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The complex crosstalk between the immune and the skeletal systems plays an
indispensable role in the maintenance of skeletal homeostasis. Various cytokines are
involved, including interleukin (IL)-17A. A variety of immune and inflammatory cells
produces IL-17A, especially Th17 cells, a subtype of CD4+ T cells. IL-17A orchestrates
diverse inflammatory and immune processes. IL-17A induces direct and indirect effects on
osteoclasts. The dual role of IL-17A on osteoclasts partly depends on its concentrations
and interactions with other factors. Interestingly, IL-17A exerts a dual role in osteoblasts
in vitro. IL-17A is a bone-destroying cytokine in numerous immune-mediated bone
diseases including postmenopausal osteoporosis (PMOP), rheumatoid arthritis (RA),
psoriatic arthritis (PsA) and axial spondylarthritis (axSpA). This review will summarize
and discuss the pathophysiological roles of IL-17A on the skeletal system and its potential
strategies for application in immune-mediated bone diseases.

Keywords: osteoimmunology, interleukin-17A, osteoclasts, osteoblasts, postmenopausal osteoporosis,
rheumatoid arthritis, psoriatic arthritis, axial spondyloarthritis
INTRODUCTION

Over the last 20 years, a growing body of research has focused on the relationship between the
skeletal and immune systems. Subsequently, the term “osteoimmunology” was defined for this field
of study. Accumulating evidence has shown that multiple components of immune systems
including immune organs, multiple immune cells, and immune factors, participate in bone
metabolism. In turn, bone cells, including osteoclasts, osteoblasts, bone lining cells, and
osteocytes, are indispensable for the regulation of immune systems. The interaction between the
skeletal and immune systems constitutes a complex network and is involved in the pathological
process of many immune-mediated bone diseases. Recent studies have shown that IL-17A as one of
the immune-derived cytokines participates in the regulation of bone metabolism. Understanding
the effect of IL-17A on bone metabolism is more conducive to develop new-targeted drugs for
immune-related bone diseases. This review will summarize the current knowledge of IL-17A in the
skeletal system and will discuss the potential clinical value of IL-17A in immune-mediated
bone diseases.
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IL-17A SIGNALING PATHWAY
AND FUNCTION

The IL-17 family includes six major isoforms: IL-17A, IL-17B,
IL-17C, IL-17D, IL-17E, and IL-17F. Six of these isoforms
interact with the five receptors (IL-17RA-E), respectively (1).
IL-17A was the first member discovered and the most studied of
the IL-17 family. Thereafter, following large-scale sequencing of
the human and other vertebrate genomes, additional isoforms
homologous to IL-17A were found (2). In 1993, Rouvier et al.
cloned IL-17 for the first time. IL-17 was initially called
the murine cytotoxic T lymphocyte-associated antigen-8
(mCTLA8) and was found to share 57% homology with the
open reading frame 13 (ORF13) of Herpesvirus saimiri (HVS)
(3). Subsequently, Yao et al. and Fossiez et al. cloned IL-17A in
1995 and 1996, respectively. Humans and mice share 25% amino
acid sequence homology in IL-17A (4). IL-17A has been reported
to be involved in inflammation and hematopoiesis and its
secretion might be restricted to activated memory CD4 + T
cells (4, 5). Current studies indicate that IL-17A is mainly
produced by a special CD4+ T cell subtype, Th17 cells (6). In
addition, other types of lymphocytes including IL-17+ CD8+ T
cells (Tc17 cells) (7), invariant natural killer T (8), Foxp3+ Treg
cells (9), gd T cells (10), lymphoid−tissue inducer (LTi)−like cells
(11), innate lymphoid cell (ILC3) (12), and NK cells can produce
IL-17A. Besides, lymphocytes, myeloid cells including
macrophages/monocytes (13), neutrophils (14), mast cells (15),
Paneth cells (16) can secret IL-17A. Moreover, fibroblasts can
also produce IL-17A (17). Multiple cytokines affect the
expression of IL-17A, IL-1b, tumor necrosis factor (TNF)-b,
IL-21, and IL-23 stimulate the expression of IL-17A in T cells
(18), while interferon (IFN)-a inhibits the expression of IL-17A
in T cells (19). Thus, IL-17A is derived from a variety of immune
and inflammatory cells and its expression is regulated by a
variety of immune factors.

