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Circular RNAs (circRNAs) are covalently closed RNA molecules in eukaryotes with
features of high stability, tissue-specific and cell-specific expression. According to their
biogenesis, circRNAs are mainly classified into five types, i.e. exonic circRNAs (EciRNAs),
exon-intron circRNAs (EIciRNAs), intronic RNAs (CiRNAs), fusion circRNAs (f-circRNAs),
and read-through circRNAs (rt-circRNAs). CircRNAs have been emerging as important
non-coding regulatory RNAs in a variety of human cancers. CircRNA4s were revealed to
exert regulatory function through multiple mechanisms, such as sponges/decoys of
miRNAs and proteins, enhancers of protein functions, protein scaffolds, protein
recruitment, or protein translation templates. Furthermore, some circRNAs are
intensively associated with immune cells in tumor immune microenvironment (TIME),
e.g. circARSP91 and natural killer cells. Through regulating immune checkpoint genes,
circRNAs are demonstrated to modulate the immune checkpoint blockade
immunotherapy, e.g. circCPA4 could up-regulate PD-L1 expression. In summary, we
reviewed the molecular features of circRNAs and mechanisms how they exert functions.
We further summarized functional implications of circRNA regulations in tumor
immunology and immunotherapy. Further understanding of the regulatory roles of
circRNAs in tumor immunology and immunotherapy will benefit tumor treatment.
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INTRODUCTION

Circular RNAs (circRNAs) are single-stranded circularized RNA
molecules produced from back-splicing. Accumulating evidence
has shown that circRNA dysregulations are involved in a variety
of human disorders, including viral infection (1), cardiac fibrosis
(2), diabetes (3), and cancer (4). Advances in high-throughput
sequencing technologies and computational algorithms have
driven the systematic detection and investigation of circRNAs.
Through diverse mechanisms, circRNAs have shown important
roles in tumor immunology and immunotherapy. In this review,
we summarized the molecular characteristics of circRNAs and
how they exert functions through various mechanisms. We
further reviewed and discussed the prospective of circRNAs
utilities in tumor immunology and immunotherapy.
THE REGULATORY ROLES OF CIRCRNAS
IN HUMAN CANCERS

Molecular Properties of circRNAs
Circular RNAs (circRNAs) are single-stranded covalently closed
RNAmolecules, which are generated by “back-splicing” where the
spliceosome joins the 3’ end of an exon with an upstream 5’ end of
the same or different exons (5). Briefly, the length of circRNAs can
be ranging from hundreds of nucleotides to more than 1,000
nucleotides dependent on their host genes. They are highly stable
in general due to their covalently closed ring structure. While the
turnover of circRNAs are still in investigation, one report
indicated that circRNAs with N6-methyladenosine (m6A)
modification could be cleaved by the ribonuclease P (RNase P)
multi-drug resistance-associated protein 1 (MRP) complex in a
way that dependent on YTH domain-containing family protein 2
(YTHDF2) and heart-responsive protein 12 (HRSP12) (6). In
another report, CDR1AS could be cleaved by protein argonaute 2
(AGO2) which plays an important role in RNA interference (7). It
was initially considered as byproducts generated from aberrant
splicing events (8–11). In recent years, the rapid development of
high-throughput RNA sequencing (RNA-seq) and bioinformatics
methods has promoted the extensive identification of circRNAs in
eukaryotes (12–16). CircRNAs are characterized by high stability,
widespread expression in diverse species, and high specificity
among different species.

CircRNA Classification
Most circRNAs are generated from protein-coding genes, which
are processed in the exon skipping during pre-messenger RNA
(pre-mRNA) transcription to form a lariat structure containing
single or multiple exons. This is called exonic circRNAs
(EciRNAs) (17–19). Some circRNAs contain both exonic and
intronic sequences that are derived from internal intron
retention, which are called exon-intron circRNAs (EIciRNAs)
(20). Circular intronic RNAs (CiRNAs) are generated from
intronic lariats that are kept during canonical splicing process
(21). In addition, circRNAs can also be produced from exon joint
of different genes located in different or the same chromosomes,
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which are called fusion circRNAs (f-circRNAs) (22) and read-
through circRNAs (rt-circRNAs) (4), respectively.

CircRNA Biogenesis
CircRNAs are generated from canonical splice sites from back-
splicing, which is partly dependent on the canonical splicing
machinery (14, 23) and have been shown to compete with linear
RNAs (24). The biogenesis of most circRNAs is affected by cis-
acting elements and trans-acting factors (17). In general, circRNAs
are produced from looping intron sequences flanking the
downstream splice-donor site and upstream splice-acceptor site.
This process could be mediated by base pairing between inverted
repeat elements or RNA-binding proteins (RBPs), such as QKI
and FUS (25, 26). Additionally, during the process of exon
skipping, some of excised lariats could undergo internal back-
splicing, which would lead to circRNA formation (27). CiRNAs
could also be produced from intronic lariats that escape from
debranching (21). Other factors influencing circRNA biogenesis
include epigenetic changes, such as histonemodification and DNA
methylation status variations within gene bodies (28, 29).
The Functional Mechanisms of circRNA
Regulation in Human Cancers
Accumulating studies have shown that perturbations of circRNAs
is prevalent in human cancers (4, 30), including thyroid cancer
(31), ovarian cancer (32), and gastrointestinal cancers (33).
Recently, a global analysis of circRNA landscape using clinical
tumor samples (>2,000) was performed across more than 40
cancer types (4). Notably, this study identified over 160,000
circRNAs that showed expression in at least one cancer type.
Another recent study, specifically in localized prostate cancer,
identified 76,311 circRNAs through analyzing RNA-seq data
derived from prostate tumor specimens (34). Furthermore, they
also found a variety of circRNAs were functionally dysregulated in
cancer. In particular, Chen et al. identified 171 circRNAs that were
essential to prostate cancer cell proliferation. Collectively, these
studies demonstrated the high prevalence of circRNA expression
and their perturbations in cancers.

