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The somatic hypermutation (SHM) of Immunoglobulin (Ig) genes is a key process during
antibody affinity maturation in B cells. The mutagenic enzyme activation induced
deaminase (AID) is required for SHM and has a preference for WRC hotspots in DNA.
Error-prone repair mechanisms acting downstream of AID introduce further mutations,
including DNA polymerase eta (Polh), part of the non-canonical mismatch repair pathway
(ncMMR), which preferentially generates mutations at WA hotspots. Previously proposed
mechanistic models lead to a variety of predictions concerning interactions between
hotspots, for example, how mutations in one hotspot will affect another hotspot. Using a
large, high-quality, Ig repertoire sequencing dataset, we evaluated pairwise correlations
between mutations site-by-site using an unbiased measure similar to mutual information
which we termed “mutational association” (MA). Interactions are dominated by relatively
strong correlations between nearby sites (short-range MAs), which can be almost entirely
explained by interactions between overlapping hotspots for AID and/or Polh. We also
found relatively weak dependencies between almost all sites throughout each gene
(longer-range MAs), although these arise mostly as a statistical consequence of high
pairwise mutation frequencies. The dominant short-range interactions are also highest
within the most highly mutating IGHV sub-regions, such as the complementarity
determining regions (CDRs), where there is a high hotspot density. Our results suggest
that the hotspot preferences for AID and Polh have themselves evolved to allow for greater
interactions between AID and/or Polh induced mutations.

Keywords: B cell receptor, activation-induced deaminase, computational immunology, immunoglobulin heavy
chain, somatic hypermutation, overlapping hotspots
org February 2021 | Volume 11 | Article 6184091

https://www.frontiersin.org/articles/10.3389/fimmu.2020.618409/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.618409/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.618409/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.618409/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.618409/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:thomas.maccarthy@stonybrook.edu
https://doi.org/10.3389/fimmu.2020.618409
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.618409
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.618409&domain=pdf&date_stamp=2021-02-02


Krantsevich et al. Correlations in SHM Between Sites
INTRODUCTION

The process of somatic hypermutation (SHM) is a key
component of antibody affinity maturation in B cells.
Activation induced deaminase (AID) initiates SHM by
introducing C>U mutations in single-stranded DNA (ssDNA)
at the antibody (Immunoglobulin or Ig) loci [reviewed in (1)].
These mutations are preferentially inserted at AID hotspots
defined by the motif WRC (W = A/T, R = A/G), where the
underline indicates the mutating nucleotide (2). Error-prone
repair pathways including non-canonical Base Excision Repair
(ncBER) and Mismatch Repair (ncMMR) act downstream of
AID to introduce further mutations. In the absence of repair,
the original C>U mutation results in a C>T transition (3). The
ncBER pathway allows for C>G and C>A transversions at the
original mutated site, whereas ncMMR can generate mutations at
nearby A and T sites (4). Polymerase eta (Polh), which is part of
the ncMMR pathway, introduces mutations preferentially at
hotspots defined by the motif WA (5). Previous work has
shown that where two AID hotspots are opposite each other
on the two DNA strands, defined by the motif WGCW,
mutations occur at a particularly high frequency (6). A greater
abundance of WGCW motifs such as AGCT is observed in IgV
subregions that mutate at high frequency, such as switch regions
and the complementarity determining regions (CDRs) of the
IGHV genes (7, 8). A recent study by ourselves found that co-
localization of AIDWGCW and PolhWA hotspots characterizes
major differences between human IGHV germline genes (9).

Although it has been known for decades that SHM is strongly
biased toward mutations in particular IgV subregions such as the
CDRs (10), the more recent availability of high-throughput deep
sequencing IgV data has enabled a more quantitative assessment
of this bias (11). One approach has been to use nonproductive
IgV sequences that have not undergone antigen driven selection,
for example, by having nonsense-generating frameshifts in
CDR3 that likely arose during V(D)J recombination (6).
Mutational spectra from such nonproductive sequences have
been shown to be surprisingly similar to those of productive
sequences, as shown previously for human IGHV3-23 (12).
Because the mutation spectra of nonproductive sequences
should be unaffected by selection, these results suggest that
intrinsic bias is dominant in SHM with selection playing at
most a minor role.

There have been many previous efforts to characterize
intrinsic SHM bias. Early attempts identified local contexts
associated with higher mutation frequencies, such as the WRC
and WA hotspot motifs (13, 14). Following the discovery of AID
in 2000 (15), biochemical mutation assays demonstrated that the
WRC motif, which had already been proposed as a hotspot, was
in fact the preferred motif for AID (16). Subsequent
identification of Polh as part of the downstream processing,
led to characterization of the WA hotspot and its importance in
IGHV genes (5). Recent analyses of deep sequencing data, in
particular of silent (synonymous) sites and nonproductive V(D)J
rearrangements, has led to systematic characterizations of
mutability in SHM (11). For example, the S5F model (17)
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describes normalized mutability scores for all possible
nucleotide changes in a context of +/−2 nt (there are 45 =
1,024 such motifs of length 5). Interestingly, this approach
found that these mutability scores were highly similar even
between species as divergent as human and mouse (18).

However, there is another aspect of intrinsic bias that has
received less attention to date, namely how mutations in one site
affect mutability at other sites as SHM proceeds and as mutations
accumulate in the IgV genes. Previous work has confirmed that
an average of one mutation occurs per V gene per cell cycle in
germinal centers (19). Presumably, single amino acid
substitutions (as opposed to multiple substitutions) are more
conservative at the structural level and thus less likely to cause
detrimental changes. To achieve this, several mechanisms appear
to have evolved to reduce mutability, including limited
availability of the AID catalytic pocket (20) and tight
regulation of AID activity to the early G1 phase of the cell
cycle (21), among others.

Previously proposed mechanistic models of SHM suggest
various ways in which mutations at one site may influence
another site following an initial AID mutation. Mutations in
one site may co-occur with mutations at another site more
often (leading to a positive correlation) or less often (leading to
a negative correlation) than would be expected by chance. For
example, AID and nearby Polh hotspots might be expected to
have a negative correlation, as follows. As described above, Polh
mutations are entirely dependent on an initiating C>U mutation
by AID (1). Replication bypass of the mutation will result in a C>T
mutation. Alternatively, induction of ncMMR involves Exo1-
mediated excision of a patch around the G-U mismatch.
Subsequent recruitment of Polh to resynthesize the patch in an
error-prone manner, leads to mutations preferentially in nearby
WA hotspots. If the original G-U mismatch is then repaired, this
would lead to a negative correlation between the site of the
original mutation and WA hotspots within the excised patch,
depending on whether replication bypass or ncMMR was
induced. Other processes may lead to positive correlations, most
obviously AID processivity, which has been demonstrated in vitro
(16), and which may occur during in vivo transcription (22).
Within any recurring patch of ssDNA, multiple C sites may also
be deaminated due to processivity, leading to co-occurring, and
therefore positively correlated, mutations.