IL-17A interacts with its receptors to activate downstream
regulators and trigger cellular responses. Receptors for
IL-17A are ubiquitously expressed on the cellular surface
including synoviocytes, chondrocytes, fibroblasts, monocytes/
macrophages, mast cells (20, 21). Bone cells including
osteoclasts and osteoblasts also express IL-17RA (22). The
interaction between IL-17RA and IL-17RC forms a complex to
mediate the functions of IL-17A. The binding of IL-17A to the
related receptor sites of IL-17RA alters the affinity and specificity
of the symmetry receptor site. This response promotes the form
of IL-17RA/RC heterodimer and makes an optimal response to
mediate the functions of IL-17A homodimers (23, 24). Both IL-
17RA and IL-17RC are type I transmembrane proteins. IL-17RA
includes two extracellular fibronectin II-like domains and two
intracellular “SEFIR” domains (25, 26). The SEFIR is
homologous to Toll-IL-1R (TIR) domains found in the TLR/
IL-1R family and is crucial for triggering downstream signaling
events. IL-17A binds to its heterodimeric receptors complex and
then recruits Act1 to activate classic IL-17A signaling cascades
through receptor-associated factor 6 (TRAF6) proteins. TRAF6
binding subsequently triggers the mitogen-activated protein
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kinase (MAPK) pathway, extracellular signal–regulated kinase
1/2 (ERK1/2) pathway, and nuclear factor-kB (NF-kB) pathway.
Among the non-classical signaling pathways, IL-17A integrates
with epidermal growth factor receptor (EGFR), Notch 1,
homolog translocation-associated (NOTCH1), C-type lectin
receptor components, and interacts with fibroblast growth
factor (FGF) signaling to initiate downstream biological
responses (27).

In physiological conditions, IL-17A, as an immune and
inflammatory-related factor, plays a protective role in host
defenses against many bacterial and fungal pathogens (28). IL-
17A activates neutrophils to promote neutrophil recruitment and
accumulation (29). Meanwhile, IL-17A also affects the activity of
B and T cells to act as a bridge between innate and acquired
immune responses. Many studies have suggested that IL-17A is
involved in the pathophysiological process of multiple diseases,
including inflammatory bowel disease, breast cancer (30), lung
cancer (31), cardiovascular system (32), uveitis (33), rheumatoid
arthritis (RA), and psoriasis.
EFFECTS OF IL-17A ON THE
SKELETAL SYSTEM

Osteoclasts
The skeleton maintains physiological function through a
dynamic balance of bone formation and resorption. Osteoclasts
derive from the monocyte/macrophage lineage and are key
players in bone resorption. IL-17A acts directly on osteoclast
precursors. Exposure to IL-17A (0.1–1 ng/ml) induces the
expression of colony-stimulating factor-1 receptor (c-Fms) and
receptor activator of nuclear factor-kB (RANK) on human
peripheral blood mononuclear cells (hPBMCs), thereby
promoting more hPBMCs to differentiate into functional
osteoclasts. The effect is not dose-dependent, but 1 ng/ml of
IL-17A shows the best induction (34). The direct effect of IL-17A
on osteoclast precursors seems to be dependent on its
concentration. A low concentration of IL-17A (0.5ng/ml)
promotes autophagy of osteoclast precursors by activating the
RANKL-JNK signaling pathway, thereby enhancing RANKL-
induced osteoclast differentiation. However, treatment with a
high concentration of IL-17A (5–50 ng/ml) inhibits autophagy
and decreases osteoclast formation (35). In addition, a low level
of IL-17A can reduce the apoptosis of osteoclasts and thus
increases the number of osteoclasts by targeting the RANKL-
Beclin1-autophagy-TRAF3 pathway (36). In turn, high levels of
IL-17A increase apoptosis of osteoclasts and ultimately reduce
pro-osteoclast mediators including cathepsin K, tartrate-resistant
acid phosphatase (TRAP), and matrix metalloproteinase
(MMP)-9 (36, 37). Interestingly, a higher concentration of
IL-17A (100 ng/ml) promotes RANKL-induced polynuclear
osteoclast formation and increases the expression of RANK
and TRAP (38) (Figure 1).

