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The Natural Killer-Dendritic Cell
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Erin E. Peterson and Kevin C. Barry*
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Natural killer (NK) cells and dendritic cells (DCs) are crucial mediators of productive
immune responses to infection and disease. NK cells and a subtype of DCs, the type 1
conventional DCs (cDC1s), are individually important for regulating immune responses to
cancer in mice and humans. Recent work has found that NK cells and cDC1s engage in
intercellular cross-talk integral to initiating and coordinating adaptive immunity to cancer.
This NK cell-cDC1 axis has been linked to increased overall survival and responses to
anti-PD-1 immunotherapy in metastatic melanoma patients. Here, we review recent
findings on the role of NK cells and cDC1s in protective immune responses to cancer
and immunotherapy, as well as current therapies targeting this NK cel-cDC1 axis.
Further, we explore the concept that intercellular cross-talk between NK cells and
cDC1s may be key for many of the positive prognostic associations seen with NK cells
and DCs individually. It is clear that increasing our understanding of the NK cel-cDC1 innate
immune cell axis will be critical for the generation of novel therapies that can modulate anti-
cancer immunity and increase patient responses to common immunotherapies.
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INTRODUCTION

Natural killer (NK) cells are important innate immune effectors that belong to the family of innate
lymphoid cells (ILCs). In humans, NK cells are defined by the expression of CD56 (CD3"CD56"),
while the expression of NK1.1 and NKp46 (CD3"NK1.1"NKp46™) define NK cells in mice. Human
NK cells can be divided into two subsets—highly cytotoxic CD56""™CD16™¢" cells located primarily
in the peripheral blood, and cytokine-producing CD56"€"CD16%™ cells found predominately in
secondary lymphoid organs [rev. in (1, 2)]. Similar functional classes of NK cells are found in mice
and defined by the expression of TNF-receptor superfamily member CD27 and the integrin CD11b/
Mac-1 [rev. in (1, 2)]. NK cells are heterogeneous and plastic in nature, which leads to variable
expression of a number of markers (CD16, natural cytotoxicity receptors, and others) that can be
used to further classify NK cells based on their differentiation, tissue location, and
microenvironmental cues [rev. in (3, 4)].

NK cell effector functions consist of direct cytotoxicity to infected, transformed, and/or
physiologically stressed cells [rev. in (5, 6)] and modulation of immune responses through the
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production of cytokines and chemokines [rev. in (2, 7)]. These
functions are regulated by an intricate balance of germline-
encoded inhibitory and activating receptors [rev. in (2, 4)].
Inhibitory receptors expressed by NK cells include Ly49-type
inhibitory receptors (in mice), killer immunoglobulin-like
receptors (KIRs; in humans), and the CD94-NKG2A
heterodimer (in humans and mice) [rev. in (2)]. Activating
receptors expressed by NK cells include the natural cytotoxicity
receptors (NCRs) NKp46, NKp44, and NKp30, the lectin-like
type 2 transmembrane receptor NKG2D, DNAX accessory
molecule 1 (DNAMI1/CD226), and adhesion molecule
lymphocyte function-associated antigen-1 (LFA-1) [rev. in (2)].
These receptors balance inhibitory signals delivered through the
recognition of self MHC-I molecules and activating ligands that
are upregulated in response to cellular stress, infection, or
transformation [rev. in (2, 8, 9)]. Additionally, NK cell
function may be regulated by the immune checkpoint
molecules PD-1, CTLA-4, TIGIT, LAG3, and TIM-3 [rev. in
(4, 10)].

NK cells are integral to antiviral responses, anti-cancer immunity
[rev. in (2, 7, 11, 12)], and have a role in cancer prevention (13). NK
cell abundance in the tumor microenvironment (TME) is associated
with greater overall survival in patients with melanoma (14-18),
hepatocellular carcinoma (19), pulmonary adenocarcinoma (20),
renal cell carcinoma (21), gastric cancer (22), breast cancer (23),
squamous cell lung cancer (24), non-small cell lung cancer (25), and
neuroblastoma (26). The protective immunity provided by NK cells is
controlled by their direct cytotoxicity and the production of
immunomodulatory cytokines and chemokines that sculpt local
and distant immune cell responses [rev. in (2, 4, 7, 11, 12, 27)].
This critical association of NK cells with controlled tumor growth and
metastasis highlights their role as dynamic anti-cancer agents [rev. in
4, 7)].