Previous studies have evaluated correlations between sites
using various measures. A common measure in genetic analysis
is linkage disequilibrium (LD), defined as D(X;Y) = p(x,y) – p(x)p
(y) for a pair of sites X and Y (23). Intuitively, if two nucleotides
occur together (p(x,y)) more often than expected by chance (p(x)
p(y)), as would be expected if they are in genetic linkage, then LD
will be positive because p(x,y) > p(x)p(y). While the LD measure
can distinguish the direction of the correlation, it cannot
accurately detect its strength (see example in Methods).
Another widely used metric is Mutual Information, defined as
the amount of information obtained about one random variable
through observing the other random variable. This metric
captures the magnitude of the correlation even when the
probabilities are small, but does not describe directionality.
February 2021 | Volume 11 | Article 618409
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For a metric that captures both direction and strength we
defined a metric similar to mutual information that we call
“mutational association” (MA). Using this metric, we identified
two qualitatively different types of MA: relatively strong “short-
range”MAs at distances 1–2 nt, and weaker “longer-range”MAs.
Simulations showed that longer-range MAs arise primarily as a
consequence of individual site mutabilities without explicit
interactions between sites, in contrast to short-range MAs. We
hypothesized that short-range MAs arose from mutations
changing the mutability of neighboring sites. We verified this
hypothesis using another simulation approach that considered
step-by-step changes in mutability following each mutation. An
extremely simple mechanistic model defined in terms of overlaps
between adjacent AID and/or Polh hotspots largely predicts
observed short-range MAs in human IGHV data. Such hotspot
overlaps are most common in highly mutating IGHV subregions
such as the CDRs, suggesting these are a major determinant of
intrinsic mutational bias during SHM.
METHODS

Mutational Aassociation
The standard measure of Mutual Information (MI) between two
distributions X and Y is given by the formula

I(X;Y) = S
x,y
p(x, y)log

p(x, y)
p(x)p(y)

� �
,

where the summation is performed over all x ∈ X and y ∈ Y.
In the case of mutual information between two mutation sites,

for each of them we have only two possible events: in a given
sequence nucleotide X either did mutate (x = 1) or it did not
(x = 0). Then we can expand the formula in the following way:

I(X;Y) = p(x = 1, y = 1)log
p(x = 1, y = 1)
p(x = 1)p(y = 1)

� �

+ p(x = 1, y = 0)log
p(x = 1, y = 0)
p(x = 1)p(y = 0)

� �

+ p(x = 0, y = 1)log
p(x = 0, y = 1)
p(x = 0)p(y = 1)

� �

+ p(x = 0, y = 0)log
p(x = 0, y = 0)
p(x = 0)p(y = 0)

� �

Now consider the first term of this formula (simplifying the
notation to use p(x,y) instead of p(x = 1, y = 1), p(x) instead of
p(x = 1) and p(y) instead of p(y = 1):

I1(X;Y) = p(x = 1, y = 1)log
p(x = 1, y = 1)
p(x = 1)p(y = 1)

� �

= p(x, y)log
p(x, y)
p(x)p(y)

� �

log( p(x,y)
p(x)p(y) ) is equal to zero if mutations at sites X and Y are

independent (p(x,y) = (p(x)p(y))), greater than zero if mutations
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of both sites within the same sequence are observed more
often than expected by chance (p(x,y) > (p(x)p(y))) and less
than zero if mutations of both sites are observed together less
often than expected by chance (p(x,y) < (p(x)p(y)). As a result,
the log( p(x,y)

p(x)p(y) ) term of I1 can be considered as a correlation-like
measure, though it is sensitive to noise if the probabilities
involved are very small. It is balanced out by the p(x,y) term,
which can be considered as a measure of the strength of the
observed correlation. One can notice that the term log( p(x,y)

p(x)p(y) )
functions similarly to the linkage disequilibrium metric D(X;Y) =
p(x,y) – p(x)p(y), though unlike LD, log( p(x,y)

p(x)p(y) ) measures the
relative, rather than absolute, amplitude of the change.

However, a weakness of both I1 and LD formulas is that they
are positively biased. Consider a hypothetical pair of nucleotides
X and Y with corresponding p(x) = a and p(y) = b. If they
mutated completely independently from each other, the
likelihood of both mutations appearing simultaneously would
be p(x,y) = ab. Now consider two scenarios: mutations X and Y
occur simultaneously

n times less often than expected (p-(x,y) = ab/n) and

n times more often than expected (p+(x,y) = abn),

(n > 1). Now we have

I1(X;Y) =
ab
n *log

ab
n*ab

� �
=
ab
n *log

1
n

� �
= −

ab
n *log(n)

I1(X;Y) = abn*log
abn
ab

� �
= abn*log(n) = � I1(X;Y)*n

2

D−(X;Y) =
ab
n

− ab

D+(X;Y) = abn� ab = n(ab� ab
n
) = −D−(X;Y)*n

Despite the fact that both positive and negative deviations had
the same scale, the positive signal is n2 times stronger than the
negative one for I1 and n times stronger for LD. This leads to a
positive bias for both metrics. In order to avoid this bias, we
replace the “strength” term p(x,y) in I1 with p(x)p(y) and this is
our “mutational association” (MA):

MA(X;Y) = p(x)p(y)log
p(x, y)
p(x)p(y)

� �

By MAg(X;Y), we refer to the mutational association between
nucleotides at the positions X and Y in the gene g.

Generation of Independent Simulated
Data Set
We aim to generate a simulated dataset in which mutations are
independent from each other. The simulated dataset should also
match the original data for each gene in the following: 1) total
number of sequences S; 2) number of sequences Si containing
exactly i mutations for any i; 3) observed mutation frequency at
February 2021 | Volume 11 | Article 618409
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each position. In our approach we maintain (1) and (2) exactly,
while (3) is approximated. Assuming that we have a set of genes G
and for each gene g ∈ G we have the corresponding vector of
mutability scores MutScoresg (defined below), the total number of
sequences Sg, the maximal number of mutation per sequence Mg

and for any i, the number of sequences containing exactly i
mutations Sg,i

(S
Mg

i
Sg,i = Sg) :

In order to generate an Independent dataset:

1. Define the probability distribution Pg as a normalized vector
MutScoresg

2. Randomly draw imutations without replacement according to
Pg.

3. Save the resulting vector of mutations.

4. Repeat 2 and 3 until we have Si vectors.

5. Repeat 2–4 for all i.

6. Repeat 1–5 for all g ∈ G.

Our original dataset provides all the required parameters
except for the vectors MutScoresg. In the first instance we use
the observed mutation frequencies for each gene as an initial
approximation of MutScoresg. Because drawing mutations
without replacement changes the distribution for the
subsequent remaining mutations, this results in a discrepancy
between the original observed mutation frequencies and those of
the simulation output (Figure S4). However, we noted that the
relationship between these two mutation frequencies could be
well approximated using a cubic polynomial, suggesting we could
adjust MutScoresg for each gene using standard cubic regression
y = a3x

3 + a2x
2 + a1x

1 + a0 as shown in Figure S4. Using this
adjustment, we decreased average RMSD between original and
Independent mutation frequencies from 0.0138 to 0.0026.

Now the full simulation can be summarizsed as follows:

I. For a given gene g defineMutScoresg =MutationFrequencyg
II. Perform steps 1–5.
III. Using output of step II, use cubic regression to obtain new

vector MutScoresg
IV. Using new vector MutScoresg repeat steps 1–5
V. Repeat steps I–IV for all genes.

