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Surfactant proteins A (SP-A) and D (SP-D) are soluble innate immune molecules which
maintain lung homeostasis through their dual roles as anti-infectious and
immunomodulatory agents. SP-A and SP-D bind numerous viruses including influenza
A virus, respiratory syncytial virus (RSV) and human immunodeficiency virus (HIV),
enhancing their clearance from mucosal points of entry and modulating the
inflammatory response. They also have diverse roles in mediating innate and adaptive
cell functions and in clearing apoptotic cells, allergens and other noxious particles. Here,
we review how the properties of these first line defense molecules modulate inflammatory
responses, as well as host-mediated immunopathology in response to viral infections.
Since SP-A and SP-D are known to offer protection from viral and other infections, if their
levels are decreased in some disease states as they are in severe asthma and chronic
obstructive pulmonary disease (COPD), this may confer an increased risk of viral infection
and exacerbations of disease. Recombinant molecules of SP-A and SP-D could be useful
in both blocking respiratory viral infection while also modulating the immune system to
prevent excessive inflammatory responses seen in, for example, RSV or coronavirus
disease 2019 (COVID-19). Recombinant SP-A and SP-D could have therapeutic potential
in neutralizing both current and future strains of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) virus as well as modulating the inflammation-mediated
pathology associated with COVID-19. A recombinant fragment of human (rfh)SP-D has
recently been shown to neutralize SARS-CoV-2. Further work investigating the potential
therapeutic role of SP-A and SP-D in COVID-19 and other infectious and inflammatory
diseases is indicated.
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INTRODUCTION

Surfactant proteins A (SP-A) and D (SP-D) are essential innate
immune molecules with important roles in lung health (1–3).
These work to both neutralize and enhance the clearance of
pathogens while modulating the inflammatory response (4, 5).
SP-A and SP-D play key roles in keeping the lungs in a non-
inflamed and infection-free homeostatic state to ensure efficient
gaseous exchange. In this review we focus on the dual roles of SP-
A and SP-D in immunoregulation and anti-viral defense and in
particular their role in protecting against immune-mediated
pathophysiological processes following viral infection.
Furthermore, we discuss the potential of recombinant versions
of these proteins as prophylactic treatments for infectious and
inflammatory diseases, ranging from neonatal chronic lung
disease to coronavirus disease 2019 (COVID-19).
PULMONARY SURFACTANT AND
SP-A AND SP-D

Pulmonary surfactant is an important lipoprotein complex of
the lung lining made of 90% lipids and 10% proteins.
Surfactant is produced predominantly by alveolar type 2 cells
and forms a mobile-liquid phase which covers the alveolar
epithelium to facilitate breathing by reducing surface
tension at end-expiration and preventing alveolar collapse
(6, 7). Surfactant proteins B (SP-B) and C (SP-C) are small
hydrophobic peptides of 14 kDa and 6 kDa, respectively.
These are involved in the packaging and recycling of
surfactant as well as contributing to its biophysical
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properties. Contrastingly, surfactant protein A (SP-A) and
surfactant protein D (SP-D) are large, soluble, hydrophilic
proteins which are expressed on most mucosal surfaces and
have key overlapping and distinct roles in innate immunity
and immunological homeostasis of the lung.

SP-A and SP-D form functional trimeric units, consisting of
four domains, a C-terminal carbohydrate binding domain
(CRD), an a-helical coiled-coil neck, a collagenous domain
and an N-terminal domain (Figure 1). SP-A and SP-D are
termed collectins as they contain collagen and are functional
(group III) lectins, which bind carbohydrates in a calcium-
dependent manner using their CRD. While the SP-D trimer is
a homotrimeric unit, SP-A is formed of two gene products, SP-
A1 and SP-A2, and some functional differences have been
described between these two molecules (9). Through
interaction of their N-terminal domains, these trimeric units
oligomerize into an octadecameric-like structure for SP-A, which
is similar to a bunch of flowers, and a dodecameric cruciform-
like structure which can further assemble into ‘stellate multimers’
for SP-D (Figure 1) (10). This multimerization enhances the
overall avidity of binding to carbohydrate targets and enhances
their capacity for pathogen agglutination.

Recombinant trimeric fragments of human SP-A (rfhSP-A)
and D (rfhSP-D) have been produced and consist of the CRD
and trimerizing neck regions and a collagenous stalk consisting
of 8 x Gly-Xaa-Yaa repeats. These lack the capacity to agglutinate
pathogens but maintain many of the anti-pathogenic and
immunomodulatory functions of the native proteins.
Furthermore, they have potential for development into
therapeutics for a variety of inflammatory and infectious lung
diseases (11–15).
FIGURE 1 | Structure of surfactant proteins A (SP-A) and SP-D. SP-A and SP-D contain four domains: the N-terminal domain (black), collagen-like domain (green),
neck region (blue) and carbohydrate recognition domain (CRD) (red). SP-A and SP-D form functional trimers and can then further oligomerize into an octadecameric-
like structure for SP-A and a dodecameric cruciform-like structure which can further assemble into ‘stellate multimers’ for SP-D. Also shown is the crystal structure of
the recombinant fragment of human SP-D (rfhSP-D) (8). rfhSP-D is formed of the CRD, neck and 8x Gly Xaa Yaa repeats of the collagen-like region.
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ANTI-VIRAL FUNCTIONS OF
SP-A AND SP-D

SP-A and SP-D bind to and neutralize a number of different
viruses (14). Their importance in protecting the lung against viral
infections has been demonstrated by the increased susceptibility
of SP-A and SP-D knockout mice to influenza A virus and
respiratory syncytial virus (RSV) infection and viral-mediated
inflammation (16–21).