CircRNAs can exert their regulatory roles in cancer via
different ways (17, 35) (Figure 1), i.e. protein sponges/decoys
(Figure 1B) (23), protein recruitment (Figure 1C) (36), and
templates for translation (Figure 1D) (37), miRNA sponges/
decoys (Figure 1E) (38), protein scaffolding (39), and enhancer
of protein function (Figure 1F) (20).
CircRNAs as miRNA Sponges
Many circRNAs were found to act as miRNAs sponges, which
sequester miRNAs via complementary RNA base-pairing and
thus prevent miRNAs from binding their target. For example,
circTP63, a cell cycle related circRNA, is up-regulated in lung
squamous cell carcinoma (LUSC) tissues and its up-regulation is
correlated with larger tumor size and higher TNM stage in LUSC
patients. Mechanically, circTP63 competitively binds to miR-
873-3p and prevents miR-873-3p to decrease the level of
FOXM1, which up-regulates CENPA and CENPB, and finally
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facilitates cell cycle progression (40). In colorectal cancer (CRC),
circHIPK3 acts as the sponge of miR-7, which is a well-known
tumor suppressor, to promote colorectal cancer growth and
metastasis (41). In breast cancer, circFBXW7 acts as the
sponge of miR-197-3p, which induces c-Myc degradation by
up-regulating FBXW7 expression, to inhibit the malignant
progression of triple-negative breast cancer (42). In bladder
cancer, circ-ACVR2A could directly interact with miR-626 and
acts as a miRNA sponge to regulate EYA4 expression, thus
inhibiting bladder cancer cell proliferation and metastasis (43).
Frontiers in Immunology | www.frontiersin.org 3
CircRNAs as Protein Decoys
CircRNAs that harbor RNA binding protein (RBP) binding
motifs may serve as sponges/decoys of the corresponding
proteins and regulate their functions. For example,
Abdelmohsen et al. identified circPABPN1 in human cervical
carcinoma HeLa cells, which suppressed the translation of
nuclear poly(A) binding protein 1 (PABPN1) mRNA through
sequestering the RBP Hu-antigen R (HUR) (44). By binding
prescadillo homologue 1 (PES1, an essential 60S pre-ribosomal
assembly factor), circANRIL was found to impair pre-rRNA
A

B D

C

E F

FIGURE 1 | Multiple regulatory mechanism of circRNAs. (A) The biogenesis of circRNAs mainly involves the complex of PolII, RBPs and other factors. (B) CircRNAs
that harbor RNA binding protein (RBP) binding motifs may serve as sponges/decoys of the corresponding proteins and regulate their functions. (C) CircRNAs may
also recruit specific proteins to certain loci or subcellular compartments. (D) Some circRNAs harbor internal ribosome entry site elements and AUG sites, which
enables circRNAs to be translated to unique peptides under certain circumstances. (E) Many circRNAs were found to act as miRNAs sponges, which sequester
miRNAs via complementary RNA base-pairing and thus prevent miRNAs from binding their target. (F) Some circRNAs have been shown to facilitate the
colocalization of enzymes and their substrates through acting as protein scaffolds. CircRNAs may also enhance the function of particular proteins through circRNA-
protein interactions.
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processing and ribosome biogenesis, which further led to
nucleolar stress and p53 activation (45). YAP (yes-associated
protein), a key component of Hippo pathway which plays crucial
roles in tumorigenesis, can inhibit apoptosis and promote
proliferation and metastasis of cancer cells. Wu et al. showed
that circYAP could bind with YAP mRNA and translation-
associated protein eIF4G and PABP to negatively regulate the
expression of YAP. Moreover, the malignant phenotypes can be
reversed by the ectopic expression of circYAP, which is similar to
silencing endogenous Yap (46).

CircRNAs Enhancing Protein Functions
CircRNAs may also enhance the function of particular proteins
through circRNA-protein interactions. Sun et al. demonstrated
that circMYBL2, generated from the cell cycle check point gene
MYLB2, could promote the proliferation of FLT3-ITD+ cells in
vitro and in vivo through enhancing the translational efficiency of
FLT3 kinase via increasing the binding of polypyrimidine tract-
binding protein 1 (PTBP1) to FLT3 messenger RNA (47). In
addition, circEIF3J and circPAIP2 were demonstrated to be able
to positively regulate the expression their parental genes through
enhancing the function of transcription factors (20). Both
circEIF3J and circPAIP2 were EIciRNAs residing in the
nucleus, they could promote RNA polymerase II (Poll II)-
mediated transcription by interacting with the U1 small
nuclear ribonuleoprotein (snRNP)

CircRNAs as Protein Scaffolds or Recruitment
Some circRNAs have been shown to facilitate the colocalization
of enzymes and their substrates through acting as protein
scaffolds. Circ-Foxo3 physically binds to mouse double-minute
2 (MDM2) and mutant p53 through acting as protein scaffolds
(48). Circ-Foxo3 was further demonstrated to facilitate MDM2-
mdiated ubiquitylation of mutant p53, leading to proteasome-
mediated degradation. CircRNAs may also recruit specific
proteins to certain loci or subcellular compartments. For
instance, Chen et al. found that circ-FECR1 could induce
demethylation of CpG sites and promote transcription of FLI1
through recruiting TET1 to the promoter region of FLI1 (36).