Hotspot Confirmation
In order to evaluate our hypothesis regarding the influence of the
DNA sequence context on certain mutational association
patterns, we used the following approach. Assume there is a
pair of nucleotides (i and j) and we have a hypothesis for the local
context C leading to a higher or lower MA. We consider all
appearances of i and j at distance k (distance at which they are
placed apart in C), and separate these into two sets: those with
context C (ContextMAg (i ,j ,k,C)) and those without
(NonContextMAg (i,j,k,C)). We compare the context and non-
context sets using a difference of means (Mann–Whitney U) test,
accepting the hypothesis if the two distributions are significantly
Frontiers in Immunology | www.frontiersin.org 4
different and the context of one is shifted in the predicted
direction. This approach was used in column 9 of Table 2.

An alternative approach is to compare ContextMAg (i,j,k,C)
sets for the original and Independent data using a paired
Wilcoxon signed-rank test to test whether the original data is
significantly shifted in the predicted direction. This approach
was used in column 5 of Table 2 and column 9 of Table 3.

Distribution of Overlapping Hotspots
Within IGHV Genes’ Sequences
In order to analyze localization of generalized overlapping
hotspots (Figure 8), we began by using the method described
in (9), which was used there for WGCW and WA motifs. In this
method, a moving window of size 31nt (i.e., a middle site +/-
15nt) is used throughout a gene, and for each position the
number of the occurrences of each overlapping hotspot (OHS)
motif (see Table 1) within the window is counted. Then, a
weighted sum of these values is calculated, and divided by the
window size. In other words, each sequence is represented as an
OHS distribution profile where each value measures the hotspot
density in the neighborhood around each position in the
sequence. The weights are proportional to the expected
abundance of each motif under the assumption that each
nucleotide is equally likely. For example, we would expect on
average 1 in 16 dinucleotides NN to be TA (1 4= � 1

4= ), while a 4-
mer NNNN has only a 1/128 chance to be a WACC motif. Using
this reasoning we split all OHS into 4 groups: 1) the least
abundant motifs (WACC, GGTW, WRCRC, and GYGYW)
were assigned with weight equal 1; 2) WGCW, WARC,
GYTW, TAC, GTA, WRCA, TGYW were assigned with weight
equal 0.5; 3) WAC, GTW,WAA, and TTW have weights equal to
0.25 and 4) the most abundant motif TA has weight equal
to 0.125.

To ensure that the distribution profiles were of equal length
(in order to make aggregation of data for multiple genes
possible), we used the standard gapped alignments with unique
codon numbering from IMGT and linear interpolation, a curve-
fitting method, to adjust for differences in IGHV sequence
lengths using the R function approx. Lastly, allelic variants
were ignored and only *01 alleles were used.

Sequences Used for Analysis
Since analysis of pairwise interactions between mutation sites
requires a relatively large amount of data, we used a cutoff of at
least 5,000 productive sequences per allele for the analysis. This
resulted in a dataset with 31 alleles (5 from family 1, 14 from
family 3, 10 from family 4, 2 from family 5) and containing a
total of 399,505 sequences with 65,071 as the maximum
(IGHV3-23*01) and 5,239 as the minimum (IGHV3-53*01).
RESULTS

Definition of Mutational Association (MA)
We defined our correlation measure, “mutational association”
(MA), as follows. For a pair of mutation sites X and Y,
February 2021 | Volume 11 | Article 618409
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MA(X;Y) = p(x)p(y)log
p(x, y)
p(x)p(y)

� �
,

where p(x) is an observed probability of the site X mutating p
(y), is an observed probability of the site Y mutating and p(x,y) is
an observed probability of sites X and Y both mutating within the
same sequence.

MA has two parts that represent different characteristics:
correlation (log( p(x,y)

p(x)p(y) )) and strength (p(x)p(y)). Choosing the
strength term to be p(x)p(y) rather than p(x,y) as in mutual
information, eliminates an implicit bias (see Methods).

MA Values Are Highest for Pairs of Sites
at Short Distances
To evaluate mutational association (MA) between sites in IGHV
genes, we used a previously published high quality human Ig
Repertoire sequencing dataset (9). The sequences analyzed here
were sequenced as described in Vergani et al. (24) and
preprocessed as described in Tang et al. (9), although here we
use both productive and nonproductive IGHV sequences.
Briefly, sequencing data originated from IGHV RNA samples
tagged with Unique Molecular Identifiers (UMIs). For
preprocessing, Immcantation framework packages were used
for quality control, clonotype analysis and filtering out novel
alleles, while IMGT/V-Quest was used for determining IGHV
genes and CDR3 boundaries. Here we chose 31 IGHV alleles
(across 26 genes) for which we had at least 5,000 (productive)
sequences per gene. Because we found no qualitative difference
between productive and nonproductive sequences with respect to
MA by performing analysis for both sets separately, we only
show results for the more abundant productive sequence data
(see Figure S6 for the nonproductive analysis summary). We
calculated pairwise MA values for all sites in each IGHV gene. As
an example, MA values for CDRs 1 and 2 of the IGHV3-23 gene
are shown in Figure 1A (CDR1) and Figure 1B (CDR2). The
values shown in Figure 1 have been corrected to remove
statistically expected correlations (extracted from the
“Independent” simulations, as explained below) that arise from
Frontiers in Immunology | www.frontiersin.org 5
high pairwise mutation frequencies. Here we found that almost
all of the high MA values correspond to sites that are within 1 to
2 nt of each other—these are the values close to the diagonal in
Figure 1—whereas the values further from the diagonal tended
to be relatively weak. Figure 2 shows that indeed mutation sites
placed within 1–2 nt of each other tend to have stronger MA
signals across all IGHV genes analyzed.

To illustrate this trend in greater detail, the blue curve in
Figure 3A shows how the mean absolute MA value varies with
the distance between sites. Here, there is a pronounced high
value corresponding to distances of 1 to 2 nt, which then drops
for more distant interactions. The MA values then rise again,
reaching a lower peak at distances of ~75 nt. Because these more
distant peaks are dominated by interactions between sites in the
CDRs (Figure 3B), it suggests that at least part of the MA signal
might be generated by pairs of sites that both had high mutation
frequencies but which were not necessarily correlated, positively
or negatively, beyond what would be expected. We next
evaluated the independent effect of high mutation frequencies,
as well as the distribution of mutations per sequence, which may
also contribute to MA. We therefore performed simulations that,
based on the observed site-by-site mutation frequencies for each
IGHV gene, produce simulated datasets that have almost exactly
the same mutation frequencies at each site and exactly the same
distribution of mutations per sequence (see Methods). In the
simulated data we should not observe any correlations between
sites beyond what is expected, because the mutations are
generated independently of one another. The resulting MA
values are shown in the green curve of Figure 3A, labeled
“Independent”. The simulated “Independent” curve follows the
same pattern as the original data (blue curve), with the exception
of sites within 1 to 2 nt of each other, where the original absolute
MA values are much higher. The gap between the two
(“Independent” vs original) curves is almost constant for all
distances >2 nt, and can largely be explained as a consequence of
sampling bias since the gap, measured as root mean squared
difference or RMSD, becomes smaller with increased sample size
(Spearman correlation, −0.61, p-value = 0.0003—see Figure S3A).
TABLE 1 | Enumeration of all possible AID and/or Polh overlapping hotspots.

