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In late December 2019, multiple atypical pneumonia cases resulted in severe acute
respiratory syndrome caused by a pathogen identified as a novel coronavirus SARS-CoV-
2. The most common coronavirus disease 2019 (COVID-19) symptoms are pneumonia,
fever, dry cough, and fatigue. However, some neurological complications following SARS-
CoV-2 infection include confusion, cerebrovascular diseases, ataxia, hypogeusia,
hyposmia, neuralgia, and seizures. Indeed, a growing literature demonstrates that
neurotropism is a common feature of coronaviruses; therefore, the infection
mechanisms already described in other coronaviruses may also be applicable for
SARS-CoV-2. Understanding the underlying pathogenetic mechanisms in the nervous
system infection and the neurological involvement is essential to assess possible long-
term neurological alteration of COVID-19. Here, we provide an overview of associated
literature regarding possible routes of COVID-19 neuroinvasion, such as the trans-
synapse-connected route in the olfactory pathway and peripheral nerve terminals and
its neurological implications in the central nervous system.

Keywords: severe acute respiratory syndrome coronavirus 2, coronavirus disease 2019, central nervous system,
neurotropism, neuroinvasion, neurological alterations, long-term sequelae
INTRODUCTION

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive single-stranded
RNA coronavirus responsible for the severe pneumonia coronavirus disease 2019 (COVID-19), as
the World Health Organization named in February 2020. As of December 2020, the World Health
Organization reported more than 71 million confirmed cases and more than 1.6 million deaths
worldwide. SARS-CoV-2 is the seventh member of the coronavirus family that infect humans.
Among them, NL63-CoV, HKU1-CoV, 229E-CoV, and OC43-CoV, typically cause common cold
symptoms, while SARS-CoV, MERS-CoV, and now the SARS-CoV-2 are responsible for the SARS
pandemic in 2002 and 2003, MERS in 2012 and the current COVID-19 pandemic, respectively (1).
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SARS-CoV-2 is a betacoronavirus that shares almost 80%
sequence identity with SARS-CoV and 50% sequence identity
with MERS-CoV (2). Similar to SARS-CoV, SARS-CoV-2 binds to
the enzymatic domain of the angiotensin-converting enzyme 2
(ACE-2) receptor exposed on the surface of several cell types,
including alveolar cells, intestinal epithelial cells, endothelial cells,
kidney cells, monocytes/macrophages, as well as neuroepithelial
cells and neurons (3, 4). After spike (S) protein binding to ACE-2
receptor, a subsequent cleavage by transmembrane protease serine
2, cathepsin, or furin, probably induces the endocytosis and
translocation of SARS-CoV-2 into endosomes (5, 6), or a direct
viral envelope fusion with host cell membrane for cell entry (7).
Interestingly, SARS-CoV-2 in silico modeling shows a highly
structural sequence similarity of 74-79% with SARS-CoV;
however, SARS-CoV-2 exhibits some differences associated with
a higher binding affinity ACE-2 receptor (8). It has been suggested
that the SARS-CoV-2 S protein is slightly more positively charged
than SARS-CoV, and the ACE-2 binding interface has a negative
electrostatic potential. This electrostatic difference allows a
stronger interaction between these two proteins (9, 10).
Therefore, this increased binding affinity may promote high
virulence of SARS-CoV-2 (11, 12).