CircRNAs Translating Into Peptides
Some circRNAs harbor internal ribosome entry site elements and
AUG sites, which enables circRNAs to be translated to unique
peptides under certain circumstances. Zhao et al. suggested that
circE7, generated by oncogenic human papillomaviruses
(HPVs), can be translated to produce E7 oncoprotein which is
biologically functional and linked to the transforming properties
of some HPV (49). Zhang et al. suggested that an 87-animo-acid
peptide, encoded by circular form of the long intergenic non-
protein-encoding RNA p53-induced transcript (LINC-PINT),
directly interact with polymerase associated factor complex
(PAF1c) and inhibited the transcriptional elongation of multiple
oncogenes to suppresses glioblastoma cell proliferation in vitro
and in vivo (50). Liang et al. showed that a novel 370-amino acid
b-catenin isoform encoded by circRNA circb-catenin could
stabilize full-length b-catenin by antagonizing GSK3b-induced
b-catenin phosphorylation and degradation, leading to
Frontiers in Immunology | www.frontiersin.org 4
activation of Wnt pathway, thus promoting liver cancer cell
growth (51).

Interactions Between circRNAs and m6A
Modification
N6-methyladenosine (m6A), which has been discovered in the
early 1970s, and whose predominant accumulations around stop
codons and 3’ untranslated regions (3’ UTRs) of mRNA with a
typical consensus sequence RRACH (R = G or A and H = A, C,
or U) have been reported (52–57), is one of the most common
RNA modifications. Accumulating studies show that m6A play
crucial roles in many different aspects including circadian
rhythm, gene expression, cell differentiation, stress response,
tumorigenesis, development, and inflammatory response (54,
58–63). Recently, Zhou et al. defined thousands of m6A
circRNAs that showed cell-type-specific expression patterns
(64). These circRNAs interact with m6A reader proteins
YTHDF1 and YTHDF2, and m6A writer protein METTL3.
Besides, Chen et al. also presented that the m6A reader
YTHDC1 increase the cytoplasmic export of circRNA NOP2/
Sun RNA methyltransferase 2 (circNSUN2), forming a
circNSUN2-IGF2BP2-HMGA2 RNA-protein ternary complex
in the cytoplasm contributing the stabilization of HMGA2
mRNA and the enhancement of colorectal liver metastasis
(65). In addition, m6A writer protein METTL3 was reported to
impact m6A modification of circZNF609, and the m6A reader
proteins YTHDF1 was reported to regulate the backsplicing of
circZNF609, suggesting the role of m6A in the biogenesis of
circZNF609 (66). Besides, the translation of circRNAs was
affected by m6A methylation (64), and the m6A modification
on circRNAs can be recognized by mammalian cells to inhibit
innate immunity by abrogating immune gene activation (67). All
these studies expand our knowledge on the complex interactions
between m6A modification and circRNAs.

In conclusion, circRNAs are prevalently expressed in human
cancers and can exert its regulatory roles by acting as sponges/decoys
for miRNAs and proteins, enhancing protein functions, protein
scaffolds, recruiting proteins, or protein translation templates.
TUMOR IMMUNOLOGY
AND IMMUNOTHERAPY

Immune System in Human Cancers
The first indication of the immune system involvement in cancer
was discovering the links between inflammation and cancer in
1863 (68). Endeavors have focused on how the immune system
can be able to recognize and ultimately destroy cancer, which is
made up of tumor and “self” cells. Cancer cells can express two
types of tumor antigens: tumor-specific antigen (TSAs) and
tumor-associated antigens (TAAs). TSAs are highly tumor-
specific and are expressed only in tumor cells, while TAAs are
more widely expressed in both tumor and normal cells (69). The
immune system can respond to cancer cells in two ways, i.e.
against TSAs or against TAAs. In immunosurveillance
hypothesis, immune system recognizes malignant tumor cells
February 2021 | Volume 11 | Article 617583
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as foreign agents and eliminates them (70). However, in the past
decades, scientists found that cancer could actively deploy various
tactics, which collectively termed “immune evasion mechanisms”
and continuously develop diversity and complexity in late-stage, to
delay, alter, or even stop anti-tumor immunity.

Interference on tumor immunology to intensify the immune
response to eliminate tumor cells has provide novel insights on
tumor therapy, i.e. immunotherapy, which includes immune
checkpoint blockade (ICB) therapy, CAR T cell adoptive
therapy, cancer vaccines, and oncolytic virus therapy.

