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Both DNA and RNA can maintain left-handed double helical Z-conformation under
physiological condition, but only when stabilized by Z-DNA binding domain (ZDBD).
After initial discovery in RNA editing enzyme ADAR1, ZDBD has also been described in
pathogen-sensing proteins ZBP1 and PKZ in host, as well as virulence proteins E3L and
ORF112 in viruses. The host-virus antagonism immediately highlights the importance of
ZDBD in antiviral innate immunity. Furthermore, Z-RNA binding has been shown to be
responsible for the localization of these ZDBD-containing proteins to cytoplasmic stress
granules that play central role in coordinating cellular response to stresses. This review
sought to consolidate current understanding of Z-RNA sensing in innate immunity and
implore possible roles of Z-RNA binding within cytoplasmic stress granules.
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INTRODUCTION

Z-DNA/Z-RNA and Za Domain
The structure of double-stranded DNA (dsDNA) in nature can be broadly categorized into 3 major
forms, namely compact right-handed A-DNA, loose right-handed B-DNA and the unique left-
handed Z-DNA conformation. Unlike the anti-conformation base arrangement throughout A- and
B-DNA, the nucleoside bases in Z-DNA adopt alternating syn- and anti-conformation bases, giving
rise to its distinctive left-handed double helical structure with zigzag backbone (thus its name) (1).
The X-ray crystal structure of dsDNA in Z-conformation was first observed in the 1980s under high
salt condition (15mM MgCl2) (2, 3). However, it is only after the discovery of the first Z-DNA
binding domain (ZDBD) in Adenosine Deaminase Acting on RNA 1 (ADAR1) protein almost two
decades later that implied physiological-relevance of Z-DNA (4). Since then, innumerable studies
were done to identify ZDBD in other proteins, and characterize the role of these ZDBD-containing
proteins in gene regulation, innate immunity, cancer, and autoimmunity disease (5–8). Similar to
dsDNA, double-stranded RNA (dsRNA) can also adopts the Z-conformation (9). Indeed, both Z-
RNA and Z-DNA can be stabilized by the first ZDBD of ADAR1, where resolved crystal structure
revealed nearly identical protein-nucleic acid interactions for both Z-RNA and Z-DNA to form
thermodynamically stable complexes (10–12). Therefore, it is widely assumed that Z-RNA interacts
with ZDBDs in a similar manner to Z-DNA.
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Under normal physiological conditions, Z-DNA/Z-RNA exist at
higher energy configuration and thus are energetically unstable on
their own, except when in binding with ZDBDs (13). The highly
conserved ZDBD likely arise from a sub-group of winged Helix-
Turn-Helix (wHTH) motif common in most prokaryotic DNA-
binding proteins (13). In alignment with review article by Rich and
Zhang, 2003 (1), ZDBDs that can form quasi-stable interaction with
Z-DNA/Z-RNA will be referred to as the Za domain, whereas
homologous ZDBD that cannot will be mentioned as the Zb
domain, within this review. The Za domain is highly-conserved,
where the amino acid residues within the binding pocket primarily
interacts with the zigzag sugar-phosphate backbone of Z-DNA/Z-
RNA, which contributes to high specificity and affinity for Z-DNA/
Z-RNA (10, 13, 14). Structural analysis revealed the binding
preference of Za domain to CG-repeat sequences, d(CG)n (15).
That said, some non-CG-repeat with similar structural features, d
(CACGTG)2, d(CGTACG)2 and d(CGGCCG)2, have also been
reported to bind to Za domain (16). Numerous attempts to map
Z-DNA formation in the nucleus had suggest its involvement in
transcriptional regulation, but similar mapping data about Z-RNA
is lacking (17, 18).

Since the initial discovery of Za domain in ADAR1, Z-DNA/Z-
RNA binding has been thought to be involved in mediating innate
immunity, as Za domain is only present in the interferon-inducible
ADAR1p150 isoform, instead of the constitutively expressed
ADAR1p110 isoform (19, 20). In addition to mammalian ADAR1,
Za domains were subsequently discovered to be encoded in proteins
across different classes of metazoans, including immunity-related Z-
DNABindingProtein 1 (ZBP1) inmammals (21) andProteinKinase
Containing Z-DNA binding domains (PKZ) in fishes (22); and
viruses affecting them, such as E3L in poxviruses (23), and ORF112
in fish herpesviruses (24). RBP7910 is recently discovered in
kinetoplastids as another ZDBD-containing protein (25). The
recurring theme of Za domains conservation within host immune
proteins and pathogen proteins is highly indicative of the
involvement of Za domains in host immune regulation, against
viral infections and/or in cancer and auto-immunity.