COVID-19 symptoms include mild-to-medium fever, cough,
diarrhea, fatigue, and dyspnea, progressing to acute respiratory
distress syndrome (13). In addition to systemic symptoms,
patients also can experience neurological affectation, including
headache, dizziness, hypogeusia, hyposmia, myalgia, ataxia, and
seizures (14, 15). There are reports of brain edema, partial
neurodegeneration, even encephalitis in severe cases of COVID-
19 (13, 16, 17). To date, there is no described direct mechanism of
SARS-CoV-2 neuroinvasiveness (18). However, it is known that
coronaviruses are not always limited to the respiratory system, but
they can reach the central nervous system (CNS), inducing
neurological impairments (19). This neuroinvasive capacity has
been well demonstrated for most beta coronaviruses, including
SARS-CoV (20), MERS-CoV (21), 229E-CoV (22), OC43-CoV
(23), and HEV (24). Although the SARS-CoV-2 neuroinvasion
mechanism remains unknown, considering the high similar viral
sequence and infection pathways reported from other
betacoronavirus (i.e., SARS-CoV), a similar pathogenic process
may be applicable for SARS-CoV-2 (19).
NEUROINVASIVENESS PATHWAYS

Despite being a highly protected system with multilayer barriers,
the CNS can be reached by some viruses that can infect neurons
and glial cells (25). A significant evidence body demonstrates that
coronaviruses may reach the CNS inducing neurovirulence (26).
Nonetheless, coronaviruses’ determinant route to infect the CNS
has not been fully described (27). Usually, the viral infection
begins in the peripheral tissues with a subsequent spreading to
peripheral nerves and, finally, the CNS (28). This process may
explain neurological lesions’ presence, particularly demyelination
(29). Moreover, bypasses peripheral barriers, such as the blood-
brain barrier (BBB), would be another mechanism (28). In the
case of SARS-CoV-2 infection, hyposmia is denoted as one
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frequent symptom (16), indicating an olfactory dysfunction
probably due to neuronal and non-neuronal cells infection in
the olfactory system and the involvement of cranial nerves (30,
31). In this way, the CNS invasion, specifically the respiratory
center in the medulla and pons, may promote acute respiratory
distress in patients with COVID-19 (32).

Although experimental evidence regarding SARS-CoV-2
neuroinvasiveness is still lacking (33), post-mortem studies
evidenced the virus’s presence in the brain microvasculature,
cerebrospinal fluid, even neurons (4, 26, 34). Also, studies
demonstrated that the ACE-2 receptor is expressed on neuron
and glial cells of structures such as the olfactory epithelium, cortex,
striatum, substantia nigra, and the brain stem (35), supporting the
SARS-CoV-2 potential to infect cells throughout the CNS.
Therefore, there are suggested mechanisms for coronaviruses
neuroinvasion (Figure 1), including the neuronal anterograde and
retrograde spreading in the transcribial route (8, 16) and (19, 33) the
hematogenous route (36). The neuronal retrograde/anterograde
transport and the trans-synaptic transfer are supported by in vitro
studies where the SARS-CoV-2 is detected within neuronal soma
and neurites using human brain organoids (31, 37).
TRANSCRIBIAL ROUTE AND NEURONAL
TRANSPORT DISSEMINATION

Growing evidence shows that some coronaviruses first invade
peripheral nerve terminals, then are anterograde/retrograde
spread throughout the CNS via synapses (19, 24, 38), a well-
documented neuroinvasive route for coronaviruses such as
HEV67 (24, 39) and OC43-CoV (23). Among the peripheral
nerves, the olfactory nerve is considered one of the strongest
candidates for SARS-CoV-2 dissemination into CNS because of its
close localization to olfactory epithelium (27). The olfactory
epithelium cells highly express the ACE-2 receptor and the
TMPRSS2, necessary for viral binding, replication, and
accumulation (40). Recent studies found that neuropilins also
have an essential role in cell infectivity. Interestingly, while
neuropilin-1 alone promotes SARS-CoV-2 entry and infection,
its coexpression with ACE-2 and TMPRSS2 markedly potentiates
this effect (41). Similar to ACE-2 and TMPRSS2, the neuropilins
are expressed abundantly in the respiratory and olfactory
epithelium, becoming the nasal cavity epithelium, a key
infection site for CNS infection (8, 41). A recent study presented
evidence of SARS-CoV-2 entrance to CNS by crossing the neural-
mucosal interface with subsequent penetration of defined
neuroanatomical areas receiving olfactory tract projections,
including the primary respiratory and cardiovascular control
center in the medulla (42). Here, SARS-CoV-2 RNA and
characteristic CoV substructures were detectable in the olfactory
epithelium and olfactory mucus cells. A subsequent colocalization
study within the olfactory mucosa using neuronal markers
revealed a perinuclear S protein immunoreactivity in TuJ1+,
NF200+, and OMP+ neural cells (42). In this way, SARS-CoV-2
may penetrate the CNS throughout the olfactory receptor cells that
pass the cribriform plate contacting second-order neurons of the
spherical glomeruli (32, 43). This passage of the olfactory nerve
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via the cribriform plate of the ethmoidal bone was termed
transcribial route.

