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Peripheral neuropathies are characterized by nerves damage and axonal loss, and they
could be classified in hereditary or acquired forms. Acquired peripheral neuropathies are
associated with several causes, including toxic agent exposure, among which the
antineoplastic compounds are responsible for the so called Chemotherapy-Induced
Peripheral Neuropathy (CIPN). Several clinical features are related to the use of
anticancer drugs which exert their action by affecting different mechanisms and
structures of the peripheral nervous system: the axons (axonopathy) or the dorsal root
ganglia (DRG) neurons cell body (neuronopathy/ganglionopathy). In addition,
antineoplastic treatments may affect the blood brain barrier integrity, leading to
cognitive impairment that may be severe and long-lasting. CIPN may affect patient
quality of life leading to modification or discontinuation of the anticancer therapy.
Although the mechanisms of the damage are not completely understood, several
hypotheses have been proposed, among which neuroinflammation is now emerging to
be relevant in CIPN pathophysiology. In this review, we consider different aspects of
neuro-immune interactions in several CIPN preclinical studies which suggest a critical
connection between chemotherapeutic agents and neurotoxicity. The features of the
neuroinflammatory processes may be different depending on the type of drug (platinum
derivatives, taxanes, vinca alkaloids and proteasome inhibitors). In particular, recent
studies have demonstrated an involvement of the immune response (both innate and
adaptive) and the stimulation and secretion of mediators (cytokines and chemokines) that
may be responsible for the painful symptoms, whereas glial cells such as satellite and
Schwann cells might contribute to the maintenance of the neuroinflammatory process in
DRG and axons respectively. Moreover, neuroinflammatory components have also been
shown in the spinal cord with microglia and astrocytes playing an important role in CIPN
development. Taking together, better understanding of these aspects would permit the
development of possible strategies in order to improve the management of CIPN.
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INTRODUCTION

Chemotherapy-induced peripheral neurotoxicity (CIPN) may
occur in patients undergoing antineoplastic therapy, frequently
being the most severe side-effect. CIPN is characterized by severe
and long lasting symptoms that might affect daily activities and
impact on patient quality of life. This clinical situation leads to
drug schedule modification, or even withdrawal, thus potentially
affecting patient’s survival and clinical outcome (1–4). The
chemotherapy drugs act on different structures of the
peripheral nervous system (PNS), due to both the reduced
blood-nervous tissue barrier efficacy and the presence of
fenestrated capillaries in dorsal root ganglia (DRG), targeting
the axons, inducing a length-dependent axonopathy, or DRG
neurons, leading to a neuronopathy (5, 6). Moreover, a large
body of knowledge suggests the direct neurotoxic effect of
antineoplastic agents to the central nervous system (CNS) (7).

CIPN is mainly a sensory and length-dependent neuropathy
which progresses from the distal to the proximal regions (6):
patients manifest paresthesia and dysesthesia, which may evolve
into numbness, sensory loss, tingling, pins and needles sensation,
with a stocking-and-glove distribution. Hyperalgesia or allodynia
in limb extremities (neuropathic pain) may also occur (8).
Rarely, a motor or an autonomic impairment is present (1, 4,
9). In most patients, CIPN becomes a chronic condition and the
symptoms may persist or even progress for months after the end
of the therapy, a phenomenon known as “coasting” (10).

Numerous factors are related to CIPN establishment: the type
of employed chemotherapeutic agent, the administered dose, the
period and schedule of treatment can contribute to the
symptoms incidence and severity (11).

Although the antineoplastic mechanisms of action of
neurotoxic drugs are well established, the reasons for axonal
and ganglion damage remain unclear. Several neurotoxic
mechanisms have been proposed including mitochondrial
damage, impairment of axonal transport, oxidative stress, and
involvement of drug transporters (3, 4, 12).

Recent findings suggest that neuroinflammation may have a
role in CIPN. In fact, besides its action on dividing immune cells,
chemotherapy treatment can lead to modulation of several
immune system elements, from the cytokine expression to
immune cell intracellular pathways, thus leading to
neuroinflammation development and sensory nervous system
sensitization (13–16).