In this review, we focused on the current understanding for
the role of Za-containing proteins in innate immunity and post-
transcriptional regulations, through their interaction with
cytosolic Z-RNA.

Antiviral Innate Immunity
Antiviral innate immunity generally refers to the initial
programmed broad-spectrum cellular reaction following
identification of viruses or their components. In a nutshell, the
acute antiviral response starts with the sensing of virus-
associated molecular patterns (VAMPS), followed by the
cascading signaling events culminating in the activation of type
I interferon response. Various host sensor proteins such as Toll-
like receptors (TLRs), retinoic acid inducible gene- I (RIG-I)-like
receptors (RLR), and Nod-like receptors (NLR) can recognize a
vast range of viral nucleic acids or other VAMPS upon virus
infection (26–28). These interactions kickstart the IRF3/7-, NF-
kB-mediated signalling cascades towards the establishment of
antiviral state in the infected and surrounding cells. The
synthesis and secretion of type I interferons (IFN), IFN-a and
Frontiers in Immunology | www.frontiersin.org 2
IFN-ß, are of central importance in acute antiviral response (29,
30). Type I IFNs raise alarm in neighboring cells when bound to
their IFN-a/ß receptors (IFNARs) (31), which in turn activate
the Janus kinase (JAK)-Signal transducer activator of
transcription (STAT) pathway (32). Phosphorylated STAT1
and STAT2, together with IRF9 (33), forms the Interferon
Stimulatory Gene Factor 3 (ISGF3), a potent transcriptional
activator of hundreds of interferon-stimulated genes (ISGs)
(34, 35). The ISG protein effectors directly target viral
functions and pathways to inhibit viral entry, translation,
replication and egress; or promote intercellular communication
to enhance pathogen sensing; or facilitate the resolve to cellular
homeostasis during post-infection (36, 37). Persistent virus
infection beyond the acute phase would lead to activation of
virus-specific adaptive immune response, through IFNs and
other pro-inflammatory cytokines (38).

Stress Granules
Cellular stress occurs when the ability to maintain homeostasis
balance within a cell is affected. Various factors including viral
invasion, heat shock, oxidative stress, nutrient deprivation, DNA
damage, can trigger stress response, where cell survival is
dependent on successful resolution of the cellular stresses (39).
Upon stress onset, cells will rapidly arrest their translational
machinery and stall their protein synthesis (40). These arrested
messenger ribonucleoproteins (mRNPs) will aggregate into
multiple non-membranous foci in the cytoplasm, known as
stress granules (SGs). The composition of SGs consists of
ribosomal components, mRNA, structural proteins, and many
signaling proteins (41). In addition, nucleocytoplasmic transport
is also disrupted through recruitment of essentia l
nucleocytoplasmic transport factors, including Ran GTPase,
nucleoporins and karyopherins to SGs (42).

While initially assumed to be passive repositories of
untranslated mRNA, SGs are now thought as RNA triage sites
where mRNA transcripts were actively sorted towards decay,
storage, or translation reinitiation (43). SGs function as vital
signaling hubs in coordinating cellular processes during stress
response, from selective translation of vital proteins against stress
conditions, moderating metabolism, suppressing apoptosis, to
antiviral response (44–46). Attempts to catalogue protein
components within mammalian SGs suggests that many
signaling and regulatory proteins moved in and out of SGs in
spatiotemporal manner (47, 48). That said, there are some
notable SGs markers including T-cell intracellular antigen 1
(TIA-1), TIA-1-related protein (TIAR), Ras GTPase-activating
protein-binding protein 1 (G3BP1) and poly(A)-binding protein
1 (PABP1).Upon resolution or sufficient adaptation to the stress,
step-wise dissolution of SGs allows stored mRNPs to quickly
reform the translational assembly, therefore facilitating rapid
recovery of protein translation in the cells (49).