Influenza A Virus
As compared with wildtype mice, both SP-A and SP-D knockout
mice have increased susceptibility to influenza infection with an
increase in viral load, infiltration of inflammatory cells, production
of inflammatory cytokines and immunopathology (17, 18, 22, 23).
SP-D neutralizes influenza virus through interaction with high
mannose oligosaccharides in close proximity to the hemagglutinin
(HA) binding site, preventing binding to the sialic acids on the host
cell (24). Administration of exogenous SP-D into the lung of SP-D
knockout mice decreases viral load and reduces neutrophil
infiltration, as well as levels of inflammatory cytokines within the
lung, including tumor necrosis factor alpha (TNF-a) and
interleukin (IL)-6. Similarly, rfhSP-D has been shown to
neutralize and downregulate pro-inflammatory cytokines in vitro
including TNF-a, interferon (IFN)-a, IFN-b, interleukin (IL)-6,
and regulated on activation normal T-cell expressed and secreted
(RANTES), upon influenza infection of a basal epithelial cell line
(25, 26). Comparatively, SP-A occupies the HA binding site
through its own salicylic acid, found naturally on the asparagine
187 residue of the CRD. This prevents binding of influenza to
salicylic acids on the host cell (27). Alongside increased viral loads,
SP-A knockout mice infected with influenza develop epithelial
injury and higher levels of IL-6, macrophage inflammatory protein
2 (MIP-2) and macrophage and neutrophil infiltration (20, 23).
Treatment with exogenous SP-A decreases influenza infection and
the production of inflammatory cytokines including TNF-a, IL-6
and IFN-g (28).

Although both SP-A and SP-D have overlapping roles in
neutralizing influenza virus, they also likely have distinct roles in
vivo. For example, SP-A but not SP-D has been shown to opsonize
influenza and enhance phagocytosis by rat macrophages (29). A
recent study further demonstrated that native human SP-A reduced
infection of an epithelial cell line by pH1N1 and H3N2 strains of
influenza in vitro (26). In this paper a rfhSP-A, which was
composed of the CRD and neck without a collagen stalk,
interacted with neuraminidase and matrix protein 1 in a calcium-
dependent manner. However, it was shown that this fragment
enhanced influenza infection as well as expression of
inflammatory cytokines TNF-a, IFN-a, IFN-b, IL-12, IL-6, and
RANTES, contrasting to the native molecule. This opposing effect of
the SP-A fragment is interesting and could be explained by its
expression in an Escherichia coli strain, which lacks the capacity to
addN-linked glycosylations to the expressed protein. This fragment,
therefore, lacks the asparagine 187 residue which is known to be
important for influenza A neutralization, which may mean that the
SP-A fragment interacts with influenza through a different
mechanism. Alternatively, the trimeric structure of this molecule
Frontiers in Immunology | www.frontiersin.org 3
as opposed to the octadecameric structure of the native protein
could impact the ability of this molecule to neutralize or aggregate
influenza and allow enhancement of epithelial cell infection. Further
work elucidating this difference between native SP-A and SP-D and
their recombinant fragments in ex vivo and epithelial-macrophage
co-culture models will be important to understand their role in the
influenza infected lung and the potential for therapeutic use (30).

Respiratory Syncytial Virus
RSV is the leading cause of lower respiratory tract infection in
infants worldwide and is characterized by an excessive immune
response with a T helper (Th)2 bias (31, 32). SP-A knockout
mice have an enhanced susceptibility to RSV, with increased viral
loads, infiltration of immune cells and production of
inflammatory cytokines including TNF-a, IL-6, and IL-1b
(18). In vitro work has demonstrated the capacity of SP-A to
neutralize RSV through binding the fusion (F) protein (33).
Furthermore, administration of native SP-A to SP-A knockout
mice both prevented RSV infection and decreased total
bronchoalveolar lavage (BAL) inflammatory cell numbers (33).
However, another in vitro study found native human SP-A to
bind to the attachment protein (G) of RSV and enhance the
update of RSV by Hep-2C cells, potentially via its N-terminal
domain (33). More recent research confirmed the role of native
SP-A in neutralizing RSV, but found trimeric rfhSP-A lacking
the N-terminal domain to be more efficacious (11). Further work
is, therefore, needed to investigate the importance of the N-
terminal domain in mediating RSV infection.

SP-D interacts with RSV through both the fusion (F) and
attachment (G) proteins (19). SP-D knockout mice also have
increased levels of inflammatory cytokines following RSV
infection including TNF-a , IL-1b , IL-6, and MIP-2.
Administration of either exogenous native human SP-D or
rfhSP-D into the lung neutralizes RSV in vivo (19, 35).
However, despite these early studies, there has been no recent
work demonstrating the importance of SP-D treatment in
preventing RSV-induced inflammation and immunopathology.
Further work will be key in assessing the potential of
recombinant SP-D as a therapeutic in RSV infections.

Parainfluenza is a virus related to RSV which commonly
infects the elderly and immunocompromised (36). However, the
role of SP-A and SP-D in modulating parainfluenza infection
and parainfluenza-mediated immunopathology is yet to be
described. SP-D has, however, been reported to inhibit
hemagglutination activity of Sendai virus, the related murine
parainfluenza virus (37). Further studies on the direct interaction
of SP-A and SP-D with parainfluenza are needed.