Dendritic cells (DCs) are an innate immune myeloid cell that
provide an essential link between the innate and adaptive
immune responses. As specialized antigen-presenting cells DCs
play a key role in initiating T cell-mediated antigen-specific
immunity and tolerance [rev. in (28)]. DCs perform this role
by continuously sampling and presenting antigens to T cells via
major histocompatibility complex (MHC) I and II, a process that
is greatly increased upon activation [rev. in (29, 30)]. DC
functions are shaped by the integration of environmental cues
sensed by pattern recognition (PRRs) and cytokine receptors
[rev. in (29, 31)].

Conventional DCs can be classified most simply as cDC1 or
¢DC2, both of which express CD11c and MHC-II in humans and
mice [rev. in (32)]. cDC1s and cDC2s are defined by, and require,
distinct transcription factors and cell surface markers, possess
differential growth factor requirements, and, critically, undertake
distinct functions (29). ¢cDCls rely on the transcription and
growth factors BATF3, IRE8, BCL6, ID2, and FLT3L for
development, and can be defined by expression of the
chemokine receptor XCR1 and the C-type lectin endocytic
receptor CLEC9A [rev. in (29, 32-34)]. Human c¢DCls can be
further identified by BDCA3 expression, while murine cDCls
can be defined as CD103" or CD80." populations [rev in (29)].

c¢DC2s, on the other hand, depend on IRF4 and ZEB2 for
development and express CD11b and CD172a [rev. in (29,
32)]. Classically, cDCls are thought to induce robust CD8" T
cell responses, while cDC2s are thought to be more important for
CD4" T cell responses (29). cCD1s and ¢DC2s both play roles in
anti-cancer immunity [rev. in (32) (35)], but we will focus on the
protective effects of cDCls in this review.

The presence of cDCls in the TME is correlated with improved
clinical outcomes in numerous cancers and serves as a strong
biomarker for responsiveness to anti-PD-1 immunotherapy in
metastatic melanoma patients (16, 17, 26, 32, 36-38). While
cDCls are rare in human and murine tumors, they efficiently
cross-present exogenous antigens to CD8" T cells, are capable of
initiating de novo cytotoxic CD8" T cell responses after migrating to
the tumor-draining lymph node, and play an integral role in re-
priming CD8" T cells directly in the TME [rev. in (29, 32, 36)]
(Figure 1). Further, cDCls can contribute to T helper (Th) 1 cell
polarization of naive CD4" T cells [rev. in (29, 32, 36)]. Augmenting
cDC1 frequency in the tumor has resulted in enhanced tumor
responses (16, 17, 32, 39). Alternatively, the in vivo depletion of
cDCls is associated with failed tumor rejection, immune escape,
and an inability to respond to multiple T-cell immunotherapies—
such as immune checkpoint blockade and adoptive T cell therapy
[rev. in (29, 32)]. Accordingly, cDCls provide essential roles in anti-
cancer immune responses and offer promising immunotherapeutic
targets against cancer.