Conversely, IL-17A can regulate osteoclast formation by
targeting osteoclast-supporting cells. When activated by
IL-17A, human bone marrow-derived mesenchymal stem cells
February 2021 | Volume 11 | Article 625034
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(hBM-MSCs) secrete M-CSF and RANKL, thereby supporting
osteoclastogenesis (39). When IL-17A binds to its receptors IL-
17RA SEFIR/TILL domain on pre-osteoclasts, they trigger Act1
adaptor protein and may activate downstream JAK2-STAT3
signaling to promote the expression of RANKL (40–43). The
upregulation of RANKL and the increase the ratio of RANKL/
osteoprotegerin (OPG) promotes osteoclastogenesis (44, 45).
Moreover, IL-17A stimulates osteoblast precursors to produce
cyclooxygenase-2 (COX-2) related-prostaglandin E2 (PGE2),
which is a facilitated factor in osteoclasts formation (46). The
synergistic effects of IL-17A and TNF-a activate NF-kB-
dependent pathways to promote the production of nitric oxide
synthase-2 (NOS-2) and nitric oxide (NO). NO triggers the
RANKL-RANK pathway to increase osteoclastic bone
resorption (47). In addition, IL-17A and TNF-a synergistically
induce osteoblast precursors to produce inflammatory factors
including IL-1a, IL-1b and IL-6. These cytokines can up-regulate
osteoclast activity (48). When activated by IL-17A, osteocytes
inhibit the ERK1/2-STAT3 pathway and increase the RANKL/
OPG ratio and TNF-a, thereby enhancing osteoclast formation.
Furthermore, due to the activation of reversed ephrinA2-EphA2
signaling and suppression of ephrinB2-EphB4 signaling between
Frontiers in Immunology | www.frontiersin.org 3
osteocytes and osteoclast precursors, RANK+ bone marrow
macrophages (BMMs) are increased, which influences
subsequent RANKL-dependent osteoclastogenesis (49). In
addition to providing osteoclastic activating factors, IL-17A
can promote the expression of inhibitory factors. IL-17A
promotes osteoblasts to produce granulocyte-macrophage
colony-stimulating factor (GM-CSF), which in turn reduces
the expression of RANK in osteoclast precursors and thus may
weaken RANKL-RANK signaling to inhibit osteoclastogenesis
(50). Moreover, GM-CSF maintains monocytes in an
undifferentiated state by downregulating c-Fos, Fra-1, and
nuclear factor of activated T cells 1 (Nfatc1) (51) (Figure 1).

The in vitro effects of IL-17A on osteoclasts are dual. Recent
findings indicate that the direct effects of IL-17A on
osteoclastogenesis are related to its concentration, but are not
dose-dependent. Low concentration of IL-17A promotes
osteoclastogenesis, while IL-17A begins to inhibit the
formation of osteoclasts as the concentration increases.
Strangely, further increases in the concentrations of IL-17A
promote osteoclastogenesis. The precise relationship requires
further exploration. In addition, IL-17A is involved in
osteoclastogenesis via other types of cells and factors. The
FIGURE 1 | Effects of IL-17A on osteoclasts. ① IL-17A is produced by multiple lymphocytes including Treg cells, IL-17+ CD8+ T cells (Tc17 cells), gd T cells, invariant
natural killer T (iNK cells), and Th17 cells. Myeloid cells including macrophages/monocytes, neutrophils and mast cells can also secrete IL-17A. Th17 cells are the
main source of IL-17A. ② Low concentrations of IL-17A promote osteoclastogenesis through the RANKL-JNK signaling pathway and reduces the apoptosis of
osteoclasts through the RANKL-Beclin1-autophagy-TRAF3 pathway. IL-17A increases the expression of c-Fms in osteoclast precursors to promote proliferation and
differentiation. IL-17A increases the number of RANK+ osteoclast precursors to influence subsequent RANKL-dependent osteoclastogenesis. ③ High concentration
of IL-17A (5–50 ng/ml) inhibits osteoclastogenesis through the RANKL-JNK signaling pathway and promotes the apoptosis of osteoclasts through the RANKL-
Beclin1-autophagy-TRAF3 pathway. However, a higher concentration of IL-17A (100 ng/ml) increases the number of RANK+ osteoclast precursors and induces
polynuclear osteoclast formation. ④ IL-17A acts on osteoclast-supporting cells including mesenchymal stem cells, osteoblasts and osteocytes to produce various
cytokines and molecules to regulate osteoclastogenesis indirectly.
February 2021 | Volume 11 | Article 625034
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integrated network of cells and the factors they produce makes
the specific effects attributable to IL-17A difficult to determine.
The dominant effect may vary in different states. Thus, the role of
IL-17A needs to be explored in more complex environments
in vivo.