During HEV67 infection, the first coronavirus reported invading
porcine brains; the nasal mucosa, lung, and small intestine are first
infected. Then is spread to medullary neurons via peripheral nerves
using the clathrin-mediated endocytic/exocytic system (24, 44). In
OC43-CoV infection, a human coronavirus sharing more than
91% homology with HEV67 (45), once in the olfactory bulb, this
coronavirus can disseminate to the cortex and other regions
including the hippocampus and spinal cord (23, 46). In MHV-
CoV infection, the MHV-CoV also accesses the CNS through the
olfactory nerve and disseminates it to the limbic system and
brainstem (7, 47). The cortical areas with MHV-CoV persistence
are associated with demyelinating lesions due to the trafficking and
accumulation of T cells and macrophages that participate in myelin
destruction (48).

In the intranasal administration of SARS-CoV andMERS-CoV
into transgenic mice, the viral CNS invasion is possible through
the transcribial route, gaining direct access to the olfactory bulb,
and then spreading to the thalamus and brainstem (21, 49).
However, the exact mechanism of early CNS access is still
Frontiers in Immunology | www.frontiersin.org 3
unclear. In this context, it has been suggested that SARS-CoV-2
might spread from the olfactory epithelium to the olfactory bulb
towards the olfactory nerve, employing the endocytosis/exocytosis
system for transsynaptic transfer (34, 50).

In addition to the transcribial route and the olfactory nerve, the
virus may use other peripheral nerves such as the vagus nerve,
which lungs and gut afferents reach the brainstem (32, 51). The gut-
brain axis is a key component involved in disorders that affect the
CNS (52). Interestingly, SARS-CoV-2 was detected in COVID-19
patient feces (53). A recent in vitro study demonstrated the SARS-
CoV-2 capacity to infect human intestinal epithelium (54).
Moreover, it has been reported the anterograde and retrograde
viral transmission from duodenal cells to brainstem neurons (55).
Therefore, it is possible that upon enterocyte SARS-CoV-2
infection, a further transmission to glial and neuronal cells within
the enteric nervous system could reach the CNS via the vagus nerve
(27, 51). In this line, different sets of data demonstrated that initial
lung SARS-CoV infection leads to a secondary viral spreading to the
brain, particularly thalamus and brainstem regions such as
medullary nuclei of the dorsal vagal complex (56). Similarly,
Matsuda et al., 2004 reported the influenza A virus spreading
FIGURE 1 | Mechanisms of virion attachment/infection and possibles routes of SARS-CoV-2 neuroinvasiveness. SARS-CoV-2 spike protein interaction with the
ACE-2 receptor may promote a direct host cell membrane fusion and the virion nucleocapsid release or induce a Furin/TMPRSS2-mediated endocytosis. Once in the
epithelial cells, SARS-CoV-2 spreads to CNS through peripheral neurons in the olfactory epithelium and the second-order neurons along the olfactory nerve
(Transcribial route). Similarly, the virus may use different peripheral nerves such as the vagus nerve, which afferences from the lungs and gut reach the brainstem. In
the hematogenous route, the viremia induces the infection and viral transcytosis across vascular endothelial cells, as well as leukocytes infection and mobilization
towards the BBB, and in several cases, the BBB disruption. CS, Cytokine storm.
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from the respiratory tract to the vagal ganglia through the vagus
nerve, suggesting a possible transmission from the respiratory
mucosa to the nucleus of the solitary tract and the nucleus
ambiguous in the brain stem by vagal dissemination (57).
However, evidence regarding the enteric nervous system and the
SARS-CoV-2 vagus nerve dissemination is almost null, and further
research is required.