THE NATURAL KILLER-DENDRITIC CELL
INNATE IMMUNE AXIS IN CANCER

There is a rich literature surrounding the individual functions of
NK cells and DCs in anti-tumor immunity (2, 7, 16, 17). Recent
work supports an integral role for NK cells in shaping DC
maturation and promoting DC recruitment, retention, and/or
survival in the tumor (2, 7, 16, 17). It is well known that NK cells
can perform DC editing, a quality control process in which
activated NK cells selectively kill immature DCs to ensure
successful T cell priming by mature, immunogenic DCs [rev.
in (2, 4)]. NK cell editing of DCs established a direct, functional
relationship between NK cells and DCs [rev. in (2, 4)].
Emerging evidence indicates that NK cell-cDC1 interactions
have a profound effect on anti-cancer immunity (Figure 1). NK
cells promote the recruitment of cDCls into the TME through
the production of the chemokines CCL5, XCL1, and XCL2 (16).
This pathway is abrogated by the presence of tumor-derived
prostaglandin E2 (PGE,), which leads to impaired NK cell
function and downregulation of CCR5 and XCRI receptors on
¢DCls (16). CCL5 expression has further been linked to NK cells
and the abundance of ¢cDCls in neuroblastoma patient samples
(26). NK cells also produce FLT3LG, the formative cytokine for
¢DCls, in the TME (17) (Figure 1). FLT3LG expression and NK
cell abundance in the tumor are correlated with increased cDC1
levels, better overall survival, and increased responses to anti-
PD-1 immunotherapy in metastatic melanoma patients (17).
Further, cDCl1s and NK cells were positively correlated with
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FIGURE 1 | The NK cell-cDC1 axis modulates the TME to boost immune responses to cancer. NK cell production of the chemokines CCL5, XCL1, and XCL2
recruits cDC1s to the tumor. Additionally, FLT3L produced by NK cells increases survival and/or differentiation of cCD1s in the tumor. IFN-y produced by NK cells
enhances cDC1 antigen presentation and maturation and leads to cDC1 production of IL-12, which can increase NK cell activity. cDC1s can further modulate NK
cell activity through the expression of CD155 and/or CD112 which can signal through inhibitory receptors (TIGIT and CD96) or activating receptors (CD226/DNAM1)
expressed on NK cells. Activated cDC1s in the TME upregulate CCR7 and migrate to the tumor-draining lymph node, where they activate naive CD8* T cells.
Effector CD8" T cells are recruited to the TME, at least in part, by cDC1-produced CXCL9/10 and, critically, undergo local restimulation by cDC1s. Repriming of
CD8* T cells in the TME increases tumor control, patient survival, and improves responses to anti-PD-1 immunotherapy.

FLT3LG expression, T cell infiltration, increased survival, and the
expression of checkpoint molecules (PD-1 and PD-L1) in the
tumors of glioblastoma patients (26). NK cell production of
FLT3LG may increase ¢cDC1 survival in the TME, but other
mechanisms, such as increasing the differentiation of precursor
DC:s (pre-DCs), remain possible (17). The importance of FLT3L
control of cDCls in the tumor was further demonstrated in a
recent murine model of pancreatic ductal adenocarcinoma
(PDAC) where FLT3L and anti-CD40 combination therapy
restored ¢cDC1 infiltration, improved CD8" T cell and Thl
control of tumor growth, and boosted responses to external
radiation therapy (40, 41). These data suggest that NK cells play
an important role in recruiting and retaining ¢DCls in the
tumor, which subsequently activate protective anti-tumor
CD8" T cell responses (Figure 1).

The NK cell-cDC1 innate immune axis is undoubtably a
bidirectional relationship with cDCls playing an important role
in regulating NK cells in the tumor. The role of DCs in shaping
NK cell responses in cancer has been thoroughly reviewed
recently [rev. in (42)]; thus, we will provide a brief description