W R C One-sided Mutual Sequential G Y W One-sided Mutual Sequential

W A WARC X X T W GYTW X X
W A WAC X X T W GTW X X
T W TAC X X W A GTA X X

T W X X X W A X X X
W R C X X WRCRC G Y W X X GYGYW

W R C X X WACC G Y W X X GGTW
G Y W X X X W R C X X X

G Y W X WGCW X W R C X WGCW X

W A One-sided Mutual Sequential T W One-sided Mutual Sequential

W A WAA X X T W TTW X X
T W X TA X W A X TA X

W R C X X WRCA G Y W X X TGYW
G Y W X X X W R C X X X
Febru
ary 2021 | Volu
me 11 | Ar
There are eight theoretically possible overlaps for the WRC/GYWmotif. Because AID hotspot has 2 context nucleotides, another Polh or AID hotspot could potentially overlap it in two
ways. Since WA/TW has only one context nucleotide, there are only four theoretically possible overlaps. Conflicts between a candidate for an overlap and WRC/GYW or WA/TW are
highlighted in red. Conflicts in the mutating nucleotide may either result in sequential overlap or make the overlapping hotspot structure impossible.
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In other words, if we had as much data for every allele as we have
for IGHV3-23*01 (> 65K sequences), then the gap would become
negligible (Figure S3B). We will hereafter refer to the above-
expected correlation levels between nearby (1–2 nt) sites as
“short-range MAs”, in contrast to “longer-range MAs” (> 2nt),
which are not substantially different from what is expected in the
case of Independent mutations. In order to correct the observed
MAs for what is expected, we subtracted the Independent MA
values from the original MA values, leading to “corrected” data
that we used for the subsequent analysis.

Short-Range MAs Are Associated With
Interactions Between Overlapping
Hotspots
We further sought to identify which subregion within each
IGHV gene had the strongest MA effects. As an example,
Figure 4A shows MA values for adjacent sites within the
IGHV 3–23 × 01 gene, whereas Figure 4B shows for sites that
are one nucleotide apart from one another. The results for
IGHV3-23 suggested that the strongest MA values would be in
the CDRs, although other smaller subregions, for example within
FW3, also had some high values [this subregion of FW3 is known
to have a high mutation frequency and is often referred to as
“CDR4” (25)]. Figure 4 also shows that the CDRs are enriched
for various motifs involving overlapping hotspots for AID and/or
Polh. We discuss these hotspot overlaps in greater detail below.

To compare the MA values in the different subregions, we
calculated mean absolute MA values for distances 1 to 2 nt
separately for the two CDRs and three FW subregions for all
IGHV genes analyzed. As shown in Figures 5A, B, we indeed
found that the CDRs had significantly higher absolute MA
values. Because hotspot density is higher in the CDRs we
Frontiers in Immunology | www.frontiersin.org 6
surmised that short-range MAs, both positive and negative,
might arise as a consequence of interactions between hotspots,
i.e., mutations in one hotspot might affect the context and
therefore the mutability of another hotspot. For example,
consider the sequence AGCT, which has an overlapping AID
hotspot (AGC) on both strands. If the bottom strand hotspot
were to mutate, for example, from C to A (G to T on the top
strand), this eliminates the top strand hotspot, since AGC has
become ATC, which is a neutral site. Thus, the first mutation
reduces the probability of the second site mutating (and vice
versa if the mutations occur in the opposite order), which should
lead to a negative correlation between the two sites. Such
interactions between adjacent sites has long been recognized as
a problem for producing genealogies because standard
phylogenetic methods generally assume independence between
sites (26). A recent study considered the mutations needed to
produce three different broadly-neutralizing HIV antibodies
(27). To quantify how likely it would be for these mutations to
arise, the authors proposed a method (ARMADiLLO) that
simulates mutations using a previously published set of
substitution probabilities known as “S5F” (17). S5F
substitution probabilities are defined for every nucleotide given
its context of +/−2 nt, i.e., for every possible 5-mer of which there
are 45 = 1,024. Importantly, ARMADiLLO uses S5F to generate
mutations one by one, changing the corresponding substitution
probabilities to be used after each mutation.

We used the ARMADiLLO method to generate simulated
datasets having the same distribution of mutations per sequence
as the original data (mean mutation frequencies cannot be
matched explicitly as these are defined internally by S5F). As
shown in the orange curve of Figure 3A, ARMADiLLO largely
recapitulates the initial peak corresponding to short-range MAs,
TABLE 2 | Statistical analysis of MA for the pairs of nucleotides within an overlapping hotspot context and compared to non-context pairs.

Motif Prediction OHS context no OHS
context

OHS context vs no OHS context

E (ohs) P-value
(Wilcoxon)

Adjusted p-value
(BH)

E (no ohs) E (ohs)-E
(no ohs)

P-value
(Mann-Whitney)

Adjusted p-value
(BH)

Mutual TA negative -0.02043 1.96E-32 3.14E-31 NA NA NA NA
WGCW negative -0.02734 1.21E-22 6.47E-22 -0.00333 -0.02400 8.87E-20 2.66E-19

One-
sided

WAA negative -0.00352 1.31E-01 1.61E-01 -0.00242 -0.00110 1.53E-01 1.77E-01
TTW negative -0.00124 3.16E-01 3.37E-01 0.00023 -0.00147 4.36E-03 5.46E-03
WARC negative -0.03475 9.45E-11 1.89E-10 -0.00707 -0.02768 2.76E-10 5.18E-10
GYTW negative -0.02131 5.54E-12 1.27E-11 -0.00214 -0.01917 3.13E-20 1.17E-19
WAC negative -0.00095 2.96E-01 3.37E-01 0.00025 -0.00120 4.84E-01 4.84E-01
GTW negative -0.00453 1.40E-03 1.86E-03 -0.00062 -0.00391 1.30E-03 1.77E-03
TAC negative -0.00266 4.44E-01 4.44E-01 -0.00029 -0.00238 2.71E-01 2.90E-01
GTA negative -0.02125 6.82E-15 2.18E-14 -0.00252 -0.01873 2.92E-26 4.38E-25

Sequential WACC positive 0.00483 3.28E-30 2.63E-29 0.00192 0.00291 9.74E-22 4.87E-21
GGTW positive 0.00182 1.80E-17 7.20E-17 0.00108 0.00074 6.16E-07 1.03E-06
WRCRC positive 0.01589 5.26E-08 8.41E-08 0.00302 0.01287 6.47E-18 1.62E-17
GYGYW positive 0.01531 2.61E-06 3.80E-06 0.00210 0.01321 3.96E-13 8.48E-13
WRCA positive 0.00690 5.08E-13 1.36E-12 0.00202 0.00488 9.32E-22 4.87E-21
TGYW positive 0.00310 1.63E-10 2.89E-10 0.00191 0.00119 8.59E-05 1.29E-04
Fe
bruary 2021 | Volum
The sign of the mean MA matches our prediction for all motifs [“E(ohs)” column] and the corresponding positive or negative shift is significant according to Wilcoxon signed rank test
for all the motifs except for WAA, TTW, WAC, and TAC (shown in red). For all motifs, the shift also has the predicted direction [“E(ohs)-E(no ohs)” column] when compared to non-
context pairs. WAC, TAC, and WAA are the only motifs for which this shift was not significant according to Mann-Whitney U test (highlighted in red). Motifs with non-significant
comparisons (WAC, TAC, WAA, and TTW) are highlighted in yellow. Motifs with successful significant predictions are highlighted in blue.
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A B