Immune Checkpoint Blockade Therapy
Tumor cells can overexpress some specific molecules such as PD-
L1 and CTLA-4 to silence the immune response and these
molecules are collectively termed as “immune checkpoints.”
Programmed cell death (PD) pathway is the first and most
characterized “immune checkpoints.” PD-1, a co-inhibitory
receptor, is highly expressed on activated T cells, B
lymphocytes, natural killer cells, and MDSCs. PD-1 expression
can be induced by TCR-antigen engagement and common g-
chain cytokines like interleukin (IL)-2, IL-7, IL-15, and IL-21 in
the effector phase of the immune response (71). PD-L1 and PD-
L2 are two known ligands of PD-1 and their expression on
healthy tissues are relatively low (72). Effector T cell exhausted
and could be triggered apoptosis upon engaging with PD-L1
(73). Multiple cancers including melanoma, non-small cell lung
cancer (NSCLC), breast cancer, and squamous cell head and
neck cancer has been documented with up-regulated expression
of PD-L1 (74–76). Therapeutic monoclonal antibodies directly
against PD-1 and PD-L1, with avelumab for PD-L1 and
nivolumab for PD-1, respectively, have been proven effective
for treating multiple solid tumors. CTLA-4, mainly expressed on
T cells, acts as a negative regulatory receptor of T cells. Upon the
TCR engaging with antigens, the expression of CTLA-4 rapidly
up-regulates. CTLA-4 can compete with CD28, a key co-
stimulatory receptor on T cells, for the binding of the same
ligands, CD80 and CD86. And CTLA-4 has a higher affinity than
CD28 for both ligands, resulting in interference with the immune
synapse and T-cell inactivation. Therapeutic anti-CTLA-4
monoclonal antibodies, such as ipilimumab, have achieved
promising clinical outcomes in advanced melanoma. Although
ICB are considered as a revolution of cancer treatment, many
patients including microsatellite stable colorectal cancer (CRC),
ovarian cancer, prostate cancer, and pancreatic ductal
adenocarcinoma (PDA) rarely exhibit objective responses to
ICB (77). There must be other mechanisms leveraged by
tumor cells to suppress the immune response.

Chimeric Antigen Receptor T Cell
Adoptive Therapy
Chimeric antigen receptor T (CAR T) technique was first reported
to transduce T cells with chimeric genes encoding single-chain
antibodies that are linked to a transmembrane region and an
intracellular domain encoding the signaling adaptor for the T cell
receptor (78). CAR T cells could recognize tumor antigens
Frontiers in Immunology | www.frontiersin.org 5
independent of MHC presentation. By adopting CAR T
technology, CAR T therapeutics genetically modified autologous
T cells isolated from patients to express the CAR construct. After
expansion, patient-derived genetically modified T cells were
returned to patients to kill malignant cells. CAR T
immunotherapy was demonstrated to redirect T cell killing to
cells that express the antibody’s cognate antigen (79–81).
Currently, the major targets of CAR T therapy is CD19, the B cell
costimulatory receptor widely expressing on B cell leukemias and
lymphomas (80, 82), showing highly therapeutic effects even in
otherwise refractory diseases and can induce durable remissions (79,
83). Despite of impressive clinical outcomes in treating tumor
patients, especially for those with lymphoma, CAR T therapy still
have many problems, particularly for solid tumors (84). As CAR T
therapy is based on direct recognition of tumor cells expressing
CD19, deletion of the CAR-binding epitope frequently induces
disease relapse (85). Beyond CD19, next-generation CAR T therapy
will include novel targets such as CD22, which is a B cell regulatory
receptor expressed by many B cell malignancies (83, 86). CD70 is
also considered as a novel CAR T therapy target (87, 88).

Cancer Vaccines
Efforts of cancer vaccines have been made to promote cancer-
specific immune response, which generate antitumor immunity,
especially cytotoxic CD8+ T cells that are specific to tumor
antigens. Administration of tumor antigens (e.g. overexpressed
antigens, cancer-testis antigens, oncofetal antigens, and mutated
antigens) with antigen-presenting cells (APC, e.g. DCs, B cells,
and monocytes) shows therapeutic promise (83, 89–91). Current
cancer vaccination includes four major types, i.e. peptide-based
vaccines, APC-based vaccines, tumor-based vaccines, and virus-
based vaccines. The most commonly used cancer vaccine is the
MHC class I restricted peptide epitopes that are from shared TAAs
aiming to activate rare specific CD8+ T cells, which has shown
substantial therapeutic effects (92–94). Peptide vaccines with
adjuvant formulation, such as cytokines and toll-like receptor
(TLR) ligands, showed significant clinical benefits (94–96).
Multiple peptides can be given at the same time (97, 98) and
combinations of multi-peptide vaccines and chemotherapy also
indicated benefits (99). Among various types of APCs (e.g.
peripheral blood mononuclear cells, activated B cells and
dendritic cells), the heterogeneous populations of dendritic cells
could efficiently process and present antigens to CD4+ and CD8+
T cells. Application of dendritic cells vaccines offered clinical
efficiency (100–102). Tumor cells from killed mice could be used
to immunize other mice by expressing immune stimulatory
cytokines (e.g. GM-CSF) (103, 104). These findings offered the
possibility of tumor cell- based immunotherapy. Tests using
allogeneic cell lines or autologous tumor cells exhibited
capability to activate immunity killing tumor cells (105, 106).
Although huge endeavors have been made in cancer vaccinations,
the effects of cancer vaccines are limited due to the difficulty in
target antigens selection and immunosuppression from tumor
microenvironment. Improvements in antigen choice and vaccine
design will obtain better clinical outcomes.
February 2021 | Volume 11 | Article 617583