The phosphorylation of translation initiation factor (eIF2a)
by eIF2a kinases catalyses the formation of SGs through stalling
of the initiation of ribosomal translation. The recycling of
inactive eIF2a-GDP to active eIF2a-GTP is inhibited by eIF2a
phosphorylation, thereby disrupting the formation of the essential
translation initiator, e I F 2a−GT P − t R NAMe t

i (50). The
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eIF2a kinases are activated under different stress conditions, for
example PKR is activated by dsRNA, PERK by endoplasmic
reticulum stress, while HRI and GCN2 is responsible for
oxidative and nutrient stress respectively (51).

A recent excellent review has highlighted the role of SGs in
antiviral response, notably on the mechanisms of viral
translational inhibition and counteracting strategies adapted by
viruses (46).SGs formation effectively arrests viral replication by
sequestering viral mRNA into SGs from protein translation (27,
52). Intriguingly, while several viruses evolved various
mechanism to inhibit SGs formation, such as promoting
cleavage of G3BP1 (53), inhibiting PKR phosphorylation (54),
or sequestering SGs core proteins (55, 56); others hijack the SGs
formation to prioritize viral protein synthesis (57, 58).
ZDBD-CONTAINING PROTEINS

Adenosine Deaminase Acting on RNA 1
(ADAR1)
ADAR1 is a member of the Adenosine deaminase, RNA-specific
(ADAR) protein family, where their adenosine-to-inosine (A-to-
I) RNA editing activity is responsible for a wide range of
regulation in gene expression, peptide modification in nervous
system, RNA interference (RNAi), protein activation or
inhibition (59). A-to-I dsRNA editing alters stable canonical
U-A base pairing to U-I wobble, destabilizing the edited target
dsRNA duplex conformation and compromising its functionality
(60). In addition, ADAR1-mediated RNA editing activities are
Frontiers in Immunology | www.frontiersin.org 3
also responsible for a subset of cancer and tumour development
(61), for instance, in gastric (62), cervical (63), breast (64),
thyroid (65), liver (66) and colorectal cancers (67). The general
structures of ADAR proteins consist of a deaminase domain at the
C-terminal, and dsRNA binding domains (dsRBD). In addition, the
human ADAR1 has extra N-terminal ZDBDs, a unique feature
otherwise absents in ADAR2 and ADAR3 (Figure 1). There are two
major ADAR1 isoforms; where ADAR1p150 is only induced by type
I interferons and is mostly cytoplasmic, whereas the constitutively
expressed ADAR1p110 is localized in the nucleus (68, 69). This
distinct localization of ADAR1 isoforms is attributed to the presence
of a bipartite Nuclear Export Signal (NES) located within the
ADAR1p150-exclusive Za domain, while the Nuclear Localization
Signal (NLS) is within the common dsRBD region (70).

ADAR1 has been implicated as a master regulator of the
innate immunity, largely through its A-to-I editing activity to
avoid unwarranted deleterious effects (71–73). ADAR1 knockout
studies showcased the vital regulatory role of ADAR1p150 in
antiviral immune homeostasis and autoimmunity, through
MDA5-MAVS sensing pathway (74), NF-kB gene regulation
pathway (75) and PKR-mediated apoptosis (76) (Figure 2).
Editing on ubiquitous self RNA such as Alu transcripts
prevents recognition by cytosolic dsRNA sensor MDA5 and
erroneous autoimmune response (77, 78). Meanwhile, A-to-I
editing can disrupt both the viral translational and replication
process by compromising the structural integrity and genetic
consistency of virus RNA (79). Direct suppressive effect on viral
replication by ADAR1 were observed in hepatitis C (HCV) (80)
and hepatitis B (HBV) (81). On the other hand, numerous
viruses have evolved to hijack ADAR1’s editing activity to as
FIGURE 1 | Domain organization of ZDBD-containing proteins: ADAR1, ZBP1, E3L, PKZ, ORF112, and RBP7910. Za domain (blue) denotes ZDBD that can bind
Z-DNA/Z-RNA, while Zß domain (red) denotes ZDBD that cannot bind Z-DNA/Z-RNA. ADAR1p150 harbors an extra Za domain compared to ADAR1p110, while
sharing identical dsRNA binding domains (dsRBDs) and catalytic deaminase domain. Two natural isoforms were also described for ZBP1, where ZBP1ZD does not
contain the first Za domain present in full length ZBP1. Vaccinia virus E3L vital for its pathogenicity contains a single Za domain and a dsRBD. Fish PKZ contains
two N-terminal Za domains as the RNA recognition motifs, in addition to a C-terminal kinase domain. On the other hand, the ORF112 protein identified from fish
herpesvirus only has a single Za domain at its amino-end. Most recently, trypanosome RBP7910 protein has been reported to contain two Za-like domains,
although further characterization of their function may be necessary.
February 2021 | Volume 11 | Article 625504
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immune evasion strategy, since A-to-I editing of their RNA can
avoid the innate immune sensing (82). The immune suppressive
ability of ADAR1 were exploited by measles virus (83), hepatitis
delta virus (HDV) (84), Human Immunodeficiency Virus (HIV)
(85) and Kaposi’s sarcoma-associated herpesvirus (KSHV) (86).
For Human T-cell leukaemia virus type 1 (HTLV-1) (87) and
dengue virus (DENV) (88), only overexpression of the
cytoplasmic ADAR1p150, but not ADAR1p110, had pro-
viral effect.