Coronaviruses
SP-A and SP-D play roles in modulating coronavirus infection
and early work demonstrated their ability to bind human
coronavirus 229E (HCoV-229E) virions and prevent infection
of human bronchial epithelial cells (38). Notably SP-D was more
efficient than SP-A at neutralizing HCoV-229E virions to prevent
human bronchial epithelial cell line infection. However, SP-A,
but not SP-D was demonstrated to reduce infection of human
alveolar macrophages (39).
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SP-D has been shown to bind the heavily glycosylated SARS-
coronavirus (CoV) spike (S) protein (39). Furthermore, pre-
incubation of SP-D with SARS S-protein increases binding of S-
protein to DCs, but not macrophages or a kidney epithelial cell line
(40). Plasma levels of SP-D have been found to be elevated in severe
acute respiratory syndrome (SARS)-related pneumonia, potentially
through leakage from the damaged lung into the blood (40).
Furthermore, recent studies have shown that COVID-19 patients
who went on to develop macrophage activation syndrome had
significantly higher serum levels of SP-D on admission and that
SP-A and SP-D serum levels correlated with more severe COVID-
19 disease (41, 42). Thus, early work suggests a role for SP-D in
SARS-CoV-2 infection, which may modulate infection and the
pathologic host inflammatory response. The level of SP-D in the
lung and potential role in SARS infection immunopathology,
therefore, merit consideration. Equally, the potential role of
serum SP-D levels as a potential biomarker in SARS-related
pneumonia warrants further investigation.

The severity of COVID-19 disease resulting from the current
SARS-CoV-2 pandemic is in part related to aberrant host-
inflammatory responses (43, 44). SP-A and SP-D could play roles
in modulating inflammation and binding to and neutralizing SARS-
CoV-2 through interaction with the spike protein which is also
heavily glycosylated (43) rfhSP-D has recently been shown to
compete with ACE-2 for binding of the S1 spike protein subunit
of SARS-CoV-2. Furthermore, rfhSP-D reduced infection of a cell
line by SARS-CoV-2 from clinical samples (45, 46). The impact of
rfhSP-D on the inflammatory response is still to be demonstrated.
However, rfhSP-D may have therapeutic potential in treatment of
COVID-19. The role of SP-A and SP-D in COVID-19 disease now
Frontiers in Immunology | www.frontiersin.org 4
needs to be fully determined in both the serum and lung in in vivo
and ex vivo models. Furthermore, the potential for recombinant
versions of SP-A and SP-D to modulate SARS-CoV-2 infection and
immunopathology warrants investigation.

Human Immunodeficiency Virus
Outside the lungs, SP-A and SP-D are expressed within the
urogenital tract and most other extra-pulmonary mucosal
surfaces (47–49). SP-A and SP-D play dual roles in HIV
infection and pre-incubation with HIV both neutralizes the
virus to prevent infection of a cluster of differentiation (CD)4+
T cell line (PM1 cells), as well as enhance infection of immature
monocyte-derived dendritic cells (IMDDCs) and subsequent
transfer to T cells (50, 51). SP-A binds to glycoprotein (gp)120
and blocks its interaction with both CD4 and Dendritic Cell-
Specific Intercellular adhesion molecule-3-Grabbing non-
integrin (DC-SIGN). Similarly, SP-D also binds gp120 and
gp41 and blocks the interaction of gp120 with DC-SIGN.
However, there have been conflicting reports around the
capacity of SP-D to disrupt the binding of gp120 to CD4 (50,
52). The mechanism by which SP-A and SP-D enhances uptake
into DCs is still not fully characterized. This could be through
interaction of the HIV-bound collectin with a host cell receptor
and agglutination of the virus to enhance uptake. Upon
occupation of the collectin CRD, SP-A and SP-D bind
numerous host cell receptors, principally through their N-
terminus (Table 1). A rfhSP-D molecule lacking the N-
terminal domain could therefore be advantageous in
neutralizing HIV without agglutination or interacting with
dendritic cell (DC) receptors. Pandit et al. demonstrated the
TABLE 1 | The interaction of surfactant proteins A (SP-A) and SP-D with host cell surface proteins, soluble proteins, and receptors.

Protein Target Cell/Function Collectin Reference

SPR-210 (Myosin 18A/CD245) Monocytes, macrophages, T-cells, type II epithelial cells SP-A (53–57)
CD14 Myeloid lineage cells SP-A and SP-D (58, 59)
DC-SIGN Macrophages and dendritic cells SP-D (60)
Calrecticulin/CD91 Macrophages, neutrophils SP-A and SP-D (61, 62)
CD93 (C1qRp) Endothelial cells, platelets, neutrophils, monocytes,

microglial cells, monocytes
SP-A (63, 64)

CR1 B cells, monocytes, neutrophils, monocytes,
microglial cells

SP-A (65)

SIRPa Myeloid lineage cells SP-A and SP-D (61, 66, 67)
SIRPb Myeloid lineage cells SP-D (67)
Osteoclast-Associated Receptor (OSCAR) CCR2+ monocytes SP-D (68)
NKp46 NK cells SP-D (69)
leukocyte‐associated Ig‐like receptreceptor‐1/2
(LAIR 1/2)

T cells SP-D (70)

Fc Receptor gII (FcgRII/CD32) Eosinophils SP-D (71)
TLR2, TLR4 and MD-2 Myeloid lineage cells SP-A and SP-D (72–75)
CR3 (CD11b/CD18) Macrophages SP-A (76, 77)
Ig-Hepta (GPR116) Type II cells SP-D (78)
Uroplakin Ia Bladder epithelial cells SP-D (79)
Epidermal Growth Factor Receptor (EGFR) Human lung adenocarcinoma epithelial cell lines SP-D (80)
Gp 340 Macrophages SP-A and SP-D (81, 82)
MPO Neutrophils SP-A and SP-D (83)
C1q Macrophages SP-A (84, 85)
Immunoglobulins Soluble SP-A and SP-D (86, 87)
Defensins Soluble SP-D (88, 89)
Decorin Soluble SP-D (90)
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function of rfhSP-D in neutralizing HIV to prevent T cell
infection. However, the effects of HIV pre-incubation with
rfhSP-D on DC uptake and subsequent transfer to T cells was
not determined (52). Dodagatta-Marri et al. demonstrated that
rfhSP-D inhibited HIV-1 transfer to activated peripheral blood
mononuclear cells when pre-incubated with a human embryonic
kidney cell line (60). They further demonstrated that rfhSP-D
was able to interact with DC-SIGN as well as compete with DC-
SIGN to interact with gp120. Further work directly comparing
the interaction with HIV of both native SP-A and SP-D and their
recombinant fragments would be useful to determine the
structure-function relationships affecting their capacity to
neutralize HIV and modulate viral transfer to T cells.