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Fang et al. CircRNAs Regulating Tumor Immunology
Oncolytic Virus Therapy
In the context of presenting tumor antigens, pathogens
involvement can largely increase immune stimulation of tumor
patients. Oncolytic viruses selectively replicate in tumor cells and
kill them without harming normal cells, which can be genetically
engineered or naturally occur (107). The most widely known
virus vaccines for cancer are the human papillomavirus vaccines
that are designed to prevent human papillomavirus (HPV)
mediated cervical cancers. The oncolytic viruses have been
used for decades, including adenoviruses, vaccinia viruses, and
herpesviruses (91). Adenoviruses drive the transactivator early
genes E1a and E1b and viral replication from tumor specific
promoters. Taking advantage of natural infectivity, adenoviruses
have been used to directly immunize with tumor antigens, where
they are injected into muscle tissue as vectors (108, 109). The
therapeutic efficacy of vaccinia viruses can be improved by
genetically engineering with chemokine genes or combinations
with costimulation (110). Oncolytic virus therapy has shown
promising therapeutic values, but needs further exploration.

In conclusion, tumor immunology advances our understanding
of the development of malignant tumor cells and their interactions
with host, and immunotherapy has achieved great efforts in some
malignant cancers. But tumor are a highly heterogeneous disease
and tumor micro-environment are also complicated in different
cancers. In the future, we should get more insights into complicated
interplay between immune cells and tumor microenvironment,
which will develop strategies to break the tumor evasion
from immunosurveillance.
CIRCRNAS AND TUMOR IMMUNE
MICROENVIRONMENT

Tumor Immune Microenvironment
Studies over several years has demonstrated that tumor cells
could evade immune surveillance by establishing an immune-
privileged microenvironment, which is functionally analogous to
that of certain normal tissue (111, 112). Tumor immune
microenvironment (TIME) is composed of various cell types
except cancer cells, including tumor-associated macrophages,
myeloid-derived suppressor cells (MDSCs), dendritic cells,
cancer-associated fibroblasts cells, NK cells, tumor-associated
neutrophils, and tumor-infiltrating lymphocytes. Over the past
years scientists has realized that tumor cells could turn these cells
to favor their progression and contribute to the immune escape.
Firstly, accumulating evidences suggested that the vessels of
TIME could control the extravasation of effector T cells from
the circulatory system into tumors. Upon activated by the
antigen present cells, the effector T cells traffic to the tumor via
the circulatory system. For example, the apoptosis inducer Fas
ligand (FAS-L) is highly expressed in the tumor vasculature of
multiple tumor types including ovarian, colon, prostate, breast,
bladder, and renal cancer, which substantially reduces the
number of CD8+T cell infiltration into tumors. Accordingly,
inhibition of Fas-L in preclinical models resulted in a significant
increase of effector T cells in tumors and led to T cell dependent
tumor suppression (113). Secondly, dendritic cells and MDSCs
Frontiers in Immunology | www.frontiersin.org 6
within the TIME can inhibit the immune response within the
tumor via multiple mechanisms. After extravasation of cancer-
specific T cells into tumor, it must locally replicate to further
increase their numbers to kill the tumor cells effectively and also
overcome barriers that restrict their distribution and the hostile
elements of the TIME. MDSCs, key components of TIME, are
broadly defined as myeloid cells and are different from mature
myeloid cells (i.e. macrophages, DCs, neutrophils), which are
terminally differentiated. MDSCs are consisted of myeloid
progenitors, immature mononuclear cells (M-MDSCs), which
are morphologically and phenotypically similar to monocytes,
and immature polymorphonuclear (PMN-MDSCs), which are
morphologically and phenotypically similar to neutrophils. M-
MDSCs and PMN-MDSCs utilize different mechanisms to
inhibit tumor immune response. M-MDSCs primarily utilize
mechanisms associated with production of NO and cytokines to
suppress both antigen-specific and nonspecific T cell response
and have stronger suppressive activity than PMN-MDSCs (114).
Other studies indicated that MDSCs and tumor-associated
macrophage cells (TAMs) could also produce arginase-1,
inducible nitric oxide synthase (iNOS) and reactive oxygen
species (ROS) to suppress the proliferation of T cells within
the tumor. Arginase-1 produced by MDSCs and TAMs within
the TIME converts L-arginine, essential for the proliferation of T
cells, to urea and L-ornithine, exhausting the pool of L-arginine
within the TIME and thus impairing the proliferation of T cells.
And MDSC-derived iNOS converts L-arginine to citrulline and
NO, which suppresses T cell function by inhibiting JAK/STAT
signaling, reducing MHC class II expression and inducing T cell
apoptosis. While ROS and NO produced by MDSCs and TAMs
result in nitration of the T cell receptor, which impairs the
recognition of peptide antigens presented by MHC. Additionally,
MDSCs can directly inhibit T cell response in a contact-
dependent manner via membrane-bound TGF-b (115, 116).
Furthermore, cancer associated-fibroblasts (CAFs) can prevent
the effector T cells from accumulating in the vicinity of cancer
cells within the TIME. Cancer-associated fibroblasts can leverage
two methods to mediate this restriction. For the one hand, CAFs
can produce extracellular matrix to exclude effector T cell. And
studies found increased T cells movement out of the stromal
regions and into contact with cancer cells when collagenase was
added to reduce matrix rigidity. CAFs can also produce CXCL12
and IL-6 to exclude the effector T cells. Accordingly, administering
an inhibitor of CXCR4, the receptor for CXCL12, to the PDA-
bearing mice led to the rapid accumulation of effector T cells
within the tumor and blockage IL-6 could improve T-cell
trafficking, migration and tumor immunosuppression (117).