In this context, an important role of glial cells has also been
reported: satellite glial cells (SGCs) in DRG and Schwann cells in
the axons are able to change their phenotype and secrete
mediators, which cause neuronal excitability leading to pain
hypersensitivity. The release of pro-inflammatory cytokines
and chemokines may also recruit the monocytes population
participating in the inflammatory response. Glial cells express
the cytokine receptors, but they can also contribute to
neuroinflammation with the same cytokine release, in a sort of
self-sustaining system.

Moreover, the involvement of microglia and astrocytes in the
neuropathic pain establishment has been demonstrated also in
the central nervous system.
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The features of the neuroinflammatory process are different
and depend on the type of the anticancer drug (platinum
derivatives, taxanes, vinca alkaloids, and proteasome
inhibitors) (11, 14, 17).

Therefore, the aim of this work is to review the aspects of
neuroinflammation in different classes of antineoplastic drugs.
To follow this purpose, a review in the PubMed database has
been carried out.

For each class of antineoplastic agents the searching entry
wa s : ( ( ( ( ch emo the r apy - induc ed -neu ropa thy ) OR
polyneuropathy) OR neurotoxicity) OR neuropathy) AND
((((((((((((((((((neuroinflammation) OR immune-cell-
activation) OR immune-mediated-process) OR immune-
system) OR immunomodulation) OR innate-immune-
response) OR adaptive-immune-response) OR central-glial-
a c t i v a t i o n ) OR c y t o k i n e ) OR c h emok i n e ) OR
proinflammatory-mediators) OR neuroimmune-interaction)
OR inflammasomes) OR glial-cell) OR macrophages) OR
immune-cells) OR lymphocytes) OR neutrophils). The selected
filters were used: English language and papers dated between
January 2010 and May 2020. The resulting abstracts were carefully
reviewed and relevant full-text manuscripts were selected.
Moreover, the reference list of selected articles were searched for
further relevant papers.

Platinum Derivatives
Cisplatin (CDDP), carboplatin (CBP) and oxaliplatin (OHP) are
platinum-based antineoplastic agents used as main or adjuvant
treatment for solid tumors such as germ cells, lung, colorectal,
gastric, breast and head and neck cancers. They are alkylating
agents thus exerting their activity forming DNA-platinum
adducts (12).

Even if the incidence and severity of neurotoxicity may be
different among platinum compounds, it is one of their most
common dose-limiting side effects (18). In fact, prolonged CDDP
exposure results in the onset of a pure sensory neuropathy with a
stocking-and-glove distribution characterized by the dysfunction
of fine sensory-motor coordination, numbness and paresthesia.
OHP infusion may result in both chronic and acute
neurotoxicity. The acute neurotoxicity occurs in about 90%
patients in the next hours after OHP administration and it is
characterized by dysesthesias and paresthesias exacerbated by
cold exposure. The OHP chronic neurotoxicity shares the same
symptoms of CDDP-associated CIPN (18, 19).

Despite during the last years several neurotoxicity
mechanisms have been investigated, we will point out only the
evidence for different immune system elements involvement in
CIPN such as leukocytes recruitment, cytokine production and
signal transduction pathways.

At the early stage of OHP treatment, pain hypersensitivity has
been described together with systemic immunological response
characterized by an increase in circulating CD4+ and CD8+

lymphocytes, an increase in IL-4+ splenocytes and a decrease in
regulatoryT-cell (T-reg) in the inguinal lymphnodes. Except for the
changes in the lymph node T-cell count, all the reported altered
features returned to control values at the peak stage of pain
sensitization. However, systemic depletion of T-reg cells did not
February 2021 | Volume 11 | Article 626687
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exacerbate mechanical allodynia in OHP-treated mice suggesting
theymay not contribute to the development of neuropathic pain in
OHP-inducedCIPN (OIPN).Moreover, at peak stage no alteration
in the cytokine serum levels was reported (20). In contrast, other
authors demonstrated an increased serum or plasma levels of pro-
inflammatory cytokines such as TNF-a, IL-1b and IL-6 following
OHP and CDDP treatment (21–28). While Li and colleagues
reported that in OIPN, T-reg reduction contributed to the onset
of CIPN through the increase in the pro-inflammatory response
(29), Wan and coworkers observed an increase of T-reg and a
decrease of Th17 levels in OHP-treated animals (24).