Alongside neutralization of HIV, SP-D has been shown to
play important roles in modulat ing HIV-mediated
inflammation. In vitro treatment of Jurkat T cells with SP-D
upon HIV infection decreased expression levels of IL-2, IFN-g,
vascular endothelial growth factor (VEGF), IL-1a, and TNF-a.
Similarly, treatment of peripheral blood mononuclear cells
(PBMCs) with SP-D during HIV infection decreased IL-2,
IFN-g, VEGF, IL-6, monocyte chemoattractant protein-1
(MCP-1) and IL-1b (52). However, despite the promising
potential of SP-A and SP-D for modulating HIV infection and
HIV mediated inflammation, the full impact of SP-A and SP-D
on HIV infection and immunopathology in vivo and in the
human disease is yet to be determined.

Other Current and Emerging Viruses
SP-A and SP-D are broadly selective innate immune proteins
and thus are likely to play key roles in modulating infection and
inflammation mediated by other viruses. SP-A, but not SP-D,
binds to human papillomavirus 16 (HPV16) pseudovirions and
enhances their uptake by RAW267.4 macrophages and clearance
in vivo (91). SP-A also binds herpes simplex virus (HSV) infected
cells, as well as HSV virions through its Asn187 carbohydrate
moiety to enhance phagocytosis by rat macrophages (92, 93).
Further work is needed to characterize the mechanism of SP-A
interactions with HPV and HSV and its role in modulating
inflammatory responses to these viruses (94).

SP-D but not SP-A has been demonstrated to bind to the
Ebola virus in a calcium-dependent manner through its CRD
(95). However, pre-incubation of human SP-D (but not rfhSP-D)
with the Ebola virus enhanced infection of Vero cells; this could
be mediated through membrane receptor interactions with the
collectin N-terminal domain. The potential of trimeric rfhSP-D
in therapeutic modulation of the aberrant pro-inflammatory
cytokine release by monocytes and macrophages in Ebola virus
infection is as yet untested (96), as it is for other currently
emerging viruses.
IMMUNOMODULATORY FUNCTIONS
OF SP-A AND SP-D

SP-A and SP-D are key defense molecules which neutralize a
range of viruses. However, a plethora of in vitro and in vivo
studies have demonstrated SP-A and SP-D as key players in
Frontiers in Immunology | www.frontiersin.org 5
directly modulating the innate and adaptive immune system
independent of infection (Figure 2). Through these mechanisms,
SP-A and SP-D could be important in balancing the
inflammatory response to prevent immune-mediated
pulmonary pathology, an important feature of influenza and
SARS-related viral pneumonia, as well as RSV induced
bronchiolitis (97, 98).
The Phenotype of SP-A and SP-D
Knockout Mice
The importance of SP-A and SP-D in maintaining lung
homeostasis is highlighted by the inflammatory phenotype of
the knockout mice. SP-D deficient mice have increased
infiltration of macrophages and activated T cells, the
appearance of foamy macrophages with an excessive level of
apoptotic and necrotic macrophages and alveolar type II cell
hyperplasia in the airways. They also have excessive levels of
phospholipids, overproduction of reactive oxygen species (ROS)
and increased levels of lung IL-6, IL-12 and metalloproteinases
(MMPs). By the age of three weeks, these mice already show
signs of a progressive emphysema-like phenotype with loss of
alveolar septation and the appearance of foamy macrophages
(99–101). This phenotype can be resolved upon therapeutic
treatment with rfhSP-D, which corrects the emphysema and
decreases the number of apoptotic and necrotic alveolar
macrophages, excess phospholipid production and alveolar
type II cell hyperplasia (100, 102).

Allergy mouse models have also demonstrated the role of SP-
D in immunoregulation with increased IL-13 levels and BAL
eosinophils upon ovalbumin sensitization in SP-D knockout
mice (103). Similarly, as compared with wildtype mice, SP-D
deficient mice exposed to Aspergillus fumigatus allergen have
enhanced CD4 T cells numbers, IgG1 and IgE immunoglobulins
and Th2 cytokines, with a decrease in IFN-g (104–106). This
highlights the potential role of SP-D in preventing Th2
inflammatory skewing, which has been shown to be important
in immune evasion by viruses such as RSV (107). SP-D knockout
mice also have an enhanced susceptibility to cigarette smoke-
induced airway inflammation with influx of alveolar
macrophages, secretion of chemokine (C-C motif) ligand 3
(CCL3) and IL-6 and upregulation of ceramide genes; rfhSP-D
alleviates this in vivo phenotype and attenuates cigarette smoke
induced human epithelial cell apoptosis (108).