Osteoblasts
The osteoblast is another important player involved in
maintaining bone homeostasis. When IL-17A binds receptors
on pre-osteoblasts, it promotes their proliferation in a dose-
dependent manner (49, 52, 53). When IL-17A activates TRAF6
and Act1 to initiate Ras-related C3 botulinum toxin substrate 1
guanosine triphosphatase (Rac1 GTPase) and NADPH oxidase 1
(Nox1), the expression of reactive oxygen species (ROS) is
upregulated to promote pre-osteoblasts proliferation (39).

Slightly confusingly, the effects of IL-17A on osteoblastic
differentiation in vitro are fraught with contradictions. A study
showed that IL−17A promoted the differentiation of murine pre-
osteoblastic MC3T3−E1 through the phosphoinositide 3-kinase-
serine/threonine kinases (PI3K-AKT) pathway, whereas another
study showed that IL−17A of the same concentration inhibited
osteoblastic differentiation of MC3T3‐E1 (54, 55). IL-17A can
cause an increase in the osteoblastic differentiation of murine
calvarial osteoblasts by up-regulating the expression of genes
involved in osteoblastic differentiation including Runx2, ALP,
osterix, osteocalcin and type I collagen (Colla1), osteoprotegerin
(OPG), bone sialoprotein (Ibsp), and osteopontin (Spp1) (43,
44). However, IL-17A inhibits osteogenic differentiation of rat
calvarial osteoblast cells by down-regulating expression of genes
involved in osteoblastic differentiation including Runx2, ALP,
osterix, osteocalcin and type I collagen (56, 57). Different species
lead to the expressed differential of IL-17R, which might partly
explain this opposite effect (56). When activated by IL-17A, mice
bone marrow mesenchymal stem cells (BM-MSCs) secrete IL‐6
and IL‐1b, thereby activating the AKT, STAT3, and ERK1/2
pathways to promote osteoblastic differentiation (55). However,
IL-17A inhibits the Wnt signaling, resulting in reduced levels of
osteoblast differentiation markers (osterix and osteocalcin) and
early osteocyte markers (Dmp1 and Phex), thereby inhibiting
osteoblastic differentiation of BM-MSCs (52). Moreover, IL-17A
increases the expression of N-cadherin to inhibit PTHR1-LRP-6
interaction in osteoblasts, which also can inhibit the Wnt-
signaling pathway (58) (Figure 2).

Studies involving human pre-osteoblasts have indicated that
IL-17A could promote bone-derived cells to differentiate into
osteoblasts through JAK2/STAT3 signaling (59). In addition, IL-
17A promotes the differentiation of hBM-MSCs into osteoblasts
and promotes the mineralization of osteoblasts by upregulating
bone formation-related gene ALP and Runx2 (39). The
synergistic effects of IL-17A and bone morphogenetic protein-2
(BMP-2) promote the osteogenic differentiation of hBM-MSCs
(60). Besides, the synergistic effects of IL-17A and TNF-a
enhance osteogenic differentiation and mineralization of hBM-
MSCs by down-regulating Dickkopf-1 (DKK-1), an inhibitor of
the Wnt-signaling pathway (61). Osteoblasts and adipocytes are
differentiated from a common pluripotent precursor, the
mesenchymal stem cell (MSC). Many studies have suggested
Frontiers in Immunology | www.frontiersin.org 4
the differentiation decision of osteoblasts and adipocytes is
delicately balanced and may even have a competitive
relationship. IL-17A may steer mesenchymal stem cells into an
osteogenic fate. IL-17A activates COX-2-induced prostaglandin
E2 to inhibit lipid-related proteins include PPAR-g, FABP4, and
adiponectin. Therefore, the differentiation of hBM-MSCs into
adipocytes is reduced (62). However, one study indicated that IL-
17A inhibited osteogenic differentiation with up-regulated
expression of the Wnt antagonist secreted frizzled-related
protein 1 (sFRP1) and down-regulated expression of Wnt3 and
Wnt6 in hBM-MSCs (63) (Figure 2).