Besides circulating and lymph node T-cell ratio changes
during CIPN course, Laumet and colleagues demonstrated that
the resolution of CDDP-induced neuropathic pain and
intraepidermal nerve fibers (IENF) density reduction depended
on an active endogenous process that is mediated by CD8+ T-
cells. However, the neuroimmune mechanisms responsible for
CD8+ T-cells mediated CIPN symptoms resolution still need to
be elucidated (30). T-cells were also implicated in the prevention
of CDDP-induced pain-like behavior and mitochondrial
dysfunction in DRG neurons, which was exerted by histone
deacetylase 6 inhibitors (31).

Besides revealing direct effects on the immune cells and
cytokines production, OHP and CDDP may affect
inflammatory compartment modulating gene expression. In
particular, it has been reported that CDDP may affect the
expression of genes implicated in neuroinflammatory processes
such as TNF-a and cytokine-cytokine interactions pathways in
cultured rat sensory neuron-like cells (32). In agreement with
these findings, the transcriptome analysis of lumbar DRG of
CDDP-treated mice revealed changes in the expression of genes
involved in both neuronal damage and inflammatory processes
(33). Unexpectedly, OHP treatment did not induce any
alteration in the transcription of inflammation related genes
suggesting that in OIPN neuronal damage might precede the
inflammatory process establishment, which in turn might be
responsible for the development of more chronic neuropathy
symptoms (33).

Studies explored the cellular signaling pathways involved in
cytokine release through the activation of the Toll Like receptors
(TLRs), the innate immune system key mediators (34). TLRs are
transmembrane and intracytoplasmic proteins being normally
implicated in the detection of pathogens. Once activated, they
induce a downstream activation of several molecules such as
mitogen-activated protein kinase (MAPK), phosphoinositide 3
kinase (PI3K), nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-kB) and the activation transcription
factor 3 (ATF3) protein. ATF3 not only regulates intracellular
cascades initiated by TLRs activation, but it is also considered a
marker for nerve injury. In particular, CDDP-induced tactile
allodynia was associated with the upregulation in ATF3
expression in DRG neurons of CDDP-treated mice as well as
in DRG neurons and sciatic nerves of OHP-treated animals (35–
38). Since ATF3 plays an important role downstream TLRs
activation, further studies deepened the implication of this
signaling pathway in the CIPN pathogenesis. These studies on
Frontiers in Immunology | www.frontiersin.org 3
the role of TLR3 and 4 and their adapter proteins (MyD88 and
TRIF) showed that CDDP-induced mechanical allodynia was
reduced in trl3-/- and tlr4-/- mice compared to WT animals and
was abolished in animals that completely lack TLR pathways
(Myd88/Triflps2 mice). Taken together, these results suggest that
MyD88 and TRIF signaling cascades triggered by the activation
of TLR4 and TLR3, participated in the onset of neuropathic pain
induced by CDDP (39, 40).

Moreover, TLRs-pathways seem to be also involved in OIPN.
In fact, OHP determined a neuroinflammatory state in DRG
neurons by the increase in matrix metalloproteinase-9 (MMP-9)
levels due to TLR4/PI3K/akt signaling cascade activated by high-
mobility group box 1 (HMGB-1), which was released by neurons
and macrophages. Furthermore, the MMP-9-dependent
inflammatory process in the DRG was also associated with the
activation of microglia (increase of Iba-1 immunoreactive cells)
in the spinal cord indicating central sensitization (41). In
contrast, other authors suggested that HMGB-1 from non-
macrophage cells played a key role in the onset of OIPN,
probably through the activation of TLR4, RAGE and CXCL12/
CXCR4 signaling (42). MyD88 signaling pathway results in the
activation of MAPK, PI3K and NF-kB, whereas TRIF dependent
signaling pathway results in the production of type I interferon
and a delayed activation of NF-kB. Both pathways induced an
increased expression and release of pro-inflammatory cytokines
and chemokines in both the central and peripheral nervous
system (17, 40).

Cytokines are small molecules involved in the immune
response, which are released not only by immune cells, but
also by glial and neurons. They can directly or indirectly act on
primary afferent fibers, DRG and spinal dorsal horn neurons
leading to pain sensitization (43). In particular, a significant
increase in IL-1b, IL-6, and TNF-a was reported in DRG
neurons after OHP or CDDP treatment (38, 44–47). This
increased expression/release of cytokines might be also
associated with changes in chemokine expression.