FIGURE 1 | Heatmap showing MA for the IGHV3-23*01 allele around (A) CDR1 and (B) CDR2. These data have been corrected by subtracting the MA values from
the “Independent” simulated data set (see Materials and Methods) from the MA values of the original data. The full gene heatmaps for original uncorrected MA
values, as well as for corrected MA values and MAs for simulated datasets, are shown in Figures S1 and S2.
TABLE 3 | Statistical analysis of the local MA for all possible pairs of nucleotides.

Pair of
nucleotides

Deviation from mean
MA

Overlapping HS Predicted MA
(sign)

Experimental
MA

P-value
(Wilcoxon)

Adjusted
p-value

One-
sided

Mutual Sequential

TA 0.02037 TA negative -0.02097 8.55E-34 2.28E-33
GC 0.01366 WGCW negative -0.01426 1.23E-22 2.47E-22
A_C 0.01051 WARC negative -0.01111 1.64E-52 7.48E-52
G_A 0.00504 GTA negative -0.00565 3.83E-38 1.36E-37
G_T 0.00470 GYTW negative -0.00531 7.63E-34 2.22E-33

A_A 0.00408 0.00348 6.73E-35 2.15E-34
AG 0.00397 0.00337 2.73E-24 5.83E-24

CC 0.00386 WRCC positive 0.00325 1.47E-79 1.56E-78
CA 0.00291 WRCA positive 0.00231 1.00E-56 8.02E-56
C_C 0.00280 WRCRC positive 0.00219 9.98E-55 6.38E-54
GG 0.00273 GGYW positive 0.00213 9.02E-104 2.89E-

102
AA 0.00258 WAA negative -0.00318 1.29E-01 1.48E-01

G_G 0.00206 GYGYW positive 0.00145 3.40E-53 1.81E-52

T_T 0.00179 0.00119 8.70E-12 1.64E-11
GA 0.00179 0.00118 1.28E-30 3.16E-30

GT 0.00170 GTW negative -0.00230 7.53E-08 1.34E-07

G_C 0.00160 0.00100 2.04E-84 3.27E-83
A_T 0.00146 0.00085 1.82E-02 2.42E-02
TC 0.00144 0.00084 3.27E-39 1.31E-38
T_G 0.00132 -0.00192 1.30E-04 2.08E-04

TG 0.00127 TGYW positive 0.00066 4.45E-30 1.02E-29

T_A 0.00126 0.00066 3.97E-02 4.89E-02
AT 0.00105 -0.00165 7.22E-02 8.56E-02
C_T 0.00077 0.00016 2.45E-02 3.13E-02

T_C 0.00076 TAC negative -0.00136 7.07E-05 1.19E-04

C_A 0.00072 -0.00132 7.40E-03 1.13E-02
A_G 0.00050 -0.00011 8.99E-03 1.25E-02
CT 0.00044 -0.00016 9.16E-01 9.16E-01
C_G 0.00030 -0.00031 4.04E-01 4.31E-01
CG 0.00028 -0.00032 7.86E-03 1.14E-02

TT 0.00021 TTW negative -0.00081 5.01E-01 5.17E-01
AC 0.00019 WAC negative -0.00079 2.44E-01 2.70E-01
Frontiers in Immun
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Data is sorted based on the deviation from the overall mean MA. Pairs with predicted negative MA are highlighted in blue, positive predictions are highlighted in red. P-values represent
significance of the shift between original data MAs and those from the Independent simulations. Non-significant p-values are highlighted in purple, less significant p-values are highlighted in
light purple.
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underscoring the importance of sequential changes in
substitution probabili t ies as each mutation occurs.
ARMADiLLO performs less well on longer range MAs (> 2 nt
distance), particularly when compared to the independent
method. This suggests that longer-range features are primarily
Frontiers in Immunology | www.frontiersin.org 8
a statistical consequence of site-intrinsic high mutation
frequencies, which are best replicated by the independent
simulations. Naturally, this leads to the next question of what
determines site-intrinsic mutability beyond local context (+/−2
nt) hotspots, which ARMADiLLO does consider. Although we
will not address this question here, several potentially non-local
(> 2 nt) mechanisms affecting SHM have been previously
described, including DNA/RNA secondary structure (28),
nucleosome phasing (29) and enhancer interactions (30),
among others (31).

A Generalized Overlapping Hotspot (OHS)
Model
To better explain the observed importance of short-range MAs
and the relationship with hotspot interactions, we considered a
generalized model of overlapping hotspots that took into account
not only interactions between AID hotspots but also considered
Polh hotspots. Each hotspot motif, for example AGC, contains a
single nucleotide which we define as mutating, which in this
example would be the underlined “C”, as well as one or more
context nucleotides, which here would be “AG”. We can define
an overlapping hotspot as containing two motifs such that the
mutating nucleotide of one motif is, or becomes, a context
nucleotide of the other. As illustrated with an example in
Figure 6A, the overlap between the two hotspots could be
either a: (a) one-sided overlap, as shown in Figure 6A (left),
where the mutation of the Polh hotspot TA to TG affects the
context nucleotide of the overlapping AGC hotspot, changing it
A

B

FIGURE 3 | Dependence of the mean absolute MA on the distance between nucleotides. (A) Comparison between the original dataset and the two simulated
datasets (ARMADiLLO and Independent). (B) Breakdown of contributions to the “original” line of (A) made separately by pairwise measures for FW-FW, FW-CDR,
and CDR-CDR interactions. CDR-CDR interactions are aligned with the main peaks.
FIGURE 2 | Comparison of mean absolute MA for short-range interactions
(1-2 nt between nucleotides) and all others. P-value shown is a result of
Mann-Whitney (difference of means) test.
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to the non-hotspot motif GGC. The change is one-sided in that if
the AGC hotspot were to instead mutate first, the TA hotspot
would be unaffected. (b) mutual overlap, as shown in Figure 6A
(middle). Here AGCA is an example of the WGCW overlapping
AID hotspot motif described above, and where mutation of one
hotspot can eliminate the hotspot on the opposite strand,
although this need not necessarily occur—for example, a G>A
mutation changes AGC to AAC which remains an AID hotspot.
(c) sequential overlap, as shown in Figure 6A (right), where a
C>Amutation in the context of AGCA creates a new AA that did
not previously exist.