The in vitro effects of IL-17A on osteoblasts are difficult to be
defined. The effects of IL-17A on osteoblasts may not depend on
the concentrations. IL-17A probably exerts distinct roles
depending on the in vitro model used to assess osteoblast
development. In addition, different species may also be partly
responsible for the controversial results. It is not excluded that
the different experimental methods also influence results. To
achieve the precise effects of IL-17A on osteoblasts, the type of in
vitro model, the correspondence between in vitro or in vivo
effects, and the similarity of the effects between animal models
and humans should be considered.
EFFECTS OF IL-17A ON BONE DISEASE

The knockout of IL-17A or its receptors in animal models does
not affect bone mass, osteoclast numbers, or osteoblast numbers
(34, 40, 64–66). Moreover, neutralizing antibodies directed
against IL-17A in wild-type mice also do not influence bone
mass (65). These results indicate that IL-17A might not have any
effect on bone under normal physiological conditions, and it only
plays a role in inflammatory conditions or injury. The
involvement of IL-17A in immune-mediated bone disease is
worthy of exploration.

Postmenopausal Osteoporosis
Women undergoing natural menopause often experience
postmenopausal osteoporosis (PMOP) with a decrease in bone
mineral density (BMD) and an increased risk of fractures (67).
Estrogen deficiency is the pivotal reason for PMOP. Estrogen
deficiency increases osteoclast formation by increasing the
number of hematopoietic progenitors and recruiting osteoclast
progenitors. Likewise, estrogen deficiency allows prolonged
survival of osteoclasts, and the net increase in bone resorption
leads to bone loss (68, 69). Recent studies show that
osteoimmunology is involved in the pathogenesis of PMOP.
Furthermore, T-cell activity is increased while B-cell activity is
decreased in postmenopausal women (70, 71). Estrogen
deficiency can activate T cells and promotes the production of
a variety of immune factors. These factors include IL-6 (72),
TNF-a (73), IFN-g (74), IL-1b, and TNF-b (75), all of which
enhance bone loss.

Despite one study showing that the level of serum IL-17A in
postmenopausal women with low BMD is not significantly
different from that in women with normal BMD (76), other
studies have indicated that postmenopausal women with
February 2021 | Volume 11 | Article 625034
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osteoporosis have a higher concentration of serum IL-17A, and
have more peripheral blood IL-17-producing CD4+ T-cells (58,
77–80). In postmenopausal women with osteoporosis, the
concentration of serum IL-17A is negatively correlated with
BMD, but is positively correlated with sRANKL level (78, 79).

In animal studies, ovariectomy (OVX) causes estrogen
deficiency and bone loss. The drastic reduction of estrogen
increases expression of the differentiation factors of Th17
including STAT3, ROR-a, and ROR-gt, which indicates that
more peripheral blood mononuclear cells can differentiate into
Th17 and produce IL-17A (80). The level of IL-17A in the bone
marrow and blood are increased after OVX (38). IL-17RA
knockdown and anti-IL17 antibody injection both protect
against bone loss caused by estrogen deficiency (40). Anti-IL-
17 antibodies and parathyroid hormone (PTH) can be used in
combination to further protect OVX-induced bone loss (58, 81).
Anti-IL17 antibodies exert a bone protective effect by inhibiting
osteoclast formation, decreasing the apoptosis of osteoblasts and
promoting the formation of mineralized nodules. Moreover, the
Frontiers in Immunology | www.frontiersin.org 5
blocking of IL-17A may inhibit osteoblasts to produce
osteoclastogenic factors including TNF-a, IL-6, and RANKL in
OVX mice (38, 40). Interestingly, anti-IL-17A antibodies have
also been reported to reverse the higher frequency of CD4+ T
cells and the proliferation of B220+ cells in bone marrow caused
by estrogen deficiency. Anti-IL-17A antibodies exert an
immuno-protective effect and translate to superior skeletal
outcomes (81).