By contrast, SP-A knockout mice kept in sterile vivarium
conditions have relatively unaltered lungs and normal lung
function. However, they also exhibit increased susceptibility to
a range of pathogens and enhanced inflammatory responses to
pathogen challenge, showing, for example higher levels of TNF-
a and nitric oxide metabolites upon intranasal delivery of
lipopolysaccharide (LPS); this is corrected upon therapeutic
treatment with exogenous SP-A (18, 22, 109–114). SP-A
deficient mice also show excessive inflammation following
allergen challenge with marked hyper-eosinophilia and
increased IL-5 and IL-13 upon challenge with Aspergillus
fumigatus allergens (106). This excessive inflammatory
response in SP-A and SP-D knockout mice to pathogen-
January 2021 | Volume 11 | Article 622598
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associated molecular patterns (PAMPs) on allergens and in
infection, highlights their critical role in maintaining the lung
in a non-inflamed condition, preserving homeostasis and
facilitating gas exchange. This may be crucial to both prevent
excessive inflammation and reduce viral-mediated lung
pathology in chronic lung diseases.
Frontiers in Immunology | www.frontiersin.org 6
Roles of SP-A and SP-D as Innate Immune
Scavenger Receptors
Agglutination of Bacteria and Fungi
and Their Components
SP-A and SP-D help preserve lung homeostasis by acting as
innate immune scavenger receptors (115, 116). Their importance
FIGURE 2 | Maintenance of homeostasis in the lung by surfactant protein D (SP-D). Shown is an overview of the roles of SP-D in the lung. Indicated is the role SP-D
plays in neutralizing, agglutinating and clearing viruses as well as reducing the inflammatory response upon infection with influenza A virus, respiratory syncytial virus (RSV),
and human immunodeficiency virus (HIV). The role of SP-D in enhancing phagocytosis by dendritic cells (DCs) while simultaneously reducing antigen presentation and
activation of co-stimulatory markers is indicated. Also shown is the role of SP-D in keeping T cells in a hyporesponsive state to increase CTLA4 expression, reduce T cell
proliferation, reduce allergen induced Th2 cytokine production and modulate apoptosis. The role of SP-D in clearing and agglutinating noxious particles, pollen and
pathogens is indicated. Similarly, the role of SP-D in enhancing macrophage-mediated pathogen killing, modulating inflammatory cytokine production by macrophages
and macrophage chemotaxis and reducing antigen presentation is displayed. Also shown is the role of SP-D in clearing apoptotic and necrotic cells in the lung as well as
its interaction with neutrophils in binding to neutrophil NETS, and eosinophil extracellular traps, preventing degranulation and modulating cytokine production. Finally, the
role of SP-D and rfhSP-D in correcting the phenotype of the SP-D knockout mouse is indicated, specifically their role in decreasing emphysema, excessive phospholipid
production, decreasing inflammatory cell and apoptotic and necrotic cell numbers, decreasing the level of reactive oxygen species (ROS), decreasing inflammatory
cytokines including IL-6 and IL-12 and decreasing the susceptibility of SP-D knockout mice to pathology as a result of challenge with pathogens, allergens and noxious
particles. Adapted from “Alveolar Epithelium (Comparison)”, by BioRender.com (2020). Retrieved from https://app.biorender.com/biorender-templates.
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in binding to and clearing an array of different gram negative and
positive bacteria and fungi, as well as their components, has been
widely reported (116–118). This can occur through interacting
with LPS through binding to terminal monosaccharides and lipid
A. Binding pathogens by SP-A and D leads to their agglutination,
while also directly enhancing uptake by macrophages and
neutrophils through interactions mediated by various receptors
(Table 1) (5, 116, 117, 119, 120). Comparative to the native
oligomeric proteins, fragments of SP-A and SP-D are trimeric
and lack the capacity to agglutinate bacteria. SP-A and SP-D can
also modulate receptor expression on macrophages including
mannose receptor, an important receptor for mediating
phagocytosis (121, 122). Alongside enhancing clearance of
pathogens, SP-A and SP-D also enhance macrophage-mediated
killing of bacteria through increasing the production of nitric
oxide as well as directly increasing membrane permeability of
gram negative bacteria to inhibit their growth (123–126).
However, Bordetella pertussis lipopolysaccharide resists the
bactericidal effects of pulmonary surfactant protein A and the
ability of SP-A to bind and aggregate the bacteria; this protective
effect was lost in LPS mutants which lacked the terminal
trisaccharides, suggesting that B. pertussis has evolved a
mechanism which shields against the anti-bacterial function of
SP-A (124). SP-A has been shown to enhance TNF-a and nitric
oxide mediated killing of Bacillus Calmette-Guerin by rat
macrophages (127). These roles could be particularly
important for the prevention of secondary bacterial infection
and resolution of inflammation following viral infection (128).

Clearance of Apoptotic and Necrotic Cells
Promoting the clearance of apoptotic cells before the later stages
of apoptosis and necrosis is important in preventing cell
membrane breakdown and leakage of toxic intracellular
enzymes, which can lead to inflammation and damage to the
delicate lung tissue (129, 130). Administration of rfhSP-D is
effective in clearing apoptotic and necrotic cells from the lungs
of SP-D knockout mice (100). Both SP-A and SP-D bind
and enhance the clearance of apoptotic cells, including
polymorphonuclear leukocytes (PMNs) and T cells, through
distinct mechanisms (131–135). SP-A and SP-D suppress
alveolar macrophage phagocytosis through binding of the CRD
to signal-regulatory protein (SIRP)a in the resting lung.
However, upon initiation of inflammation, SP-A and SP-D
activate phagocytosis through binding to the CD91 receptor.
Thus, SP-A and SP-D play flexible roles in modulating the
inflammatory response depending on the lung environment
(61, 66, 136).