The exact role of the exclusive ZaADAR1 in ADAR1p150 has
only been slowly unravelled in recent years. Rare Mendelian
autoimmune disorders like Aicardi-Goutières syndrome (AGS)
and Bilateral Striatal Necrosis/Dystonia (BSD) have been
attributed to ADAR1 dysfunction. Genetic profiling of Adar1
gene among these patients showed that loss-of-function
mutat ion at ZaADAR1 causes the hal lmark type I
interferonopathy, suggesting that Z-DNA/Z-RNA binding is
important to prevent dysregulated interferon response (89). In
addition, ZaADAR1 is found to be responsible for localization of
ADAR1p150 to SGs under oxidative and interferon-induced stress
(90, 91) (Figure 2). In contrast, ADAR1p110 lacking the ZaADAR1

does not localize to SGs (91) (Figure 1). Only mutation to key
interacting residues at the binding pocket of ZaADAR1 affects the
localization to SGs, showing that Z-RNA binding is indeed
important (91). Z-RNA binding ability is essential in ZaADAR1-
ribosome interaction, which leads to translational inhibition
(92). On the other hand, ADAR1-kd cells exhibit an increase
in SGs formation following virus infection or IFN-treatment,
suggesting inhibitory role of ADAR1 on SGs formation (93).This
is in line with the general observation whereby ADAR1 functions
as a suppressor of type I interferon response, including inhibiting
the PKR phosphorylation precluding SGs formation (77).
Enhanced editing ability has been described on dsRNAs that
more readily adopt Z-conformation, where Z-RNA binding
could alter the selectivity of ADAR1-editing site and dsRNA
substrates (94).

Z-DNA-Binding Protein 1 (ZBP1)
Z-DNA-binding protein 1 (ZBP1), alternatively known as DNA-
dependent activator of IFN-regulatory factors (DAI) or Tumor
stroma and activated macrophage protein (DLM1), plays a
significant role in innate immune response against viruses or
other non–self-agents (95). ZBP1 has two conserved N-terminal
Za domains, and two receptor-interacting protein homotypic
interaction motif (RHIM) domains (Figure 1). The presence of
only Za domains as nucleic-acid recognition domains suggests
the primary role of ZBP1 as a cytosolic sensor for Z-DNA/Z-
RNA. Activation of ZBP1 then leads to downstream signal
transduction mediated through the RHIM domain interactions
with receptor-interacting protein (RIP) kinases, regulating
apoptosis, inflammation, and interferon responses to
pathogens (95, 96). In addition, ZBP1 sensing activates NLRP3
inflammasome complex that leads to PAN-optosis (pyroptosis,
apoptosis, and necroptosis) process (97) (Figure 2). In mice
model, knocking out ZBP1 is sufficient to ameliorate IFN-g- and
TNF-induced acute systemic inflammatory response syndrome
(SIRS), which demonstrates its involvement in IFN-induced
Frontiers in Immunology | www.frontiersin.org 4
necroptosis (98). ZBP1-knockout mice exhibited remarkably
reduced inflammatory responses and epithelial damage
than the wild type mice upon influenza A virus infection,
suggesting the essential role of ZBP1 in PAN-optosis pathways
(99). ZBP1 deletion significantly increased the mortality rate in
mice when infected with West Nile virus (WNV) and Zika virus
(ZIKV) (100). ZBP1 has also been implicated IL-17-mediated
skin inflammation (101) and regulation of stem cell
differentiation (102).