Chemokines are a family of chemoattractant cytokines that
play an important role in the activation and infiltration of
macrophages and glial cells in the onset of neuropathic pain.
Several chemokine contributions in platinum compounds-
dependent neurotoxicity have been shown. In fact, OHP
induced an increased expression of CCL2 and its receptor
(CCR2) at early time points in DRG neurons, indicating that
these small proteins were involved in the onset of pain caused by
antineoplastic agents (48). In addition, the NF-kB p65-mediated
upregulation of CX3CL1 induced an increased neuronal
excitability and contributed to the development of chronic
pain after repeated OHP injections (49). Furthermore, the
increased expression of CXCL12, induced by IL-1b and TNF-a
-mediated activation of transcription-3 (STAT3), played a
critical role in the pathogenesis of OIPN (50). On the other
hand, other authors reported only a significant reduction of
CCL4 in DRG neurons without any additional alteration in the
profile expression of cytokines and chemokines (20).

In particular, IL-8 was identified to have a relevant role in
OIPN. In fact, Brandolini and colleagues reported glial activation
February 2021 | Volume 11 | Article 626687

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Fumagalli et al. Neuroinflammation in CIPN
(increase in GFAP and Iba-1 expression) and an increase in IL-8
expression associated with the activation of different intracellular
signaling pathways (p-FAK, PI3K/p-cortactin, p-STAT3, COX2
and ERK1/2). These effects were attenuated by the
coadministration of DF2726A, a selective inhibitor of IL-8
receptors, indicating that the increased expression of IL-8 in
DRG neurons triggered a pro-inflammatory response leading to
the activation of pathways implicated in microtubule
stabilization, terminal axonal arborization, synaptic plasticity
and cellular damage (51). Moreover, these data confirmed
previous observations which suggested COX2, PI3K/Akt2,
PI3K/mTOR and pERK signaling involvement in the onset of
OHP-induced pain sensitization (45, 52, 53).

Besides these findings, the increased levels of pro-inflammatory
cytokines, CCR2, COX2, p-ERK and p38 MAPK were associated
to the decrease in protein and mRNA levels of calcineurin (CaN)
and to an increase of Nuclear Factor of Activated T cells (NFAT).
These findings indicated the role of the CaN/NFAT pathway in the
onset of OIPN (46).

Moreover, other and specific intracellular pathways were
suggested to be implicated in platinum-induced CIPN onset,
such as p38 MAPK and Sphingosine 1-phosphate (S1P) receptor
pathway. The incubation of SGC culture with a p38 MAPK
specific inhibitor induced a decrease in PGE2 concentration in
the medium of CDDP co-treated cells. These data suggested that
the CDDP-driven p38 MAPK phosphorylation led to an increase
of PGE2 release by glial cells that in turn stimulated the activation
of PGE receptors expressed on the ganglia neurons cell
membrane. Therefore, this process could modulate the
neuronal activity through the activation of second messenger
cascades resulting in TRPV1 activation and thus sensitization of
sensory neurons (54). This hypothesis was further supported by
the results of Kuai and colleagues reporting increased levels of p-
p38 together with an increased expression of TRPV1 in DRG,
spinal cord, trigeminal ganglion and foot skin of CDDP-treated
rats showing CIPN related symptoms (28).

On the other hand, S1Ps are lipid signaling molecules that
play a crucial role in different cellular processes by interacting
with one of their five receptor subtypes (S1PR1, S1PR2, S1PR3,
S1PR4, and S1PR5). It was recently observed that the selective
S1PR2 inhibition reduced CDDP-induced tactile allodynia and
the associated activation of SGC in DRG neurons probably
through the activation of stress-response proteins such as
ATF3 and heme oxygenase-1 (HO-1) (55). In addition, an
analogue of PGE1 reduced OHP-induced mechanical allodynia
starting from early treatment stage (56).

In DRG neurons and peripheral nerves of OHP-treated
animals, no signs of infiltrating inflammatory cells were
reported claiming for the involvement of resident immune/
glial cells inflammatory response with no roles for T-reg cells
subset in OHP-induced mechanical allodynia (20, 36, 42).
On the other hand, a huge macrophages infiltration was
observed in DRG neurons of other OIPN models (29, 41). In
particular, Li and colleagues reported macrophages infiltration
and an increased release of IL-1b in lumbar DRG of OHP-
treated mice, which was prevented by the co-administration
Frontiers in Immunology | www.frontiersin.org 4
with Bee Venom derived phospholipase A2 (bvPLA2). These
preventive effects were reversed by the depletion of T-reg cells
indicating that they were required for the anti-inflammatory
response (29).