Removal of Damage-Associated Molecular Patterns
(DAMPs) and Neutrophil Extracellular Traps (NETs)
During cell apoptosis, nuclear fragments migrate toward the
plasma membrane which form “bleb” like protrusions to display
deoxyribonucleic acid (DNA) and ribonucleoproteins at the cell
surface (137). One mechanism by which rfhSP-D has been
shown to bind to and enhance the clearance of apoptotic cells
in vivo is through binding genomic DNA (138). SP-D interacts
with neutrophil extracellular traps (NET) while simultaneously
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binding to carbohydrate ligands in vivo. Through this
mechanism, SP-D agglutinates Pseudomonas aeruginosa and
alters the mode of NET-mediated bacterial trapping (139). SP-
D has also been shown to inhibit eosinophil extracellular DNA
trap formation. This effect was lost upon nitrosylation of SP-D,
highlighting the potential differing role in modulating eosinophil
DNA trap formation depending on the inflammatory status of
the lung (140). Alongside binding to apoptotic cells, cell debris
and extracellular traps, SP-D binds free bacterial and host DNA.
Palaniyar et al. demonstrated the decreased clearance and
accumulation of both free DNA and auto-antibodies in SP-A
and SP-D knockout mice (141, 142).

Clearance of Allergens
Clearance of allergens is also an important function of SP-A and
SP-D as allergens may have a synergistic role with viruses in
inducing exacerbations of inflammatory lung diseases including
asthma (143). SP-A and SP-D are widely reported to bind to and
enhance the uptake and clearance of allergens from A. fumigatus
(144), house dust mite (145) and various types of pollen (146,
147). Furthermore, they modulate the allergen-induced
inflammatory response by reducing basophil, eosinophil and
mast cell degranulation to prevent the release of pro-
inflammatory mediators including histamine and beta-
hexosaminidase (106, 158–160, 162). rfhSP-D modulates
allergic inflammatory responses and reduces mast cell and
basophil degranulation in allergic inflammation in vivo. rfhSP-
D also both prevents eosinophil recruitment in allergen-
challenged mice and enhances the apoptosis and clearance of
primed eosinophils by macrophages and PBMCs (148–151).

Interaction With Noxious Particles
Inhalation of noxious particles is an important risk factor for the
development of inflammatory lung diseases such as chronic
obstructive pulmonary disease (COPD), and patients with
COPD have an increased risk of viral lower respiratory tract
infections (LRTI) (152–154). SP-A and SP-D agglutinate and
clear a range of different hydrophobic and hydrophilic
nanoparticles and rfhSP-D enhances the co-localization of
nanoparticles to epithelial cells in vitro (155, 156).
Nanoparticles may inhibit the capacity of SP-A and SP-D to
neutralize influenza virus (2, 155, 157). Diesel exhaust pollutant
exposed mice have an increased susceptibility to influenza and
RSV infection, associated with a decrease in surfactant protein
expression (157, 158). Thus, both decreased expression and
modulation of SP-A’s and SP-D’s anti-viral activity could play
roles in the increased susceptibility of smokers and COPD
patients to viral LRTI. Moreover, SP-A and SP-D could play
additional indirect roles in preventing viral infection and
inflammation through the clearance of noxious particles.

Modulation of the Innate Immune
Response by SP-A and SP-D
SP-A and SP-D interact with various receptors on innate
immune cells to modulate inflammation (Table 1) (119). An
elegant model by Gardai et al. demonstrated the dual manner by
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which SP-A and SP-D mediate or suppress inflammation,
dependent on the orientation of the collectin and, therefore,
receptor with which it interacts; a similar mechanism to their
role in modulating apoptosis (61). Gardai et al. described the
interaction of SP-A and SP-D through the CRD with SIRPa on
myeloid lineage cells in the resting lung. This was shown to
prevent pro-inflammatory cytokine production to maintain
homeostasis. However, upon occupation of the CRD through
pathogen binding, SP-A and SP-D instead interact with the
calrecticulin/CD91 receptor complex through their N-terminal
tails. This mediates the production of pro-inflammatory cytokine
production for anti-pathogen immune responses. An exemplar
of this dual role in viral infection has been demonstrated by the
ability of SP-D to decrease neutrophil burst in vitro, but increase
neutrophil burst in the presence of influenza (159).

SP-A and SP-D bind various other receptors on alveolar
macrophages and have been shown to reduce TNF-a production
through competing with LPS for CD14 binding (Table 1) (160).
Furthermore, SP-A and SP-D modulate inflammatory cytokine
production after stimulation of macrophages by cytokines or
PAMPs. For example, SP-A inhibits peptidoglycan-induced
TNF-a secretion upon binding to toll-like receptor (TLR)-2. SP-
A also inhibits TNF-a production in IFN-g stimulated
macrophages to reduce nitric oxide production (161, 162).
Minutti et al. demonstrated the role of SP-A in directly binding
to IFN-g and inhibiting IFN-g and LPS–induced TNF-a, inducible
nitric oxide synthase (iNOS), and C-X-C motif chemokine ligand
10 (CXCL10) production (163). SP-A and SP-D also mediate
alveolar macrophage and neutrophil chemotaxis and stimulate
alveolar macrophage directional actin polymerization (164–167).

Interactions With Newly Discovered
Receptors on Monocytes
Two new receptors have recently been discovered for SP-D on
monocytes which demonstrate the dual role SP-D plays in
modulating their functions through the collagen domain. SP-D
binds to Leukocyte-associated Ig-like receptor-1 (LAIR1), a
receptor expressed on neutrophils and monocytes, and
prevents the production of FcR-mediated ROS, in a human
myeloid leukemia cell (70). However, SP-D also binds to
osteoclast-associated receptor (OSCAR) on human C-C
chemokine receptor 2 positive (CCR2+) inflammatory
monocytes to activate TNF-a release through its collagen
domain (68). Further work to investigate the impact of these
interactions in anti-viral and inflammatory responses is needed.