Table 1 describes all possible overlaps of AID and Polh
hotspots, allowing for both self- and cross-overlaps. As shown,
there are only two possible mutual overlaps: WGCW (AID-AID)
and TA (Polh-Polh). There are four reverse-complementary
pairs of one-sided overlaps: WAA/TTW (Polh-Polh), WARC/
GYTW, WAC/GTW, and TAC/GTA (Polh-AID). There are
three reverse-complementary pairs of sequential overlaps:
WACC/GGTW and WRCRC/GYGYW (AID-AID); WRCA/
TGYW (AID-Polh). As an example, the colored dots in the
Frontiers in Immunology | www.frontiersin.org 9
bottom part of Figures 4A, B show the positioning of these
overlapping hotspots in the human IGHV3-23 gene, here
suggesting that most of the larger short-range MA values can
be associated with an overlapping hotspot.

We reasoned that it should be possible to predict positive or
negative MA based on the interactions between overlapping
hotspots. The prediction is based on two observations:

1. Mutations of a context nucleotide that increase the “hotness”
of a nearby mutating nucleotide should lead to a positiveMA
between these two substitutions. Conversely, mutations of a
context nucleotide decreasing the “hotness” of a mutating
nucleotide should lead to negative MA. This observation
follows from the definition of MA. Consider two motifs, x
and y. If a mutation at motif x increases mutability of motif y
then p(x,y)>p(x)p(y), leading to positive MA, whereas if a
mutation at x decreases mutability of y then p(x,y)<p(x)p(y)
and MA will be negative.

2. Out of the three possible mutations for a context nucleotide
within a motif (hotspot, coldspot or, neutral site), one
A

B

FIGURE 4 | Mutational association (MA) for pairs of nucleotides within IGHV3-23*01. (A) MAs between adjacent nucleotides. (B) MAs between nucleotides
separated by exactly one nucleotide. Red bars represent positive MAs, blue bars represent negative MAs, where each bar is aligned with the first nucleotide of the
pair. CDR1 and CDR2 are highlighted in gray. Positions for all generalized overlapping hotspots are shown as colored dots below the x-axis.
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mutation does not alternate the “hotness” of the motif, while
the other two change it in the same direction. Thus, for WA
hotspots (where the context nucleotide is W = A/T) one
mutation (A>T or T>A) preserves the hotspot, whereas the
Frontiers in Immunology | www.frontiersin.org 10
other two (W>C and W>G) convert it to a non-hotspot. For
AID hotspots (WRC), as shown in Figure 6B, both context
nucleotides must mutate so as to create a coldspot (SYC),
since single mutations can only convert it to a neutral site.
Thus, it is also impossible for any substitution (e.g., A > G) to
change a neutral site to a hotspot and for a different
substitution (e.g., A > T) in the same context nucleotide to
change it to a coldspot.
Predictions Based on the Generalized OHS
Model Match Observed MA Values
Based on the two observations above, we can make predictions
for the sign of the MA for all overlapping hotspots defined in
Table 2. For one-sided overlaps, consider AAGC, an instance of
a WARC motif, as an example where a Polh WA hotspot
overlaps with an AID WRC hotspot. Here if the A site
mutates, one of the possible mutations (A > T) will not
eliminate the WRC hotspot (it will become TGC) whereas the
other two mutations (A>G, A>C) will change it to a neutral site
(observation 2). At the same time, if the initial mutation occurs
in the AGC mutating site, this does not directly affect the
mutability of the 5′ AA hotspot. In this example, because
mutation of the AA hotspot can only reduce mutability of the
AGC hotspot (and mutation of the AGC has no effect on the AA
hotspot), we would expect a negative correlation, or MA,
between the two mutating nucleotides (observation 1).
Equivalent arguments can be made for any one-sided overlap
and we therefore expect MA to be negative for all one-sided
overlaps. For mutual overlaps, we also expect a (possibly
stronger) negative MA, since the mutating nucleotides
mutually reduce mutability. However, for sequential overlaps
the situation is the opposite. Consider a sequential overlap such
as TGCGC (an instance of WRCRC) where an AID TGC hotspot
overlaps a potential hotspot (CGC). If the hotspot mutates, two
mutations (C>A, C>T) will create the new hotspot (AGC or
TGC) at the second C site, whereas with a C>G mutation it
would remain a neutral site. By observation 2 above, if one
substitution creates the second hotspot, another at the same
position cannot create a coldspot. At the same time, mutation of
the second C site (before or after it has become a hotspot), has no
A B

FIGURE 6 | (A) Schematic showing three possible types of overlapping hotspots. Here using the example motif TAGCA: (left) One-sided overlap, (center) Mutual
overlap, (right) Sequential overlap. (B) Effect of single mutations affecting hot, neutral, and cold AID mutation spots. At the first context nucleotide W to S mutations
always reduce the hotness of the motif. Similarly, at the second position R to Y mutations always reduce the hotness of the motif. Both context nucleotides need to
mutate to convert a hotspot into a coldspot.
A

B

FIGURE 5 | CDR vs FW MA comparisons. (A) Comparison of mean absolute
MA for short-range dependencies between CDRs and FWs. P-value shown is a
result. of Mann-Whitney (difference of means) test. (B) Comparison of mean
absolute MAs within CDR1, CDR2, FW1, and FW2. Each dot represents a gene.
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effect on the 5′ TGC hotspot. All sequential overlaps share these
basic features and therefore we always expect a positive MA
between the two relevant sites.

We next sought to validate our prediction that mutual and
one-sided overlaps lead to negative MA values, whereas
sequential overlaps lead to positive MAs. As shown in Table 2,
the observed MA values are all of the predicted sign and, for 12 of
the 16 motifs, are statistically significant. To further confirm the
importance of the context nucleotides in defining each motif, we
compared the distribution of MA values for each motif (e.g.,
WGCW) to those motifs that have the same mutating
nucleotides but different context nucleotides. For example, in
the case of WGCW the three motifs that have the same mutating
nucleotides (GC) but different context nucleotides are: SGCW,
WGCS, and SGCS. We now considered the distribution of in-
context MA values between the mutating nucleotides (G and C),
specifically comparing the in-context MA distribution with the
out-of-context MA distribution, with the expectation that the in-
context MA values should be larger in the predicted direction.
The comparative results (Table 2) show, that in-context motifs
indeed have stronger MAs in the predicted direction than out-of-
context MAs, and for all but three motifs, this difference is
statistically significant.