The Relation Between circRNAs
and Tumor Immune Microenvironment
Emerging studies showed that circRNAs played an important
role in key components of tumor immune microenvironment
(89, 118). Here we briefly review the interactions between key
components of tumor immune microenvironment and
circRNAs. One study suggested that circSLC8A1, derived from
the SLC8A1 gene, could act as a sponge of miR-494, which is
crucial for migration of MDSCs into tumor site and regulation of
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the production of ARG1 and iNOS, thus enhancing the tumor
immune response. This evidence indicated that circRNAs could
serve as potential targets by modulating the MDSC-mediated
immune response. Natural killer cells (NK cells) play an
important role in tumor immune surveillance, which possesses
the ability to direct against tumor and infected cells without
stimulation like B or T lymphocytes. They simultaneously
express activating and inhibitory receptors that encounter
target cells by the subtle balance of transmitted signals for
activation or inhibition. NK cells primarily leveraged two
tactics to against tumors. One is that NK cell can express
apoptotic ligands such as TNF-related apoptosis-inducing
ligand (TRAIL) and tumor necrosis factor (TNF) family
members Fas-L and then interact with their related receptor on
tumor cells which inducing the apoptosis of tumor cells. The other
is that NK cell secrete perforin and granzyme to direct lyse tumor
cells. In addition to direct against tumors, NK cells can exert
“helper role” to against tumor cells. It was reported that NK cells
could contribute to the accumulation of T-bet+ CD4+ T cells in the
tumor site, promote the production of TNF-aand IFN-g by tumor
infiltrating CD8+T cells, suppress the expression of exhaustion
marker PD-1 on these CD8+ T cells and promote the induction of
tumor-specific T cell memory in the mouse model. Dysfunction of
NK cells has been documented over the several years in TIME
(119–122). And some studies suggested that circRNAs can
enhance or attenuate the function of NK cells. Ma et al. showed
that overexpression of circARSP91 (circRNA of AR-suppressed
PABPC1 91bp) could enhance cytotoxicity of NK cells to HCC
cells via up-regulating UL16 binding protein 1 (ULBP1)
expression in HCC cells at the mRNA and protein levels (123).
Interestingly, in the another study, Zhang et al. demonstrated that
HCCs could secrete circUHRF1 in exosomal manner to inhibit
NK cells-derived IFN-g and TNF-a secretion by up-regulating the
expression of TIM-3 via degradation of miR-449c-5p.
Additionally, circUHRF1 could mediate the resistance to anti-
PD1 immunotherapy in HCC patients (124). Macrophages, key
components of innate immunity, mainly derived from
embryonically and seeded in tissues, serve as the first-line
defense against pathogens and antigen-presenting cells for
cellular immunity (125). Macrophages can be divided into M1
and M2 macrophages based their catabolism of L-arginine. The
M1 macrophages has a function of eliciting inflammation, while
the M2 macrophages show anti-inflammatory effect. This concept
may explain the heterogeneity of macrophages. M2 phenotype
macrophages, primarily derived from circulating bone marrow
monocytes, is induced by soluble factors secreted by cancer stem
cells (CSCs) (126, 127). Studies over human tumor samples have
indicated that a high number of macrophages, especially M2
macrophages, is closely related to worse clinical prognosis in
numerous malignant cancers (128). Accumulating evidence
suggested that tumor-associated macrophages could inhibit
cytotoxic T cell response by the following mechanisms:
depletion of essential metabolite required for T cell proliferation,
inhibition of T cell functions via producing anti-inflammatory
cytokines and activation of T cell checkpoint blockade via
inhibitory receptors. One study indicated that the expression
Frontiers in Immunology | www.frontiersin.org 7
levels of circRNA-003780, circRNA-010056, and circRNA-
010231 were high in M1 cells, while the expression levels of
circRNA-003424, circRNA-013630, circRNA-001489, and
circRNA-018127 were five times than those of M1 macrophage.
Different expression levels of specific circRNAs in different
polarization state of macrophages suggested that circRNAs may
play an important role in the polarization of macrophages (129).
Additionally, another study demonstrated that high expression
level of circ-CDR1as was correlated with higher ratio of M2
macrophage, suggesting circ-CDR1as may be involved in the
polarization of macrophages in TIME (130). Tumor infiltrating
lymphocytes, considered as selected population of T-cell with a
higher specific immunological reactivity against tumor cells than
the non-infiltrating lymphocytes, are mainly composed of
CD3+CD4+T cells and CD3+CD8+T cells. Multiple studies have
showed that higher proportion of tumor infiltrating lymphocytes
(TILs) predicted a better prognostics (131). It was reported that
HCC patients with higher percentage of TILs displayed better
clinical outcomes, suggesting the prognostic value of TILs for
HCC patients. In addition, Weng et al., performed global circRNA
microarray between plasma of HCC patients with high TILs and
low TILs. The results suggested HCC patients with high TILs had
lower expression of hsa_circ_0064428 and was negatively
correlated with overall survival, tumor size and metastasis. It can
be concluded that hsa_circ_0064428 functioned as a novel
immune-associated prognostic biomarker for HCC patients (132).