X-ray crystallographic study has revealed significant Z-
RNA/Z-DNA binding affinity for both first and second
ZaZBP1 (103). Somewhat confusingly, only the first ZaZBP1 is
essential for the localization of ZBP1 to cytoplasmic SGs under
heat, arsenite and interferon-induced stress (91, 104).
Meanwhile, a prominent alternatively-spliced ZBP1 variant
without the first Za domain (ZBP1DZa1) does not localize to
SGs (104) (Figure 1). Interestingly, the ZBP1DZa1 variant
forms aggregates in untreated cells that disassemble upon
heat shock or arsenite treatment, in a total contrast to full
length ZBP1. The Z-RNA generated from anti-sense Influenza
A virus (IAV) triggers RIPK3-MLKL-mediated necroptosis,
where nuclear envelope collapse in infected cells leads to cell
death and neutrophil recruitment (105). In another study, the
second ZaZBP1 is found to be essential for influenza-induced
PAN-optosis (106). For Herpes simplex virus (a DNA virus),
ZBP1-mediated necroptosis is thought to be activated through
interaction with viral RNA transcripts, instead of viral
DNA (107).

Protein E3 (E3L) of Poxvirus
Intriguingly, the poxvirus E3L protein reportedly vital for the
virulence and host range factor, viral pathogenesis, and
antagonizing host innate immunity, also contains Za domain
(23). The E3L protein suppresses cytokines-mediated
inflammation through both PKR-dependent and PKR-
independent pathways; in which p38 and NF-kB activation is
inhibited, and IL-6 and IFN-ß production ameliorated,
respectively (108). The 184 amino acid long E3L protein harbours
two distinct RNA binding motifs, a conserved Za domain at N-
terminal and a dsRBD at the C-terminal (Figure 1). Both domains
work synergistically to suppress immune response to poxvirus
infection, although the mechanism is not entirely clear. The
phosphorylation of antiviral transcription factors IRF3 and IRF7
can be effectively inhibited by E3L without PKR-dsRNA
interactions (109). Interestingly, mutational analysis revealed that
dsRNA binding activity is not necessary for antagonistic role of E3L
protein for PKR inhibition, cytokine suppression and apoptosis
(110). Antiviral factor ISG15 inhibition requires the dsRBD to block
type I interferon (IFN) induction (111), however, ZaE3L is
imperative for full IFN and PKR inhibition (112, 113).

ZaE3L exhibits high structural resemblance to those of
ADAR1 and ZBP1, and is capable of Z-DNA/Z-RNA binding.
Indeed, the ZaADAR1 and ZaZBP1 can functionally replace ZaE3L

without affecting the viral pathogenicity of E3L protein (114).
Therefore, ZaE3L likely plays a role in competitive inhibition for
Z-DNA/Z-RNA binding antagonizing the function of
ADAR1p150 and ZBP1 during virus infection (114). The ZaE3L
February 2021 | Volume 11 | Article 625504
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is responsible for suppressive effects in toll-like receptor (TLR)
activation and host immune response against vaccinia virus
infection (115). A recent study directly demonstrated ZaE3L as
a competitive inhibitor with ZBP1, whereby the masking of
putative Z-DNA/Z-RNA prevents RIPK3-mediated necroptosis
(116) (Figure 2).

Consistent with ADAR1p150 and ZBP1, the ZaE3L is also
responsible for its localization to mammalian SGs, mediated via
functional Z-RNA binding (91) (Figure 2). Indeed, vaccinia
virus mutant lacking E3L causes elevated SGs assembly,
translational arrest, and reduced viral replication within the
mammalian cells (117).

Protein Kinase Containing
Z-DNA Binding Domains (PKZ)
PKZ is an immune modulator protein initially discovered in
fishes as a paralog to PKR (118–120). PKZ shares a similar C-
terminal catalytic domain with PKR, but differs at the N-terminal
RNA binding region. PKZ harbours two Za domains at its N-
terminal, instead of two dsRBDs in PKR (Figure 1). Although
both PKR and PKZ have independent sensing mechanism for
dsRNA and Z-form nucleic acids, these proteins demonstrate a
cooperative role in host response against viral infection (121).
The conservation of PKZ among fishes suggests expanding the
Frontiers in Immunology | www.frontiersin.org 5
pathogen- or danger-associated molecular patterns (PAMPs/
DAMPs) recognition is important for fish immunity and
survival (122). Similarly to PKR, PKZ can initiate apoptosis via
eIF2a phosphorylation in viral-infected cells as part of its
antiviral role (8) (Figure 2). Significant interactions were
observed through coimmunoprecipitation assays between
cytosolic PKZ with other IFN immune mediators like IRF3,
IRF9 and STAT2, illustrates the vital role of PKZ in inducing
fish’s IFN response (123). A recent review details the role of PKZ
within the type I interferon response of fish innate antiviral
immunity (118).