HEMATOGENOUS ROUTE

The infection and damage of cells of epithelial barriers allow the
virus entrance to the bloodstream and lymphatic system,
spreading to multiple organs, including the brain (50).
Specifically, the BBB is one of the most frequent viral entry
routes to the CNS (58). In this way, there are two possible
mechanisms for SARS-CoV-2 spreading, which involves the
circulation of viral particles into the bloodstream (25, 33): the
infection and viral transcytosis across vascular endothelial cells,
and the leukocytes infection and mobilization towards the BBB,
a well-described mechanism termed Trojan horse (59).

In the first scenario, the virus in peripheral circulation and the
sluggish blood flow within the microvasculature appear to be
responsible for the binding enhancement of S viral protein and
ACE-2 receptor in the capillary endothelium, promoting the viral
transport across the basolateral membrane (8, 60). A structural
analysis reported that viral-like particles were actively budding
across brain capillary endothelial cells, suggesting the
hematogenous route as the most probable pathway for SARS-
CoV-2 entry (4). Moreover, an in vivo research of MERS-CoV
tropism demonstrated a virus’s bloodstream circulation followed
the endothelial infection (61). Tseng et al. reported a low-level
viremia and brain detection of high viral titers two days after
intranasal inoculation of SARS-CoV, supporting the virus
transmission through the hematogenous route (62). Additionally,
SARS-CoV-2 triggers a systemic inflammatory response due to the
cytokine storm, with remarkable BBB permeability effects (58, 63).
The disruption of this barrier may result in the viral and infected
immune cell entry, promoting a further inflammatory response
enhancement (64).

In contrast, peripheral lymphocytes and macrophages’
possible infection allows their use as dissemination vehicles
facilitating the pass across BBB, meninges, and choroid plexus
(58, 65). Interestingly, the coronavirus ability to infect leukocytes
(mainly monocytes/macrophages) has been reported in the
229E-CoV and SARS-CoV (66, 67), but only in 229E-CoV has
reported the activation of chemokine secretion (67). This trojan
horse mechanism generally involves the extravasation of infected
leukocytes into meninges and the cerebrospinal fluid (68).
However, compelling evidence for immune cell infection by
SARS-CoV-2 is still unclear so far.

SHORT- AND LONG-TERMNEUROLOGICAL
MANIFESTATIONOF COVID-19

To date, it has beenwidely described that a broad spectrum of virus
infection can spread through the body and eventually reach and
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affect the mammalian peripheral nervous system (PNS) and CNS
when optimal conditions exist (28). Though coronaviruses are
mainly associated with upper and lower respiratory disease, their
particular neuroinvasive potential is associated with remarkably
neurological affections. The hypoxia promoted by respiratory
distress has been associated with disturbed brain metabolism and
a subsequent neurological manifestation (36). Notwithstanding,
there is still a debate regarding if the neurologicalmanifestations are
a primary neurologic symptomor secondary consequences of acute
respiratory distress syndrome. The evidence supports the
neuroinvasive and neurotropism and possible long-term
neurological sequelae of coronaviruses, including SARS-CoV and
MERS-CoV (69).

Regardless of neuroinvasiveness mechanisms, emergent data
fromcase reports andclinical studiesdemonstrated thatCOVID-19
patients exhibit some CNS and PNS complications, ranging from
mild to fatal incomes. The most frequent neurological symptoms
are mostly nonspecific in the short-term, such as loss of smell and
taste, headache, malaise, myalgias, and dizziness. In contrast,
moderate-to-severe cases developed acute cerebrovascular
diseases, impaired consciousness, and skeletal muscle injury (70).
Indeed, these manifestations can be considered a direct virus effect
in the CNS (19, 71).