OHS Sites are Dominant for the Overall
Pattern of MA Values
We recognize that in reality, correlations between mutation sites
will be determined by a range of mechanisms and will be more
complicated than this simple model of overlapping motifs
suggests. Particular substitutions (e.g., transitions vs
transversions) may have different probabilities, mutability for
different motifs may be more heterogeneous than can be
represented by neutral, hot- and cold-spots; also there is a
dependency of Polh mutations on the original AID mutations,
among other factors. Regardless, we sought to show how even
such a simple model might be able to predict the majority of the
strong MA signals. We therefore calculated MA values for all
nucleotide pairs, of which there are 42 = 16. This was done for
adjacent (e.g., GC) and gapped (separated by one nucleotide
which we will denote in the form “G_C”). Some nucleotide pairs
may be able to have an overlapping motif (one-sided, mutual, or
sequential), whereas others may not. Thus, for example, a subset
of GC pairs will occur in the context of the mutual overlap motif
WGCW; also, a subset of gapped A_C pairs will be one-sided
overlaps with the motif WARC (Table 1). Note that each
nucleotide pair, adjacent or gapped, can only occur in the
context of at most one overlap type. We reasoned that if the
overlap motif (e.g., WGCW) is the major determinant of MA for
the nucleotide pair within (e.g., GC), then pairs that can contain
negative MA motifs (one-sided and mutual) should have
negative MA on average. Similarly, nucleotide pairs compatible
with sequential motifs should have positive MA on average.
Table 3 shows the results for all nucleotide pairs, both adjacent
and gapped, ordered by mean strength, defined here as the
deviation from mean overall MA. As shown in Table 3, the
predicted sign of the MA values match those observed for all
Frontiers in Immunology | www.frontiersin.org 11
overlap motifs. Furthermore, almost all overlap motifs (12 of 16)
are in the top half of the table in terms of strength. The results of
Tables 2 and 3 suggest that overlap motifs are the dominant
effect for most nucleotide pairs that allow an overlap motif.
Overlap motifs are also dominant overall (Table 3) since most
nucleotide pairs that cannot contain overlap motifs, also do not
have strong MA values.

As a further test of the importance of generalized overlapping
hotspots, we evaluated a simple overlapping hotspot model, as
follows. Using the germline IGHV alleles in our original dataset,
for each pair of nucleotides that are either adjacent or one
nucleotide apart, we assigned a +1 to pairs with positive
predicted MA, −1 to those with predicted negative MA
(matching the column “predicted MA” of Table 3) and 0 to all
other pairs. We then compared these sign values to the
corresponding MA values in the original dataset and found a
modest, though highly significant, correlation (Pearson r = 0.25,
P < 10−50). When we repeated the comparison using the
corrected dataset, the correlation went up to r = 0.37 (P <
10−50). When we used the short-range MA values derived from
the ARMADiLLO simulations used for Figure 3, again
comparing to the original dataset MAs, we found a very
similar correlation (Pearson r = 0.24, P < 10−50; r = 0.25, P <
10−50, for corrected versions of ARMADiLLO and original data).
At the same time, the independent simulations gave a small
negative correlation (r = −0.05) with the original dataset MAs. In
summary, an extremely simple model, based only on generalized
overlapping hotspots and the predicted sign of their MA value,
performs at least as well on this task, compared to a far more
complicated simulation model (ARMADiLLO) that uses
S5F mutabilities.

Lastly, we considered longer-range MA values by extending
the analysis of Figure 3, only now separating the different
nucleotide pairs, to evaluate whether there might be longer-
range effects specific to some nucleotide pair, but that are
weakened by averaging in Figure 3. We therefore considered
not only adjacent and single-gap nucleotide pairs, but also bigger
gaps from 2 to 10 nt. Figure 7 shows mean MA values as a
heatmap for all nucleotide pairs (rows) and with different gap
sizes (columns) between them. As we might expect, the results
are largely consistent with Figure 3. However, we did notice
some longer-range effects for pairs of C or G nucleotides. The
simplest explanation for these would be AID processivity
(see Discussion).
DISCUSSION

Somatic hypermutation is driven by a biased mutation process
that strongly favors particular patterns of mutations in the IgV
genes, particularly in certain subregions such as the CDRs (10).
Following the discovery of AID and the associated mechanisms
of ncBER and ncMMR, the hotspots for AID (motif WRC) and
Polh (motif WA) were characterized (16, 32) and also found to
be more common in highly mutated subregions such as the
CDRs. Previous work that compared nonproductive IGHV
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sequences (which never underwent selection) with productives
(that presumably did) found the mutational spectra to be almost
identical (12), suggesting that the underlying mutational bias is
strong enough to dominate over selection effects. Several
previous studies have addressed the intrinsic mutability of a
site as a function of the immediate neighboring sites, for
example, the S5F model (17) that describes mutability scores
based on the surrounding +/−2 nt. Here we focused on a different
but related issue: how mutations at one site might influence
mutations at another site. We defined mutational association
(MA) as a measure of correlation between sites and used it to
Frontiers in Immunology | www.frontiersin.org 12
analyze pairwise site correlations within a large database of high
quality UMI-barcoded human IGHV sequences. Two distinct
effects were clearly observable: a strong short-range (1–2 nt)
correlation effect, and a weaker longer-range effect at inter-site
distances greater than 2 nt.

High intrinsic mutation frequencies at pairs of sites are
expected to lead to some degree of correlation. The observed
short-range correlations were far higher than expected when
compared to simulations using only site-intrinsic mutation
frequencies, although these “Independent” simulations (Figure
S2A) did largely explain the longer-range correlations (Figure
3A). Our results suggested that short-range correlations were
caused by mutations that alter the mutability of adjacent sites
during the course of SHM. Simulations using the ARMADiLLO
method that allow mutations to change the context (and
therefore the mutability) of nearby sites as SHM proceeds,
were indeed able to largely recreate the short-range
correlations that were missing from the “Independent”
simulations (though they showed worse performance
describing the overall MA landscape, see Figure 3A). Our
results suggested that interactions between AID and/or Polh
hotspots might largely explain the short-range correlations.

Previous work by ourselves and others had studied the
WGCW motif, which contains two overlapping AID hotspots
on opposite strands, and which tends to mutate particularly
highly (6, 7). In order to better explain the short-range
correlations, we sought to generalize the concept of
overlapping hotspots to include Polh (WA) hotspots, also
accounting for sequential overlaps, where a mutation in one
hotspot may create another hotspot that did not exist previously.
The WGCW motif is an instance of a mutual overlapping
hotspot, as is TA, which contains a WA hotspot on both
strands. However, in several cases Polh and AID hotspots form
one-sided overlaps such that mutation of one hotspot can
eliminate the other, but not the other way around.
Surprisingly, simply using the predicted sign for the
overlapping hotspot was as predictive of MA as using the far
more complicated ARMADiLLO method.
FIGURE 7 | Mean MA for all possible pairs of nucleotides separated by
different distances from each other.
FIGURE 8 | Profile describing abundance of generalized overlapping hotspots. Densities for the hotspots of Table 1 added together and weighted according to
expected abundance (see Materials and Methods).
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The sequences used in our analysis were purposefully chosen
from different clonal groups to ensure the independence of the
mutations therein. To extend our results a little further we sought
some direct evidence for our MA predictions within, rather than
between, clones. If, for example, we consider a pair of sites, such
as AGCT (an instance of the WGCW motif), and then compare
sequences derived from an ancestor with a mutation at one site
(which we will refer to as “Site 1”, e.g., the G in AGCT), to
sequences without that mutation, then we would expect the C in
the AGCT (“Site 2”) to mutate more often in the latter case
(unmutated G), consistent with the predicted negative MA.
However, it is also necessary to control for the number of
mutations between ancestral and derived before making such a
comparison. To test this approach, we analyzed two AGCT sites
(at positions 106 and 162) within IGHV3-23*01 that are highly
mutated and that were the focus of a previous study (7), where
the sites were labeled as “OHS1” and “OHS2”, respectively
(Table S1). Considering the G as “Site 1” first (and comparing
the mutation frequency of the C as “Site 2” across different
clones), then the opposite condition (C as “Site 1”, G as “Site 2”),
leads to two conditions for each of the two sites. Because of the
negative predicted MA, we expect the “Site 2” mutation
frequency to be lower when “Site 1” is mutated. A total of 41
comparisons were made at distances up to 14 mutations (Table
S1), of which 38/41 = 93% were in the predicted direction and, of
those, 33/38 = 87% were statistically significant (FDR corrected P
<0.05). We further confirmed that the mean direction was
significant for all conditions except OHS1/C-G, which only
had four data points (Table S1).