Rheumatoid Arthritis
RA is an autoimmune disease characterized by the upregulation
of various immune factors that recruit and activate various
immune cells, especially T and B cells to destroy cartilage and
bone (82). RA patients have higher levels of IL-17A in synovial
tissue and fluid compared with normal subjects (83–85). In a 2-
year prospective study, the expression of IL-17A in synovial
tissues was associated with increased joint damage progression in
RA (86). Except for synovial tissue, RA patients have a higher
concentration of serum IL-17A, which is proportional to the
FIGURE 2 | Effects of IL-17A on osteoblasts. ①IL−17A promotes MC3T3-E1 to differentiate into osteoblasts by activating the PI3K-AKT signaling pathways,
whereas another study indicated that IL-17A inhibited osteoblastic differentiation of MC3T3-E1. ② IL-17A upregulates Runx2 and osterix expression to promote mice
calvarial osteoblast to differentiate into mature osteoblast, whereas downregulates Runx2 and osterix expression to inhibit rat calvarial osteoblast to differentiate into
mature osteoblast. ③ IL-17A promotes the secrete of IL‐6 and IL‐1b to activate the AKT, STAT3, and ERK1/2 pathways and promotes osteoblastic differentiation of
bone marrow mesenchymal stem cells (BM-MSCs), whereas IL-17A inhibits osteoblastic differentiation through inhibiting the Wnt signaling pathway.④ IL-17A
promotes human BM-MSCs (hBM-MSCs) to differentiate into osteoblasts by upregulating Runx2 expression. IL-17A with bone morphogenetic protein-2 (BMP-2) or
with tumor necrosis factor (TNF)-a synergistically enhance osteogenic differentiation. However, IL-17A inhibits osteoblastic differentiation of hBM-MSCs by inhibiting
the Wnt signaling pathway. ⑤ IL-17A promotes bone-derived cells to differentiate into osteoblasts by activating the JAK2-STAT3 signaling pathways.
February 2021 | Volume 11 | Article 625034
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severity of RA (87–90). Moreover, the PBMCs of patients with
RA produce more IL-17A (91). The increased levels of IL-17A in
synovial fluid, serum, PBMCs are associated with the Disease
Activity Score of 28 joints (DAS28), and levels of C-reactive
protein (CRP), the erythrocyte sedimentation rate (ESR), and
rheumatoid factor (RF) expression (92, 93). In addition, evidence
suggests that IL-17A is not only related to the progression of the
disease but is also associates with the occurrence of the disease.
Studies indicate that IL-17A plays an important role in the pre-
onset, early, and chronic stages of RA (94, 95).

Collagen-induced arthritis (CIA) is the most common animal
model for studies involving RA (96). High levels of IL-17A are
detected in CD4+ T cells and gdT cells located in joints of CIA
mice (97). Th17 cells are localized adjacent to osteoclasts in the
subarticular cartilage and express IL-17A, indicating the
involvement of IL-17A in bone destruction of CIA (97). Local
injection of IL-17A in the joint increases the morbidity of CIA
and joint damage, while local injection of an adenoviral vector
expressing murine IL-17A in the joint also accelerates the
initiation of CIA and inflammation (98). Treatment with a
soluble IL-17R fusion protein or anti-IL-17A antibody prevents
bone erosion and the initiation of CIA (99, 100). In the
progression of CIA, the local injection of IL-17A in knee-joint
promotes arthritis and exacerbates joint damage (101). Anti-IL-
17A antibodies ameliorate the severity of arthritis, cartilage
damage, and bone loss (97, 102). Combinations that neutralize
both TNF-a and IL-17A can also alleviate CIA progression
(103). The combination of anti-IL-1b and anti-IL-17A
antibodies significantly reduce the severity of arthritis,
alleviates bone and cartilage damage, and down-regulates IL-
1b, IL-6, IL-17A, IFN-g, RANKL, and MMP-3 (104, 105). IL-17A
plays an important role not only in the pathogenesis but also in
the progression of the disease. Moreover, IL-17A is involved in
the pathological process of bone erosion and bone loss.