Interaction With Innate Lymphoid and
Natural Killer Cells
Although there has been limited research investigating the
interaction of SP-A and SP-D with innate lymphoid cells
(ILC), one study demonstrated the importance of SP-D in
mediating effective ILC2-mediated immune responses to the
parasite Nippostrongylus brasiliensis (168). SP-D knockout
mice had an impaired ability to resolve N. brasiliensis
infection. However, intra-nasal treatment with rfhSP-D was
shown to increase numbers of IL-13 producing ILC2s and
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numbers of alternatively activated macrophages in the lung.
Moreover, rfhSP-D administration enhanced parasitic killing
during the larval L4 lung stage of its natural life cycle (168).

Natural killer (NK) cells are an essential component of the anti-
viral immune response. However, little is known about their
interaction with SP-A and SP-D. A study by Ge et al.
demonstrated a decreased IFN-g expression in SP-D knockout
mice upon ozone exposure (69). The authors hypothesized that
this decrease was as a result of the absence of SP-D interacting with
the glycosylated NKp46 receptor on NK cells (69). They further
postulated that this could play a role in the impaired dendritic cell
homing to lymphoid tissue seen in SP-D knockout mice. SP-A has
also been suggested to interact with NK cells through the SPR-210
receptor, now identified as Myosin 18A (or CD245) (53). A study
looking at the impact of SP-A onNK cell function found an increase
in IL-2 activated NK cell-mediated lymphokine-activated killer
(LAK) activity toward Epstein-Barr Virus-infected B cells (169).
These interactions could have important potential consequences for
modulating NK cell function in anti-viral and inflammatory
responses. Further work characterizing the role of SP-A and SP-D
in NK-cell mediated anti-viral responses may be important in
understanding the pathogenicity of emerging viral threats.

SP-A and SP-D: Orchestrators
of the Adaptive Immune System
Interaction With Dendritic Cells
SP-A and SP-D bridge the innate and adaptive immune system
through their functions in modulating DC function. These roles
could be key in directing the inflammatory response after
respiratory viral infection. SP-D knockout mice have increased
activation of DCs as demonstrated by CD11b and CD86 co-
stimulatory molecule upregulation and increased TNF-a
expression; this is corrected upon treatment with recombinant
murine SP-D (170). Furthermore, SP-A and SP-D modulate lung
DC function through inhibiting antigen presentation and SP-A
has been shown to inhibit E. coli antigen presentation, while
simultaneously increasing its phagocytosis (171, 172).

The resultant impact of collectin-modulated DC function on
T cells has been demonstrated by a decrease in LPS-mediated
major histocompatibility complex II (MHCII) and CD86
expression by DCs and a reduction in allo-stimulation of CD4
T cells upon treatment with SP-A. DCs from SP-D knockout
mice also express thymus and activation-regulated chemokine
(TARC), which is chemotactic for activated T cells (104).

Modulation of T Cell Responses
SP-A and SP-D directly modulate T cells and inhibit antigenic
and mitogenic induced T cell proliferation through both IL-2-
dependent and IL-2-independent mechanisms (173–178). They
also alter T cell function and activation. For example, SP-D
knockout mice have increased numbers of activated CD4 and
CD8 T cells which express CD69 and CD25, while SP-A has been
shown to reduce IFN-g production and T cell mediated
inflammation (101, 104, 178). Treatment with rfhSP-D both
decreases T cell activation and lymphoproliferation through the
upregulation of cytotoxic T-lymphocyte-associated protein 4
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(CTLA4), as well as decreasing allergen induced IgE production
by B cells (148, 179).

SP-D impacts the adaptive immune system by modulating T
cell apoptosis. This is seen through the prevention of caspase-8
and caspase-3 activation by SP-D to inhibit Fas (CD95)-Fas
ligand and tumor necrosis factor-related apoptosis-inducing
ligand (TRAIL)-TRAIL receptor induced apoptosis (180, 181).
T cells are essential in anti-viral immunity and collectins could
play roles in coordinating this response (182). Further
investigation of the roles of SP-A and SP-D in modulating T
cell-mediated responses and viral-mediated immunopathology is
now indicated, through the use of appropriate ex vivo viral and
inflammatory models (183).
DEFICIENCY OF COLLECTINS
IN INFLAMMATORY LUNG DISEASES

Consistent with their array of roles in viral immunity and lung
homeostasis, SP-A and SP-D deficiency may contribute to
pathological mechanisms in a range of respiratory diseases.
Winkler et al. demonstrated a decreased level of SP-D in the
airways of smokers, with a further reduction in patients with
COPD (2). This was inversely related to serum SP-D levels due to
leakage of alveolar SP-D across the inflamed or damaged alveolar
capillary membrane. Patients experiencing COPD exacerbations
have higher serum SP-D levels which are reduced by treatment
with anti-inflammatory glucocorticoids, highlighting its
potential role as a biomarker for COPD acute inflammation
(184, 185). SP-A and SP-D have also been shown to be reduced
in allergen-challenged asthma patients and lower airway levels
have been shown to correlate with asthma severity (1, 186).

Along with lipid surfactant, SP-A and SP-D levels are
deficient in premature neonates. However, these key proteins
are not replaced with current surfactant therapy, as they are not
present in current formulations. Low collectin levels are
correlated with risk of infection and development of neonatal
chronic lung disease, both in animal models of preterm lung
disease and in clinical studies. In particular, low SP-D levels in
human preterm infants soon after birth are linked with an
increased risk of neonatal chronic lung disease development (3,
187–189). SP-D levels increase in response to infection in the
preterm infant, but this acute phase response may be inadequate
to counter ongoing inflammation, due to degradation in the
inflamed preterm lung. Exogenous therapeutic recombinant SP-
D administration has been shown to reduce ventilation-induced
inflammation in preterm lambs, highlighting its potential to
reduce inflammation caused by barotrauma in ventilated
preterm infants developing neonatal chronic lung disease
(190, 191).

