERS-CoV in the two species. This is also
supported by recent observations on MERS-CoV-infected human
individuals, where gradual increases in blood lymphocyte count
duringMERSprogressionwasobserved inall the survivors,whereas
the response indiseasedpatientswas characterizedby lymphopenia
and increased neutrophils and monocytes counts (235).

One of the potential control strategies of MERS-CoV relies on
reducing virus transmission from animals to humans through
vaccination of camels (223, 236, 237). The development of
protective MERS-CoV vaccines for dromedary camels, however,
requires an in depth understanding of local immune mechanisms
in the respiratory tract in camels and the identification of
correlates of protection against the virus. In MERS patients, the
development of neutralizing antibodies was not sufficient for an
effective clearance of the virus (238). The association between the
recovery from MERS and the generation of both antibody and T-
cell responses (221, 239) indicates key roles for cell-mediated
immune mechanisms against the virus. However, the analysis of
immune responses of camels to MERS-CoV infection was limited
to the investigation of virus-specific antibodies (179). Studies on
cell-mediated immune responses are still lacking. The
characterization of camel NK and cytotoxic T cells and their role
in anti-viral immunity in the context of infection with MERS-CoV
is one of the promising lines of research. MERS-CoV naturally
infected camels are currently discussed as a challenge model in
vaccine efficacy studies (16). The characterization of mucosal
immune mechanisms in the camel respiratory tract, including
detailed phenotypic and functional analyses of immune cells in
bronchoalveolar lavages and lung parenchymas of MERS-CoV-
infected and recovered camels would be a prerequisite for the
elucidation of MERS-CoV pathogenesis in these animals.
CONCLUSIONS

The camel represents a multipurpose domestic animal used for
meat and milk production, racing, and transportation. Different
components of the cellular immune systemof the dromedary camel
show several species-specific phenotypic and functional properties.
In contrast to other domestic species, the camel leukogram is
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dominated by the neutrophil fraction resulting in a higher
neutrophil to lymphocyte ratio. Camel monocytes are classified
into three phenotypically and functionally different subsets based
on the expression of the surface molecules CD14 and MHCII
with many similarities with the bovine monocyte classification
system. Camels belong to the gd T cell-high species with
especially high percentages of gd T cells in newborn and young
animals. Circulating camel newborn immune cells contain lower
numbers of inflammatorymonocytes, showa reduced expressionof
cell adhesion molecules on all leukocytes, and a reduced
antimicrobial functionality of monocytes and neutrophils.

Despite the progress achieved in the field of camel immunology,
there are still many gaps towards a more profound understanding
of the camel immune system. Open questions cover the innate
recognition mechanisms, the functional characterization of
macrophages and dendritic cells, and their signals responsible for T
cell activation and polarization toward distinct functional subtypes
such as type-1, type-2, or type-17 cells. The characterization of camel
Frontiers in Immunology | www.frontiersin.org 11
NK and cytotoxic T cells and their role in anti-viral immunity,
especially in the context of infection with the zoonotic pathogen
MERS-CoV is still in its infancy. Promising lines of research would
also include host-pathogen interactions on camel mucosal body
surfaces such as the respiratory tract, the mammary gland, the
uterus, and the intestine.

A deeper characterization of camel infection immunity would
help to identify protection-relevant immune mechanisms,
essential for the design of effective vaccines, the identification
of disease biomarkers, and the selection of animals with higher
disease resistance.
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