The pathological mechanism of IL-17A may involve the
immune activation and an immune cascade reaction in RA. In
addition, the activation of osteoclasts promotes bone erosion in RA.
Collagen-specific T cells and collagen-specific IgG2a are involved in
the development of CIA. IL-17A is responsible for the priming of
collagen-specific T cells and collagen-specific IgG2a production
(106). Anti-IL-17A significantly reduces splenocytes proliferation
and reduces leukocyte recruitment in CIA (105, 107). Anti-IL-17A
also down-regulates IL-1b, IL-1, IL-6, IL-17A, and IFN-g in the joint
(104, 105). Increased osteoclast activity in the subchondral,
trabecular, and cortical bone erosion areas is observed after local
IL-17A overexpression in joint (98, 101, 102).

Several drugs targeting IL-17A are currently being evaluated in
clinical trials, but the benefit seems to be not satisfactory for RA.
Brodalumab, a human anti-IL-17 receptor A (IL-17RA)
monoclonal antibody, did not demonstrate clinical efficacy in
active RA patients (108). The humanized anti-IL-17A monoclonal
antibody ixekizumab improved the signs and symptoms of RA
patients in a phase II study, but the efficacy was not considered
robust sufficient to support continued development (109).
Bimekizumab is a monoclonal antibody that selectively neutralizes
IL-17A and IL-17F. Bimekizumab plus certolizumab pegol further
Frontiers in Immunology | www.frontiersin.org 6
reduced disease activity score 28-joint count C-reactive protein
(DAS28(CRP)) for RA patient in a phase II study, but more
messages about the efficacy and safety is lack (110). Secukinumab,
a fully human monoclonal antibody directed against IL-17A, has
advanced in phase III studies. Secukinumab achieved 20%
improvement in the American College of Rheumatology criteria
(ACR20) at week 24 among patients with active RA, although,
studies have suggested that secukinumab may not provide
additional benefit beyond the currently approved therapies to
such patients and further development was not pursued due to
lack well-pleasing efficacy (111–114).

Psoriatic Arthritis
PsA is an immune-mediated chronic inflammatory arthritis
associated with psoriasis. PsA presents synovial inflammation,
bone destruction, and juxta-articular new bone formation (115,
116). Aberrant cytokine expression of TNF-a, IL-23, IL-22, IL-9, IL-
15 is involved in the pathological mechanisms of PsA (117). Serum
IL-17A levels are higher in psoriasis patients (118). IL-17+ CD4+ T
cells and IL-17A secretion increase in peripheral blood and synovial
fluid of PsA (119, 120). Besides CD4+ T cells, IL-17A-producing
ILCs are present in the synovial fluid of PsA (121). IL-17A+CD8+ T
cells are enriched in the joints of patients with PsA and have been
correlated with disease activity and bone erosion (7).

In the animal model of PsA, increased serum IL-17A is
associated with bone loss. The imbalance between osteoblasts
and osteoclasts is the main cause for the appearance of PsA in the
bone. Skin-resident cells such as keratinocytes, gdT cells, and
innate lymphoid cells express IL-17A, which inhibits osteoblasts
and osteocytes function through the Wnt signaling (52). In
addition, IL-17A may also promote epidermal sheet,
keratinocytes and skin resident T cells to produce RANKL (122).

Clinical trials of antagonizing IL-17A in PsA are underway.
Secukinumab improves the signs and symptoms of active PsA
(123). At the same time, secukinumab inhibits the progression of
bone erosions and maintains bone stability (124–127). In 2016,
secukinumab became the first targeting IL-17A drug approved
by the FDA for the treatment of active PsA. Ixekizumab, an IL-
17A specific monoclonal antibody, improved the signs and
symptoms of patients with active PsA and inhibited bone
damage progression in PsA (128, 129). In 2017, ixekizumab
was approved by the FDA for the treatment of PsA. Brodalumab,
a fully human monoclonal antibody targeting the IL-17 RA,
achieved ACR20 at week 16 among patients with PsA in a phase
III study (130). However, the trials were terminated early due to a
possible safety concern about suicidal ideation and behavior
(131). Bimekizumab, which inhibits both IL-17A and IL-17F,
improved ACR50 in patients with active PsA in a phase II trial
and phase III trials that are currently underway (132).