Functional analysis revealed PKZ can only be activated by Z-
DNA/Z-RNA binding, instead of poly(I:C)—a common viral
dsRNAmimic (124) (Figure 2). Circular dichroism spectroscopy
of the ZaPKZ reported similar Z-DNA-binding affinity and
facilitate efficient B-to-Z transition of bound nucleic acid
ligand, in close correspondence to those interferon-inducible
mammalian ZDBD-containing proteins described above (119,
125–127).

Open Reading Frame 112 Protein
(ORF112) of Cyprinid herpesvirus 3
The ORF112 protein of Cyprinid herpesvirus 3 (CyHV3), a major
koi herpesvirus infecting common carp, contains an N-terminal
FIGURE 2 | Crosstalk between ZDBD-containing proteins, stress granules, and innate immunity signaling pathway following RNA virus infection. 1) Innate immune
sensors like MDA5 and PKR are activated upon recognition of virus RNA in the cytoplasm, which in turn activates the NF-kB pathway culminating in expression of
type I IFN. 2) At the same time, activated PKR also phosphorylates eIF2a, causing stalled mRNA translation that induce the formation of stress granules. Stress
granules are instrumental in promoting cell survival under cellular stresses like virus infection. 3) Most ZDBD-containing proteins have been shown to localize to stress
granules, mediated via respective Za domains. Therefore, it is possible that RNA can adopt Z-conformation more readily within stress granules. 4) ADAR1p150 is a
negative regulator of immune response protecting against autoimmunity and chronic inflammation, as edited RNA transcripts lose immunogenicity. On the other
hand, ZBP1 activation triggers IFN response and cell death mechanism. The vaccinia virus E3L is an inhibitory protein towards the antiviral response of its
mammalian host, which is dependent of its Za domain. In fish, PKZ is a paralog that complements PKR-mediated pathways, as PKZ can be activated by Z-RNA
binding. The cyprinid herpesvirus ORF112 protein antagonizes the activation of PKZ as the virus immune evasion strategy. Incidentally, PKR and MDA5 had also
been reported to localize to stress granules. It is therefore plausible that the close proximity through localization to stress granules facilitate the crosstalk between
ZDBD-containing proteins and immune recognition and signaling pathways.
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Za domain (128) (Figure 1). ORF 112 of CyHV3 is important in
suppressing type I interferon response in infected teleost fishes,
in comparison to spring viremia when infected with Rhabdovirus
SVCV (129). This discovery of ZDBD in fish viruses immediately
suggests host-pathogen antagonism with PKZ akin to ZBP1-E3L
previously described in mammals. Indeed, the ZaORF112 protein
binds Z-DNA/Z-RNA in left-handed conformation resembles
that of ADAR1, ZBP1, PKZ and E3L despite of low overall
sequence identity and different binding kinetics (128). Significant
structure resemblance between ZaORF112 with ZaPKZ suggests
common ancestry or convergent evolution as a competitive
inhibitor for PKZ sensing (24) (Figure 2).

In line with other ZDBD-containing proteins discussed so far,
ORF112 also localizes to SGs during oxidative stress (24)
(Figure 2).

RNA-Binding Protein 7910 (RBP7910)
of Trypanosoma brucei
A recent study discovered that RBP7910 from Trypanosoma
brucei is a ZDBD-containing protein, whereby one ZDBD-like-
domain was each reported at its N- and C-terminal respectively
(25) (Figure 1). Trypanosoma brucei is a human-fly parasite that
can cause African Trypanosomiasis or “sleeping sickness”.
RBP7910 is a mitochondrial protein involved in RNA editing
complexes in kinetoplastids (130). A protein sequence-based
search for functional domains led to the prediction of the
ZDBD-like domains, where key residues involved in Z-DNA/
Z-RNA binding for Za domain has been conserved. Nonetheless,
mutational studies on these residues in RBP7910 led to lower-
than-expected reduction in Z-DNA/Z-RNA-binding affinity
compared to those reported for ZaADAR1 (25). Further studies
are needed to verify the function of ZDBD within RBP7910.
PERSPECTIVES