Unfortunately, recovery of the acute infection does not promise a
full viral clearance, and if the infection becomes chronic, itmay result
in long-term sequelae, including chronic neurological impairment
(36). Some studies reported the coronavirus persistence in the CNS
and some neurologic and tissular affections (69). In mice surviving
acute encephalitis caused by OC43-CoV, the viral RNA could be
detected even six months post-infection; in correlation with the viral
persistence, these mice also display a reduced locomotor activity,
subjacent decreased density of hippocampal layers and gliosis
(72). Similarly, the RNA of MHV-CoV is detectable in the brain,
even 10–12-month post-infection. Surprisingly, the chronic-CNS
demyelination persists as late as 90 days post-infection to scattered
demyelinated axons at 16 months after infection (73). Interestingly,
case reports support that neurotropic viral infection promotes an
exacerbated inflammatory response leading to encephalitis or CNS-
target autoimmune (i.e., demyelination) response in COVID-19
patients (29, 58).

Guillain-Barre and Miller-Fisher cases are reported without
SARS-CoV-2 detection in cerebrospinal samples, supporting the
inflammatory response’s role in neurological manifestations (47,
74). Whether the dysregulated immune response remains after the
illness resolution, neurological disorders can be developed, including
dementia, depression, and anxiety (56, 75). Furthermore, the hypoxia
and cerebrovascular diseases reported in COVID-19 patients,
particularly encephalitis and stroke, are expected to produce
permanent or at least long-term neurological impairments (76).

AlthoughadirectassociationbetweenSARS-CoV-2andcognitive
impairment is still not correlated, the viral neurotropism and the
already reported neurological manifestations support this possible
association. A cohort study reported cognitive complaints after
SARS-CoV-2 infection, specifically between 10 and 35 days after
hospital discharge (71). Here, oxygen therapy and headache were
the main variables strongly related to poor performance in
neuropsychological tests, indicating cognitive deficits related to
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attention, memory, and executive function. A case series report
evidenced a marked cognitive impairment independent of delirium
(4ATscore for deliriumwasunobtrusive) in severely affected patients
after 4 to 5 weeks of acute disease onset (47). Another cohort study
reported an altered mental status, reflecting neurological and
psychiatric, such as encephalopathy, encephalitis, psychosis, and
dementia-like syndrome in patients from 23–94 years old; however,
cerebrovascular events predominated in older patients (77).

Currently, additional neurological complications reported in
other coronaviruses infectionsmay be applicable for SARS-CoV-2.
However, the precise and well documentation of neurological
symptoms, comprehend the immune response, and the direct
impact of brain infection is still needed to better prognosis and
prevent long-term effects of SARS-CoV-2 infection.
CONCLUSION

Regardless of the different routes of neuroinvasion, it has been
demonstrated that SARS-CoV-2 affects the CNS. As overwhelming
proof, there is the isolation of SARS-CoV-2 from cerebrospinal fluid,
the colocalization within the olfactory system, the ultrastructural
evidence of frontal lobe budding SARS-CoV-2, and the list of
neurologic manifestations in the COVID-19 patients. Unfortunately,
Frontiers in Immunology | www.frontiersin.org 5
it is unclear if the neurological symptoms of COVID-19 result from
cytokine storm-induced neuroinflammation or some brain areas’
infection. Nevertheless, the CNS and immune system involvement
might have remarkably neurologic long-term consequences, including
the development of neuropsychiatric disorders. Therefore, the
awareness of the CNS invasion pathways, the degree of CNS and
PNS involvement, and the time course of the viral spreads throughout
the nervous system will help comprehend the pathological
consequences better and improve the treatment’s diagnostic criteria
of possible neurological sequelae.
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