Even if DRG neurons represent the main targets of platinum
neurotoxicity, SGC and Schwann cells in the PNS have been also
described as relevant costars into neuroinflammation onset.

SGCs wrap the cell body of sensory neurons in the ganglia of
the PNS. Following peripheral nerve injury or inflammation,
SGCs are activated and release molecules that play a key role in
the onset of pain conditions. In recent years, alterations in
SGCs morphology and function following platinum treatment
as well as their involvement in the onset of OHP-related
neuropathy were evaluated. More in detail, an increased
expression of GFAP-positive SGCs activated cells in DRG
neurons of OHP-treated mice was reported and it was
associated with an increase in gap junction-mediated
coupling. Moreover, the administration of a gap junction
blocker abolished the tactile allodynia and reduced the
coupling percentage between SGC in OHP-treated mice.
These data indicate that the increase of SGCs coupling
contributed to the onset of mechanical allodynia and it is part
of SGCs activation process (57). In support to these data, it has
been recently reported that the incubation of SGCs primary
cultures with OHP induced SGCs activation (increase of GFAP-
positive cells), SGCs morphological changes, the increased
expression of one of the main components of gap junctions
(connexin Cx43) and pro-inflammatory cytokines release.
Moreover, the incubation of DRG neurons primary cultures
with the medium from OHP-treated SGCs culture enhanced
neurons hyperexcitability demonstrating that these effects were
due to the pro-inflammatory cytokines released by the OHP-
activated SGCs (58). The activation of SGCs (increase in GFAP
expression) after OHP administration was also confirmed by
several other authors (36, 38, 59). In addition, it was reported
that in CDDP-treated SGCs primary cultures the activation of
p38 MAPK cascade enhanced the release of PGE2. Interestingly
this event was attenuated by the application of drugs with glial
modulatory activity, such as Ibudilast and SKF86002 (54).

With regard to peripheral nerves, the histopathological
analysis of sciatic nerves of CDDP-treated rats revealed tissue
damage and apoptotic alterations with axonal degeneration and
myelinated fibers loss together with an increased expression of
TNF-a (60). Moreover, morphological and functional alterations
of Schwann cells were reported in CDDP-treated mice (61) and
in vitro after OHP or CDDP incubation (37, 62).

Inflammatory processes were evaluated also at the level of skin
hind paws. The reduction of IENF density associated with OHP
regimen was first described in 2011 in the skin biopsies of hind
paws, and it is often associatedwith the presence of hypersensitivity
to a mechanical stimulus. Both effects were prevented by the
treatment with minocycline (a drug with anti-inflammatory
properties). These findings suggest that the epidermal
denervation played an important role in the OHP-related
neuropathic pain persistence and that it was caused by the release
of pro-inflammatory cytokines induced by OHP (63). Since the
February 2021 | Volume 11 | Article 626687
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IENF loss corresponded to an increase in IL-8 levels, the progressive
accumulation of IL-8 in the epidermidis and the activation of the
downstream pathways might be responsible for the OHP-
associated epidermal denervation (51). Moreover, an increase in
mast cells was reported in the dermis and subcutaneous tissue of
plantar skin of OHP-treated mice (64, 65). In the authors’ opinion,
the migration of mast cells in the skin may be caused by the
increased expression of mast cell migration-related factors in
keratinocytes, which were triggered by the Substance P (SP)
released from capsaicin-sensitive sensory neurons (65). In
CDDP-treated rats the decrease of IENF density and neuropathic
pain symptoms were associated with the increased expression of
TNF-a, IL-1b and PGE2 in paw homogenate (28).