Z-DNA/Z-RNA Recognition in
Antiviral Immunity
ZaADAR1 is only present in the ADAR1p150 isoform but not in the
shorter ADAR1p110 isoform (Figure 1). An alternative
transcription start site is favoured when Interferon Stimulatory
Response Element (ISRE) at promoter region is bound by ISGF3,
thereafter catalyst for the splicing event leading to Za-
containing-ADAR1p150 expression (131). Similarly, other
ZDBD-containing host proteins ZBP1 and PKZ are also ISGs
whose expression is modulated through type I interferons (132,
133). These indicate the involvement of Z-RNA binding in the
cellular regulatory events following virus infection. Furthermore,
the identification of Za domain(s) in antagonistic virus proteins
reaffirms the importance of Z-RNA recognition in immune
regulation (24, 116).

Fluorescence study on B-to-Z transition dynamics proposed
an interesting theory on Z-DNA/Z-RNA formation (134). The
study demonstrated dynamic formation of single molecule Z-
DNA prior to stabilization by Za domain, instead of induction
caused by protein-nucleic acid interaction. This suggests that Za
Frontiers in Immunology | www.frontiersin.org 6
domain function by recognizing the existing transient form of Z-
DNA/Z-RNA, rather than a forced conformation change upon
binding with canonical B-form dsRNA. For ADAR1p110,
cooperative binding between three dsRBDs give rise to
selectivity of A-to-I editing sites (135) (Figure 1). The
additional ZaADAR1 present only in ADAR1p150 can thus give
rise to different editing sites during antiviral response (94)
(Figure 1) . Furthermore, a l ternat ing transi t ion in
conformation between B-form and Z-form within a dsRNA
may lead to multiple editing sites on the same dsRNA, an
observation described as hyperediting (136). ADAR1p150 is
thought to effectively negate the initiation of interferon
response by editing dsRNA to prevent MDA5 and PKR
sensing (71, 77, 87, 137) (Figure 2). In contrast to ADAR1p150,
there are two functional Za domains in both ZBP1 and PKZ
(Figure 1). These Za domains are the only known nucleic acid
recognition domains in respective proteins, and possibly behave
synergistically for Z-DNA/Z-RNA binding. ZBP1 and PKZ
function as instigators of immune response through sensing of
viral nucleic acids following virus infection, via downstream
signaling (95, 121) (Figure 2). The transient nature of
ADAR1p150 binding with Z-RNA for editing activity, in
contrast to the Z-RNA-dependent activation of ZBP1 and
PKZ, could in part explain the difference in the Za domains
setup in these ZDBD-containing proteins. Collectively, all point
towards the indispensable role of Za domain as PAMPs/DAMPs
sensor of Z-RNA, particularly in regards to antiviral defense.

Za-Mediated Localization to Stress
Granules
Interestingly, most ZDBD-containing proteins (ADAR1p150,
ZBP1, E3L, ORF112) have been independently reported to
localize to SGs during cellular stresses (24, 90, 91, 104) (Figure
2). Though not explicitly verified, PKZ is also expected to localize
to SGs in the same manner as ORF112, its inhibitory protein.
The localization of ZDBD-containing proteins to SGs is
mediated through Z-RNA binding by respective Za domains,
as mutations to key interaction residues abolished the
localization pattern (91). This discovery identified a novel role
of Za domain at the forefront regulating the cellular fate and
response to virus infections, and other stresses. Nevertheless, the
Z-RNA substrate in SGs has not been elucidated so far owing to
difficulties in complete isolation of SGs. It is also entirely
plausible that favorable conditions for B-to-Z transition and Z-
like steps primarily arises in the SGs, in which case the ZDBD-
containing proteins is sequestered in SGs through Za-mediated
Z-RNA binding (138). Intriguingly, many proteins involved in
IFN-mediated antiviral response like RIG-I, MDA5, PKR, OAS1,
TRIM25 have also been found in SGs (46, 47). This sequestration
may be unspecific as some are RNA binding proteins or known
interaction partners. However, co-localization to SGs may
enhance interactions otherwise not favorable between ZDBD-
containing proteins and these antiviral sensor and effector
proteins. For instance, immunoprecipitation assay revealed that
PKR interacts with ADAR1 via dsRNA bridge, whereby the
packed RNA density within SGs may give rise to additional
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regulatory effect between two proteins (139). In all, identifying
the role of these ZDBD-containing proteins in SGs and
elucidating their interaction with respective binding partners
are paramount towards better understanding of antiviral
innate immunity.
CONCLUSION