of these mechanisms and how they may affect the NK cell-cDC1
axis. Activated DCs produce IL-12, which stimulates NK cells
and anti-tumor T cell immunity [rev. in (32)] (43) (Figure 1).
Further, IL-12 production by tumor-infiltrating DCs is required
for effective anti-PD-1 immunotherapy responses (43). In
addition to cytokines, DCs express a number of cell adhesion
molecules with immune regulatory functions that can regulate
NK cells [rev. in (44-47)] (Figure 1). CD155 and CD112 are two
such molecules that are upregulated upon DC maturation and
activation and can signal through the receptors CD226/DNAMLI,
TIGIT (T cell immunoreceptor with immunoglobulin and ITIM
domains), and CD96 expressed on NK cells [rev. in (44-47)].
CD226 ligation by CD155 or CD112 can induce NK cell
activation, while ligation of TIGIT inhibits NK cells (rev. in
(44-47)]. Ligation of CD96 acts as an inhibitor of NK cell
responses in mice, but the role of CD96 in human NK cells
remains less clear (45). A recent study found that a subset of
CD112-expressing DCs in the TME of human hepatocellular
carcinoma interact with NK cells through CD226 and TIGIT
(48). These data suggest that expression of CD155 and CD112 by
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DCs can modulate NK cell responses in the tumor. Importantly,
NK cell expression of CD226 has been linked to the NK cell-
dependent killing of immature and mature DCs expressing
CD155 and CD112 (49), suggesting this pathway may play
multiple roles in shaping the NK cell-cDC1 axis. The
activation of NK cells by DCs (e.g., IL-12, CD226/CD155) may
act as a feed-forward loop to increase DC activation through the
induction of NK cell production of chemokines and cytokines,
subsequently improving anti-tumor immune responses [rev. in
(32)] (43). More research is needed to determine how DC-
dependent stimulation or inhibition of NK cells may shape
production of XCL1, XCL2, CCL5, and FLT3LG in the TME.
However, a bidirectional relationship between NK cells and
¢DCls in the TME clearly exists and targeting cDC1 factors
that influence NK cell activity may be another tool to increase
immune responses to cancer.

NK cells and ¢cDCls make stable and close interactions in the
TME of mouse ectopic B78 melanoma tumors (17) and multiplex
immunofluorescence imaging of human glioblastoma found a
similar close interaction (26). Given these findings, it is intriguing
to hypothesize that local concentrations of chemokines and
cytokines (e.g., FLT3LG, IFN-y, or IL-12), or receptor-ligand
interactions (e.g., CD226/CD155) that require cell-cell contacts,
may control the NK cell-cDC1 axis. The spatial organization of
NK cells and ¢DCls in the tumor may be an important factor in
controlling the NK cell-cDC1 axis (17, 26), but clearly more data is
needed to fully define this spatial regulation.

The NK cell-cDC1 axis is integral for controlling immune
responses to cancer and is linked to increased patient survival
and/or responses to immunotherapies in metastatic melanoma,
head and neck squamous cell carcinoma, triple negative breast
cancer, and neuroblastoma (16, 17, 26). It is important to note that
in certain tumor settings NK cells have been shown to have
inhibitory effects on DC functions (50-52) and DCs can have
inhibitory effects on NK cell functions [rev. in (44-47)]. These
findings suggest that there may be tumor-specific regulation of the
NK cell-cDCI1 axis and highlight the need for more detailed studies
of this innate immune axis across other cancer indications. The data
presented here suggest that a better understanding of the
mechanisms that influence the bidirectional relationship of NK
cells and ¢DCls in the tumor could be used to enhance existing
therapies or reveal new therapeutic avenues to protect patients
from cancer.

NK CELL REGULATION OF cDC1s IN
PRE-CLINICAL MODELS OF CANCER

The NK cell-cDC1 axis has been defined within the TME and, as
such, these cells are susceptible to tumor-induced immune
suppression [rev. in (53-55)]. Conditions in the TME can lead
to impairment of antigen presentation, activation of negative
costimulatory signals (i.e., immunological checkpoints), and
production of immunosuppressive and pro-apoptotic factors
[rev. in (53-55)]. Metabolic restrictions within the tumor are
also known to inhibit immune responses [rev. in (56)]. Namely,

nutrient and oxygen deficiency and increased concentration of
metabolic products (e.g., adenosine, lactic acid, retinoic acid)
(57-59) can pose significant challenges to infiltrating immune
cells [rev. in (32)]. As such, diverse strategies have been explored
to improve effector cell responses in cancer. Importantly, the NK
cell-cDC1 axis must be studied in the context of these
suppressive signals in the TME.