As shown in Figure 8, generalized overlapping hotspots are
more abundant in highly mutating subregions such as the CDRs,
although there are substantial densities also at the 5′ end of FW1
and within a subregion of FW3 often referred to as “CDR4” (25),
which is a pattern similar to that found in our previous analysis
that considered only WGCW and WA hotspots (9). Although to
an extent this is expected, given the higher density of hotspots in
CDRs, the fact that CDR mutations are subject to strong local
correlations shows that these key mutations are far less random
than previously appreciated. We found that overlapping hotspots
explain almost all significant correlations between nucleotide
pairs, whether adjacent or with gaps. The only exception was the
positive correlations between C nucleotides (and to a lesser
extent, Gs) mutations on the same strand, which may be
explained by AID processivity. Previous biochemical studies
have described AID processivity as acting by a jump and slide
mechanism both on naked ssDNA and on transient ssDNA
during transcription (33, 34). Although one previous analysis did
suggest there was processivity in vivo (22), the analysis we
present here is the first, to our knowledge, that shows a
mutation pattern consistent with processivity in vivo arising
from analysis of high throughput human IGHV data. At the
same time, very few nucleotide pairs had highly significant MA
values but did not fit into the generalized overlapping hotspot
scheme. For example, A adjacent to G (“AG”, see Table 3) or
“A_A” were both significantly positive. In both cases, MA
appeared to be stronger if one or both sites are hotspots, even
Frontiers in Immunology | www.frontiersin.org 13
if here they are adjacent (non-overlapping) hotspots. For
example, if we considered “AG” in the context of the motif
TAGYW and compare it to non-context AG pairs (as was done
for Table 2), we find the in-context AG pairs to be significantly
higher (in-context MA: 0.047, non-context MA: 0.008, Mann-
Whitney P = 3.05e-08). Similarly, for “A_A”, the difference is
higher if the second site is a hotspot, i.e., ATA (in-context MA:
0.032, non-context MA: 0.013, Mann-Whitney P = 4.78e-10).

Several mechanisms have previously been proposed that
potentially lead to multiple simultaneous mutations and,
therefore, to positive MA and possibly between relatively
distant mutation sites (35–37). In our analysis of productive
sequences, we do not observe any systematic evidence of such
mechanisms—Figure 7 shows no evidence for such associations
besides local ones, with the possible exception of AID
processivity discussed above. However, multiple simultaneous
mutations are likely to be filtered out by selection, since if more
mutations occur at once, it is more likely that at least one of them
will be disadvantageous. In the analysis of nonproductive
sequences we observe a slight increase in non-local signals (see
Figure S6A), which would be consistent with simultaneous
mutations that are not being selected against, although more
noise is also expected due to having less non-productive data.

Although most short-range MAs could be explained in terms
of the generalized OHS model, one of the strong local signals
which could not was the strong positive association between A
and G, when A is immediately followed by G. This particular case
may however be explained in terms of the model proposed by
Thientasapol et al. (37). In this study, the authors propose a
mechanism following an original C mutation in the context of an
AGCT, where one of the possible outcomes involves Polh
recruited to the strand opposite from the original mutation.
Here, the original mutation is not repaired by Polh while at the
same time new Polh mutation(s) may be introduced to the
opposite strand, leading to simultaneous AID and Polh
mutations and thus, to positive MA. Consistent with this
mechanism, we observe a particularly strong positive
association between A and G in a TAGYW context (adjacent
Polh and AID hotspots on opposite strands). Since we observe
this effect in a more general context than AGCT, it suggests that
this mechanism may be relevant to other WGCW motifs and
possibly even to regular AID hotspots. At the same time, because
the effect is only clear for a Polh hotspot immediately adjacent to
an AID hotspot, the effect may decrease rapidly with the distance
from original mutation with more distant occurrences being too
infrequent to overcome selection. Furthermore, since this effect is
observed for A and G, but not for C and T, this suggests a
potential strand bias.

Our results concerning overlaps between AID and Polh
hotspots also give us some clues as to why these particular
hotspot motifs (WRC, WA) have co-evolved and, as far as we
know, have remained evolutionarily stable throughout the jawed
vertebrates that use AID for somatic hypermutation (38). Polh is
a highly conserved enzyme in eukaryotes which also functions
during canonical DNA damage repair, for example in response
to sunlight UV-B radiation DNA damage (39). In contrast, AID
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functions almost exclusively during SHM and we know that, at
least in principle, its hotspot preference did not have to remain as
conserved because other members of the closely-related AID/
APOBEC cytidine deaminase family have evolved distinct
hotspots (40). Thus, it appears that AID and Polh hotspots
may be optimally suited to one another. For example, as shown
in Table 1, interactions between WA/TW and WRC motifs lead
to three possible one-sided overlaps and one sequential overlap.
In particular, WA can overlap a WRC motif both at the first
context nucleotide (WARC), at the second (AAC) or both
(TAC). Furthermore, as noted in the Results, any individual
mutation in a context nucleotide of WRC cannot lead directly
from a hotspot to a coldspot, suggesting the WA and WRC
hotspots may have co-evolved to generate gradual changes in
mutability. Another key function for AID is in class switch
recombination (15). Several previous studies have found that
WGCWmotifs such as AGCT are particularly highly mutated in
both V and switch regions, leading to DSBs in switch regions and
quite possibly in V regions also (41). The need for double-
stranded breaks (DSBs) may constrain the second context
nucleotide (WRC) to allow a G for this purpose, as it does
(R = A/G). Indeed, the WRC motif is optimal among all the
possible abC trimers (where a and b allow for two nucleotides
each), in terms of allowing overlaps with Polh hotspots while also
allowing potential DSBs (Table S2). From the perspective of
Polh overlaps, the motifs WMC and WWC are also good, but
neither of them contains a GC motif to facilitate DSBs. Recent
work by ourselves showed that co-localization of WGCW and
WA hotspots further appears to be a defining feature of the
CDRs across all human IGHV genes (9), which may also be
explained by their natural compatibility.

The generalized overlapping hotspots we have introduced so
far (Table 2) have a further potential to overlap with each other,
leading to a large number of composite motifs. For example,
consider the sequence GGTAGCAC situated at the 3′ end of
CDR2 within the IGHV3-23*01 allele (see Figure 4). Here, eight
different overlapping hotspot motifs (GGTA, GTA, GTA, TA,
TAGC, AGCA, AGCA, AGCAC) are packed within just eight
nucleotides (see Table S3). Furthermore, all of the predictions
Frontiers in Immunology | www.frontiersin.org 14
made by our overlapping hotspot model for these motifs fit the
observed MA values (Figure S4).
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