Axial Spondyloarthritis
Axial spondyloarthritis (axSpA) is chronic inflammatory bone
diseases including non-radiographic axial spondyloarthritis (nr-
axSpA) and radiographic axial spondyloarthritis (ankylosing
spondylitis [AS]). Bone destruction and new bone formation may
occur simultaneously in axSpA. Various types of cytokines
February 2021 | Volume 11 | Article 62503
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including IL-17A, TNF-a and IL-23 are involved in the pathological
processes (133, 134). Many studies have indicated that IL-17 is
involved in immunopathogenesis of axSpA (135). IL-17+ CD4+ T
cells increase in peripheral blood of axSpA and IL-17A synthesis
also increases (120, 136–138). Levels of IL-17A in the synovial fluid
are elevated in patients with AS (59). Serum IL-17A levels are also
higher in AS and elevated IL-17 serum levels may associate with the
development of AS (139, 140). A few studies have focused on the
role of IL-17 in the processes of axSpA bone damage. IL-17A
promotes local mesenchymal stem cell populations to osteoblast
differentiation and increases mineralization in AS by JAK2/STAT3
signaling, whichmay be amechanism of ankyloses progression (59).
Anti-IL-17A treatment prevented bone loss and induced new bone
formation in an animal model of pathogenic SpA, mycobacterium
tuberculosis-induced disease in B27/hb2m-transgenic rats (141).

Several IL-17A targeted drugs are currently in clinical trials.
Secukinumab and Ixekizumab are both anti-interleukin-17A
monoclonal antibodies and have been reported to improve the
signs and symptoms of axSpA (142–148). To date, the FDA has
approved both antibodies for the treatment of adults with active
AS and nr-axSpA with objective signs of inflammation.
Netakimab, a humanized monoclonal antibody targeting IL-
17A, significantly achieved 20% improvement in Assessment of
Spondyloarthritis International Society (ASAS20) response
among patients with AS in a phase II study (149).
Bimekizumab, a monoclonal antibody that selectively
neutralizes IL-17A and IL-17F, achieved ASAS40 response at
week 12 in a phase II trial (150). Phase III trials that aim to assess
the efficacy and safety of netakimab and bimekizumab in AS
patients are currently underway.
CONCLUSION AND PERSPECTIVES

IL-17A is involved in innate immune responses and adaptive
immunity. Meanwhile, IL-17A plays an important role in bone
homeostasis via activation of complex cellular and molecular
interactions. IL-17A may exert direct positive or negative effects
on osteoclastogenesis depending on its concentration in vitro.
Osteoblasts are most closely associated with osteoclasts, which
both are involved in bone metabolism. IL-17A indirectly
Frontiers in Immunology | www.frontiersin.org 7
regulates osteoclastogenesis by inducing multiple factors
derived from the osteoclast-supporting cells. The effects of IL-
17A on osteoblasts may depend on the different experimental
models of osteoblast development and species tested in vitro.
These aforementioned cell studies provide evidence supporting
the skeletal-regulatory properties of IL-17A and support the
concept that IL-17A acts as the link between the skeletal and
the immune systems. Future research should focus on the
molecular pathways involved and explore the precise reasons
for the dual effects of IL-17A in bone cells.

Mechanistic studies have hinted that IL-17A is a bone-
destroying cytokine involved in immune-mediated bone diseases,
such as PMOP, RA, PsA, and axSpA. IL-17A exerts a negative effect
on bone by promoting osteoclastogenesis, excessively activates bone
formation, and initiates an immunologic cascade. Indeed anti-IL-
17A therapy has produced promising results in clinical trials of RA,
PsA, and axSpA, although, few studies have focused on bone
damage. A deeper understanding of the molecular mechanisms of
IL-17A involved in bone disease may supply novel therapeutic
interventions and provide a new thought to prevent bone loss and
osteoporosis associated with immune-mediated bone diseases.
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