Deficiency of collectins in inflammatory lung diseases could
be related to multiple factors (Figure 3). Firstly, SP-A and D have
key roles as scavenger molecules in maintaining lung
homeostasis. Thus, in the chronic inflammatory environment
of the diseased lung, a constant turnover and degradation of SP-
A and SP-D through binding to and enhancing clearance of
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pathogens, noxious particles, apoptotic cells and cell debris could
lead to decreased levels. Furthermore, inflammatory mediators
which damage the delicate epithelium could compromise the air-
blood barrier with resultant leakage of SP-A and SP-D from the
lung into the blood. Alveolar type 2 cell injury could similarly
lead to a reduction in SP-A and SP-D lung levels due to decreased
synthesis (192).

Degradation of SP-A and SP-D through pathogen-derived
proteases and elevated endogenous proteases, secreted by
recruited inflammatory cells or released from dying and
damaged cells, may also play a role in reducing SP-A and SP-
D levels within the inflamed lung. SP-A and SP-D are
degraded through various host and pathogen-derived enzymes
including leucocyte elastase, proteinase 3, cathepsin G and
Pseudomonas elastase (193–196). Children with cystic fibrosis
have protease - antiprotease imbalance as well as coexisting low
levels of SP-A and SP-D (197–199). Decreased SP-A and SP-D
levels have also been found in BAL from children with RSV
infection (21). Low SP-A and SP-D levels in such inflammatory
lung diseases may both generate susceptibility to respiratory
viral infection and lead to an exaggerated damaging host
inflammatory response.
DISCUSSION

The potential for treatment of inflammatory diseases and
respiratory viral infections by augmentation of the innate
immune system is increasingly understood but as yet remains
unexploited (200–202). SP-A and SP-D are anti-viral innate
immune molecules and play key roles in orchestrating the innate
and adaptive immune system to limit inflammation, making these
mechanisms dually attractive as potential therapeutics.

Correction of SP-A and SP-D deficiency in inflammatory
respiratory diseases could be achieved by supplementation with
recombinant versions of SP-A and SP-D. However, development
of full-length recombinant SP-A and SP-D molecules as
therapeutics has been problematic due to low expression yields
in eukaryotic systems. Furthermore, difficulties with handling
of the proteins, with a tendency to oligomerize and/or
agglomerate, generates difficulties with precise stable molecular
characterization and solubility (203–208).

Smaller rfhSP-A and rfhSP-D trimeric fragment proteins
have been developed and have the advantage of being more
easily and cheaply produced in E. coli (209–211). These proteins
maintain many of the anti-viral and immunomodulatory
functions of the native proteins (11–13, 15, 45, 46, 212).
Furthermore, they contain the functional CRD binding domain
which mediates the anti-inflammatory collectin action through
interacting with SIRPa on innate immune cells (61). However,
they lack the majority of the collagen domain and the N-
terminus of the native full-length protein. The N-terminal
region has been shown to induce inflammation through
binding calrecticulin/CD91 and may be exploited to facilitate a
route of entry for viruses such as HIV, RSV, and the Ebola virus
(14, 96, 61).
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rfhSP-D functions to neutralize RSV, HIV and SARS-CoV-2
and modulates influenza-mediated inflammatory cytokine
production (25, 45, 46, 53, 52). rfhSP-D also corrects the
emphysematous phenotype seen in murine SP-D deficiency
and reduces levels of apoptotic and necrotic macrophages and
MMPs. rfhSP-D binds to and enhances the clearance of
apoptotic cells, free DNA and neutrophil and eosinophil
extracellular traps (139, 140) and modulates the adaptive
immune system to suppress proliferation and activation of T
cells through upregulation of CTLA4 (101, 179, 213). rfhSP-D,
therefore, has properties which suggest it may be useful both as a
prophylactic and treatment for infectious and inflammatory lung
diseases. rfhSP-A has been shown to neutralize RSV, but requires
further characterization (11).

Therapeutic rfhSP-D is currently under development for
treatment of premature neonates with neonatal RDS as an
adjunct to current surfactant therapies to help prevent the
development of chronic inflammation leading to neonatal
Frontiers in Immunology | www.frontiersin.org 10
chronic lung disease. This may help prevent the inflammatory
emphysematous phenotype seen in neonatal chronic lung disease
and reduce susceptibility to severe respiratory viral infection.
Alongside other inflammatory diseases such as asthma and
COPD, rfhSP-D could have therapeutic potential in emerging
respiratory infections such as SARS-CoV-2, by both neutralizing
the virus and modulating the inflammation-mediated pathology
associated with COVID-19.
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FIGURE 3 | Mechanisms for reduction in surfactant proteins A (SP-A) and SP-D in the lung during infection and inflammation. Indicated is the degradation of SP-A
and SP-D through their role as scavenger receptors to bind and enhance clearance of pathogens, noxious particles, apoptotic cells and cell debris (1); degradation
of SP-A and SP-D through pathogen-derived proteases and elevated endogenous proteases secreted by recruited inflammatory cells or released from dying and
damaged cells (2); damage to the alveolar epithelium leading to reduction of SP-A and SP-D production (3) and leakage into the blood (4). Adapted from “Cytokine
Storm”, by BioRender.com (2020). Retrieved from https://app.biorender.com/biorender-templates.
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