In conclusion, reprogrammed TIME provides a “shield” for
tumor cell and contributes immune therapy resistance. CircRNAs
play an important role in tumor progression. Aberrant functions
in the TIME caused by circRNAs can be valuable new targets to
treat cancer or become novel biomarkers for immunotherapy.
CIRCRNAS AND IMMUNOTHERAPY

Cancer immunotherapy have achieved therapeutic advances in
recent years and was named as 2013’s breakthrough of the year
by Science. It highlights the importance of human immune
system in treating cancer. Immune checkpoint inhibitors, using
therapeutic antibodies including anti-CTLA4 and anti-PD1/L1
mAb, to unleash cytotoxic T cells in tumor microenvironment,
has achieved great success in clinical practices. Accumulating
studies suggested that B7-H1/PD-1 interaction was the major
ways used by tumor cells to suppress immune response in both
preclinical and clinical settings (133, 134). Anti-PD1 therapy
have achieved higher objective response rates in patients and
with much fewer immune-related adverse events (irAEs), which
is the most characterized feature of this approach. It is effective in
more than 25 different types of solid tumor and has favorable
response-to-toxicity profile, with a 40% objective tumor response
rate and a 7–12% grade 3–5 irAEs immune across multiple
tumor types (135). Although anti-PD1 therapy has achieved
great clinical success in most solid cancers, a considerable
portion of patients did not benefit from anti-PD1 therapy. The
reason is that the tumor microenvironment of different cancers
of different patients are heterogeneous (136). For a successful
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immune-mediated elimination, it requires substantial leukocytes
to infiltrate into tumor tissue and recognize the malignant cells.
However, there exists significant difference across numerous
tumors. For example, it was reported that effector T cells
infiltrated in melanoma and breast cancer, but rarely infiltrated
in pancreatic ductal adenocarcinoma. So pancreatic ductal
adenocarcinoma did not response to anti-PD1 therapy.
Clinically, cancer patients are broadly classified into three
categories based on the level of tumor infiltrating leukocytes
and B7-H1 expression level: (1) Types I and IV: There is lack of
significant TILs in the TIME. (2) Types II: There exist many TILs
in the TME and these TILs were over-regulated due to the effect
of the B7-H1/PD-1 pathway. (3) Type III: there are many TILs in
the TIME which are dysfunctional due to suppression by other
molecular pathways (non-B7-H1/PD-1). Only patients classified
as Types II can benefit from the anti-PD1 therapy (135). Thus
understanding the dominant immune defects in TIME of
patients is critical for cancer immunotherapy. And immune
defects induced by tumor cells are highly heterogeneous (136).
With the rapid development of cancer immunotherapy, there are
many novel immune checkpoints including LAG3 (CD233), TIM,
TIGIT (T cell immunoglobulin and ITIM domain), VISTA, B7-H3,
BTLA, and siglec-15 emerging (137). And inhibitors targeting these
checkpoints are on clinical trials. Interestingly, a study indicated that
when the mice treated with anti-PD-1 mAb, the level of LAG-3 and
CTLA-4 increased and treated with anti-LAG-3 mAb, the level of
PD-1 were up-regulated. This suggested that blockade of a single
immune checkpoint targets may led to the compensatory up-
regulation of other checkpoint receptors in TME (138). This
compensatory mechanism of immune checkpoints may be
another mechanism of anti-PD1 therapy resistance in patients
and also indicated that there existed common compensatory
mechanism across different types of cancers. CircRNAs, as novel
non-coding RNAs in the past few years, have been implicated in
multiple physiological and pathophysiological conditions. And they
can also play a regulatory role of immune checkpoints and have the
potential to serve as a predictive biomarker of immune checkpoint
therapy (Figure 2). One study suggested that hsa_circ_0020397 can
regulate CRC cell viability, apoptosis, and invasion by promoting
the expression of miR-138 target genes, telomerase reverse
transcriptase (TERT), and programmed death-ligand 1 (PD-L1)
(139). CircCDR1-AS is representative circular RNA that is
associated with poor prognosis in gastrointestinal cancers
including colon, liver, and pancreatic cancers. Tanaka et al.
demonstrated that CircCDR1-AS can significantly increase the
expression of PD-L1 at the surface of colon cancer cells via
CMTM4 and CMTM6 and led to the poor prognosis of CRC
cancer patients (140). In another study, Hong et al. indicated that
circ-CPA4 could promote cell growth, mobility and epithelial-
mesenchymal transition and inhibited cell deaths of NSCLC cells
by up-regulating expression levels of PD-L1 via acting as an RNA
sponge for let-7 miRNA. Moreover, circ-CPA4 could positively
regulate exosomal PD-L1 derived from NSCLC cells, which
promoted cell stemness and inactivated CD8+ T cells (141).
Additionally, Li et al. found that circ_0000284 could up-regulate
the expression of PD-L1 via binding miR-377-3p and thus
Frontiers in Immunology | www.frontiersin.org 8
promoting the progression of NSCLC (142). TIM-3, also called
hepatitis A virus cellular receptor 2 (HAVCR2), is another
intriguing immune checkpoint. The gene TIM, located on human
chromosome 5q33.2, expresses a protein of 302 amino acid which
belongs to Ig superfamily (IgSF). It was expressed on different
immune cells including B cells, T cells, NK cells, DCs, Tregs,
monocytes, and macrophages. And higher expression of TIM-3
was closely associated with poor prognosis in solid malignant. More
importantly, accumulating evidence have verified that therapeutic
benefit of TIM-3 blockade and inhibit tumor growth especially
combined with anti-PD therapy. For the time being, there are at
least eight anti-TIM-3 mAbs has been registered on
clinicaltrials.gov. Anti-TIM-3 therapy combined with TSR-042 are
already on phase II clinical trial for liver cancer (137). Zhang et al.
reported circUHRF1, circular ubiquitin-like with PHD and ring
finger domain 1 RNA (circUHRF1), is highly expressed in human
HCC tissues and closely related to poor clinical prognosis of HCC
patients. Mechanically, hepatocellular carcinoma (HCC) can
secreted circUHRF1 in an exosomal manner, inhibiting the
secretion of NK cell-derived IFN-g and TNF-a and inhibiting NK
cell function by up-regulating the expression of TIM-3 through
degradation of miR-449c-5p (124).