A number of studies have shown that shifting the cytokine
milieu or metabolic factors in the TME to modulate NK cells activity
can lead to protective immune responses to cancer [rev. in (2, 7)].
Here, we will review recent studies exploring these novel
mechanisms and, further pose the question: are the protective
responses seen by targeting NK cells, at least partially, due to
changes in NK cell regulation of cDCls in the tumor?

Adenosine 2A Receptor

Adenosine is an immunosuppressive metabolite present at high
levels in the TME [rev. in (60-63)]. Adenosine signaling through
A2A adenosine receptor (A2AR) on immune cells can dampen
anti-tumor immune responses [rev. in (64)]. In a recent study,
A2AR signaling was shown to inhibit NK cell maturation in mice at
homeostasis and in the tumor (65). Transcriptional profiling of
A2AR-deficient NK cells revealed decreased expression of the
receptor tyrosine kinase KIT (CD117) and the interleukin-18 (IL-
18) receptor ILI8RI (65). This transcriptional profile is interesting
because it is opposite to a population of pro-tumorigenic KIT" NK
cells found to deplete peripheral pools of DCs (51). These findings
suggest that inhibition of A2AR signaling in NK cells may lead to
improved anti-tumor activity through a maintenance of DC
populations. Further, A2AR-deficient NK cells were found to have
enhanced maturation, maintain a proliferative advantage over
wildtype NK cells, and protect against tumor development in a
transplantable BRAF-melanoma tumor model (65). Taken together,
these findings demonstrate that pairing A2AR antagonism with NK
cell-based immunotherapies may provide a combinatorial strategy
to improve therapeutic efficacy (65). Furthermore, these studies
suggest that A2AR inhibition may help maintain the NK cell-cDC1
axis. Additional work will provide more insight into the role of the
NK cell-cDC1 axis in the anti-tumor protection provided by
A2AR antagonism.

Interleukin-18 (IL-18)

Treatment with high doses of IL-18 induce increased inflammation
(66) and improved responses to immune checkpoint blockade (67)
and CAR-T cells (68). A recent study generated a decoy-resistant IL-
18 cytokine (DR-18) that has high binding affinity for the IL-18
receptor, IL-18Ra, but is unable to bind to the decoy receptor, IL-
18BP (69). DR-18 treatment protects animals from ectopic models
of melanoma (YUMMERI1.7) and colorectal cancer (MC38) (69).
Further, in f2m-deficient tumors, control of tumor growth by DR-
18 requires NK cells, and DR-18 treatment increases the abundance
of a cluster of NK cells that produce various effector molecule
transcripts (IFNG, PRF1, GZMB), as well as the chemokines CCL5
and CCL4, in the TME (69). CCL5 production by NK cells has
previously been linked to increased recruitment of ¢cDCls to the
TME (16). These data suggest that, in certain situations, NK cells
upregulate chemokines that could increase cDC1 levels in the TME
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in response to DR-18. However, in wildtype tumors, DR-18 acts
directly on T cells in the TME and functions independently of
cDCls (69). Thus, it is intriguing to speculate that, depending on the
setting, DR-18 treatment may protect against cancer in multiple
ways, including by modulating the NK cell-cDCI innate immune
axis. However, it appears that direct stimulation of T cells in the
TME may be the primary driver of protection, at least in the tumor
models tested thus far.

TIGIT and CD96

TIGIT and CD96 are inhibitory receptors that signal through
binding the shared ligand CD155 and CD112 or CDI111,
respectively (45). The role of TIGIT and CD96 in immune
responses to cancer has been thoroughly reviewed elsewhere
(45). As such, we will focus our discussion to recent findings
regarding the role of TIGIT in regulating NK cell responses
to cancer.