To date, only six proteins (ADAR1p150, ZBP1, E3L, PKZ, ORF-
112, and RBP7910) have been identified with Za domain(s). Two
common themes stood out among these proteins, where they are
important in host-pathogen interaction, and they localize to SGs.
The conservation of Za domain in virus proteins is important for
viral pathogenesis and immune evasion, but yet information on
Z-DNA/Z-RNA motif within virus genomes is still sketchy.
Similarly, while independent studies showed Z-RNA binding is
responsible for protein localization to SGs, the bound substrate
(Z-RNA) within SGs has not been elucidated. This is largely
attributed to the transient nature when nucleic acids adapt Z-
conformation that could be dependent on the cellular
environment. The condensed mRNA and protein aggregates in
SGs may create a favourable environment for B-to-Z transition.
Research studies using nucleic acid analogues that are prone to
irreversible B-to-Z transition may afford a glimpse into
understanding the precise mechanism at work (140).

Nonetheless, continuous research studies on individual
ZDBD-containing proteins have ascertained the central role of
Za domain and Z-DNA/Z-RNA binding in pathogen and non-
self-recognition. Current studies tend to focus on ZDBD-
containing proteins as a whole; instead, a reinvigorated
appreciation on the key role of Za domain in molecular innate
immunity is warranted in future research. Research gaps
remained; such as to understand the role of Za-mediated
localization to SGs, to address the possible redundancy
between first and second Za domains, to determine how Za
Frontiers in Immunology | www.frontiersin.org 7
domain differentiate self from non–self-nucleic acids, and to
resolve the seemingly contradictory function of ZBP1 and
ADAR1p150 during antiviral response. Taken together, Za-
mediated nucleic acid binding represents a significant but
mysterious role in immunity, and may yet offer a highly-
specific Z-DNA/Z-RNA-based intervention towards immune
regulation in the future.
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E, et al. ADAR1 affects HCV infection by modulating innate immune
response . Ant iv i ra l Re s (2018) 156 :116–27 . do i : 10 .1016/
j.antiviral.2018.05.012

81. Liu G, Ma X, Wang Z, Wakae K, Yuan Y, He Z, et al. Adenosine deaminase
acting on RNA-1 (ADAR1) inhibits hepatitis B virus (HBV) replication by
enhancing microRNA-122 processing. J Biol Chem (2019) 294(38):14043–
54. doi: 10.1074/jbc.RA119.007970

82. Samuel CE. Adenosine deaminase acting on RNA (ADAR1), a suppressor of
double-stranded RNA–triggered innate immune responses. J Biol Chem
(2019) 294(5):1710–20. doi: 10.1074/jbc.TM118.004166

83. Li Z, Okonski KM, Samuel CE. Adenosine Deaminase Acting on RNA 1
(ADAR1) Suppresses the Induction of Interferon by Measles Virus. J Virol
(2012) 86(7):3787–94. doi: 10.1128/jvi.06307-11

84. Casey JL. Control of ADAR1 editing of hepatitis delta virus RNAs. Curr
topics Microbiol Immunol (2012) 353:123–43. doi: 10.1007/82_2011_146

85. Radetskyy R, Daher A, Gatignol A. ADAR1 and PKR, interferon stimulated
genes with clashing effects on HIV-1 replication. Cytokine Growth factor Rev
(2018) 40:48–58. doi: 10.1016/j.cytogfr.2018.03.007

86. Zhang H, Ni G, Damania B. ADAR1 Facilitates KSHV Lytic Reactivation by
Modulating the RLR-Dependent Signaling Pathway. Cell Rep (2020) 31
(4):107564. doi: 10.1016/j.celrep.2020.107564

87. Cachat A, Alais S, Chevalier SA, Journo C, Fusil F, Dutartre H, et al.
ADAR1 enhances HTLV-1 and HTLV-2 replication through inhibition of
PKR activity. Retrovirology (2014) 11(1):93. doi: 10.1186/s12977-014-
0093-9
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