One challenge for cancer immunotherapy is that tumor-
induced immune defects not only occur among different
patients but also extend to different areas in a single tumor
lesion. It is important to evaluate immune response at the TIME
level which require sequential tumor tissue collection and
analyses. CircRNAs, presented as a stable covalently closed
single RNA and can also be secreted in exosomal manner, can
play a regulatory role in some of these immune checkpoints and
have the potential to serve as a biomarker of immune checkpoint
therapy response. Hence, more regulatory roles of circRNAs
playing in these immune checkpoints need further investigation.
CONCLUSIONS AND FUTURE
PERSPECTIVE

Due to the rapid progress of high-throughput sequencing and
bioinformatics methodologies, researchers have unveiled the
biogenesis and biological characteristics of circRNAs.
Accumulating evidences exhibited that circRNAs are closely
linked to immune cells in the tumor immune environment and
are potentially to modulate or mark the infiltrating abundance of
immune cells. Through regulating immune checkpoint genes,
circRNAs are potentially capable to mediate therapeutic efficacy
of immune checkpoint blockade therapy. The regulatory roles of
circRNAs in cancer biology and therapy, especially tumor
immunology and immunotherapy, need to be further explored.
Several FDA-approved anti-cancer drugs were reported to be
able target non-coding oncogenic RNAs. For example, miR-21
could be inhibited by compounds and its function could be
ablated upon overexpressing pre-miR21. This finding indicates
that onco-ncRNAs are druggable. However, there are no drugs
specifically targeting onco-ncRNAs been clinically approved by
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FDA. Accumulating endeavors have been made to find small
molecules targeting onco-ncRNAs. In terms of circRNA
treatment, although no clinical trials have been reported,
siRNAs targeting their unique conjunction cite, which can
avoid targeting host gene, could be used to down-regulate
specific onco-circRNAs to treat cancers. The major problem
would be how to construct an efficient vector to deliver these
siRNAs to tumor. Thus, ncRNAs treatment, we believe, will
come true with the development of vector deliver system in the
Frontiers in Immunology | www.frontiersin.org 9
near future. To our best knowledge, the major possible negative
effect of circRNA treatment could be mis-targeting. And this
problem could be addressed by carefully designed siRNAs
targeting the conjunction sites of circRNAs. In speaking of
translational study of circRNAs, one study suggested that
artificially designed circRNA could act as a miRNA sponge to
sequester miR-122, which plays an important role in the transfer
of hepatitis, to inhibit the replication of HCV (143). And another
study showed that artificially designed circRNA spongingmiR-132
FIGURE 2 | The regulatory roles of circRNAs in immunotherapy. CircRNAs have been implicated to play a regulatory role of immune checkpoints and have the
potential to serve as a predictive biomarker of immune checkpoint therapy.
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andmiR-212 could attenuate pressure overloaded-induced cardiac
hypertrophy (144). These studies show a great potential for
translational application of circRNAs. As we all known, there are
manymiRNAs associatedwith humandiseases has been unraveled
in the past years and one major functions of circRNA is to act as
miRNA sponge to sequester miRNAs. In the future, not only
circRNAs could be “druggable,” but also it could be “drug.”
CircRNAs are characterized by their covalently closed loop
structures and conjunction cites. When a siRNA specifically
targeting conjunction cites of onco-circRNAs are used to treat
cancer, it wouldn’t target mRNAs of host genes and this could be
more precise than traditional ones. In addition, not only circRNAs
could be targeted by siRNAs, but also artificially designed
circRNAs could be delivered into cells to sponge onco-miRNAs
to treat cancers.

Utilization of cutting-edge biotechnologies, such as single cell
sequencing, the regulatory roles of circRNAs in tumor
progression and immunology will be clearer. Thus, circRNAs
Frontiers in Immunology | www.frontiersin.org 10
will be employed in modulating the abundance or activity of
immune cells and immune checkpoints expression, which will
enhance the clinical efficiency of tumor immunotherapy.
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