TIGIT" NK cells are found in human hepatocellular
carcinoma (70), human colorectal cancer, and a number of
murine tumor models, including breast cancer (4T1),
melanoma (B16), colon cancer (CT26), and MCA-induced
fibrosarcoma (71). Interestingly, genetic or antibody blockade
of TIGIT signaling on NK cells was found to increase NK cell
function and boost cytotoxic CD8" T cell responses and
protective T cell-mediated memory responses (71). NK cells
are required for the protective effects of anti-TIGIT alone or in
combination with anti-PD-L1 immunotherapy and, in fact, are
partially required for the protective immune responses caused by
anti-PD-L1 treatment alone (71). Protective responses induced
by anti-TIGIT treatment partially require IFN-y, and a role for
direct NK cell cytotoxicity cannot be ruled out (71). It remains to
be seen if these protective effects of NK cells in response to anti-
TIGIT therapy function through the modulation of cDCls in the
TME, but, given the strong effects this NK cell-dependent
treatment has on CD8" T cells, it is an intriguing hypothesis.

MODULATION OF THE NK CELL-cDCH1
AXIS IN THE CLINIC

NK cell-directed immunotherapies show great promise in the
clinic [rev. in (2, 7)]. However, it is unknown if current NK cell-
based therapies function through increasing cDCls in the tumor.
Here, we will discuss a recent clinical treatment, the intratumoral
electroporation of a plasmid encoding IL-12 (tavokinogene
telseplasmid; “tavo”) (72-74), and explore its potential role in
shaping the NK cell-cDC1 axis.

Interleukin-12 (IL-12), regulates NK cell and T cell responses,
promotes Th1 polarization, and is a potent regulator of immune
responses to infection and cancer [rev. in (75, 76)]. Systemic
treatment with recombinant IL-12 (rIL-12) has shown efficacy in
animal models of cancer, but these treatments are associated with
modest clinical response and serious adverse events in patients
[rev. in (77)]. Alternatively, intratumoral electroporation of tavo
(IL-12) was found to be safe in a Phase I clinical trial,

demonstrated preliminary efficacy by increasing intratumoral
IL-12 and IFN-vy, and led to remission in several patients (74).
Two recent Phase II clinical trials of tavo (IL-12) electroporation
found that this treatment leads to an increase in NK cell and
cDCl-related transcripts in the tumor, an increase in CD8" T
cells in the tumor, and activation of systemic immune responses
in treated patients (72, 73). In these studies, it was proposed that
intratumoral electroporation of tavo (IL-12) appears to boost NK
cell abundance in the tumor, which leads to an increase in
abundance of protective ¢DCls, increased T cell responses,
and, in some patients, durable responses to treatment (72). It
was further shown that intratumoral electroporation of tavo (IL-
12) can increase immune infiltration in poorly infiltrated
metastatic melanoma tumors and subsequently increase patient
responses to anti-PD-1 immunotherapy (73).

These studies suggest that targeting the NK cell-cDC1 innate
immune axis with the electroporation of IL-12 into the tumor
may have efficacy as a single agent and may shape the TME to be
more responsive to anti-PD-1 immunotherapy. It is important to
note that electroporation of tavo (IL-12) could act directly on T
cells to shape immune responses to melanoma, and thus more
basic and clinical research is needed to fully elucidate the
mechanisms by which this treatment is providing protection to
patients. However, these correlative findings are consistent with
IL-12 increasing NK cell activity in the TME and subsequently
boosting ¢DC1 abundance and CD8" T cell responses to
the tumor.

CONCLUSION

As highlighted in this review, NK cells and ¢cDCls have a rich
literature demonstrating their important individual roles in
supporting protective immune responses to cancer. We
propose that at least some of these protective roles are related
to the cross-talk between NK cells and cDCls. We have provided
evidence that the NK cell-cDC1 axis is a bidirectional
relationship with each cell type shaping the responses of the
other. We also highlight pre-clinical and clinical studies that
suggest that targeting the NK cell-cDC1 axis may provide novel
pathways to increase immune responses to cancer. We propose
that the NK cell-cDC1 axis should be considered in future studies
exploring the individual association of these cell types in
controlling immune responses to cancer. Clearly, the NK cell-
¢DCl innate immune axis has important roles in shaping
immune responses to cancer and future studies are needed to
determine exactly how this axis can be targeted and manipulated
as a tool to boost immune responses to cancer.
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