The relationship between platinum compounds and the CNS
is multi-faceted. Little information is specifically available on
CDDP-induced neuroinflammation in the spinal cord whereas
the most literature refers to OHP. Regarding CDDP, Park and
colleagues reported no increase of Iba-1 and GFAP positive glial
cells in the lumbar spinal cord of CDDP-treated animals
indicating no microglial and astrocyte activation (35). In
contrast to these findings, spinal microglia (increase of Iba-1
immunoreactive cells), but not astrocytes, activation associated
with an increased expression of pro-inflammatory cytokines
such as IL-1b, IL-6 and TNF-a, and chemokine CCL3 were
also reported (66, 67). An increased expression of pro-
inflammatory cytokines after CDDP treatment was confirmed
also by other works (68).

With regard to OHP, no T-cell infiltration was reported in the
dorsal and ventral horn of the spinal cord of OHP-treated
animals (20, 69). The main interest was focused on debating
about glial cells activation, inflammatory response and its cellular
pathways. Therefore, it was shown that both astrocytes and
microglia were activated in the early phase of OHP-related
tactile and thermal hypersensitivity, whereas only astrocytes
persisted in a reactive status in the late phase of OIPN (36, 37,
59, 70, 71). These data remain at least in part controversial, since
some authors did not observe microglia activation at any time or
demonstrated the lack of microglia activation in the late phase of
OHP-induced pain sensitization (72, 73). On the other hand,
other groups agreed with Di Cesare Mannelli and colleagues
reporting the activation of both astrocytes and microglia
(increased expression of GFAP and Iba-1 immunoreactive
cells) in association with an increased release of pro-
inflammatory cytokines (TNF-a and IL-1b) (38, 74). In
contrast with all previous findings, Makker and colleagues did
not observe neither glia (astrocytes and Iba-1 positive microglia)
activation following OHP treatment, nor changes in cytokines
and chemokines expression profile (20, 75). Interestingly, in the
last case they showed a reduction in P2ry12 positive microglia,
suggesting that homeostatic microglia reduction could result in
pathological processes leading to pain hypersensitivity (20).
Several studies are focused on the astrocytes activation role
and the subsequent increase in pro-inflammatory cytokines
(76, 77). In the spinal cord of OHP-treated rats the increase of
GFAP-positive astrocytes was associated with neuropathic pain
onset (72). In fact, both astrocyte activation and mechanical
Frontiers in Immunology | www.frontiersin.org 5
allodynia were reverted by the treatment with minocycline,
which reverted the inflammatory response induced by activated
astrocytes. Moreover, OHP-induced astrocyte activation led also
to an increased expression of gap junction protein Cx43 (78).
Carbenoxolone is a drug with a gap junction decoupler activity.
The inhibition of astrocyte activation with carbenoxolone
administration abolished the formation of astrocyte-astrocyte
gap junction connections as well as the onset of allodynia in
response to a mechanical stimulus. The inhibition of astrocyte-
astrocyte gap junction connection with carbenoxolone pre-
treatment abolished astrocytes activation as well as the onset of
allodynia in response to a mechanical stimulus. In contrast, the
authors did not report any protective effects when carbenoxolone
was given in rats with established OIPN, suggesting that astrocyte
gap junctions play a key role in the OIPN establishment, but not in
its maintenance (79). Furthermore, other authors deeply elucidate
the mechanism leading to pain sensitization (69, 80, 81). They
observed that the astrocyte hyperactivation was accompanied by
an increased release of TNF-a and IL-1b and a reduction of IL-10
and IL-4, which was not related to T-cell infiltration. Moreover,
the activation of A3 adenosine receptor (A3AR) induced by the
administration of a selective agonist, IB-MECA, blocked the onset
of mechanical allodynia. This effect was mediated through the
modulation of inflammatory processes such as inhibition of
astrocyte activation and the modulation of pro-inflammatory as
well as anti-inflammatory cytokines release (69). In this context,
the onset of OHP-driven neuropathic pain was caused by the
dysregulation of the extracellular adenosine signaling at the A3AR
level. In fact, in a subsequent study, it was demonstrated that the
dysregulation of this pathway depended on the increased
expression of adenosine kinase (ADK) in astrocytes together
with the increased expression of NLRP3 (NOD-, LRR- and
Pyrin domain-containing protein 3). NLRP3 is an intracellular
signaling molecule activated by danger signals to constitute the
inflammasome. This resulted in the formation of the active form of
IL-1b which in turn reduced the expression of anti-inflammatory
molecules (81). Lastly, they excluded the role of GSK3b pathway in
the onset of OIPN (81). Since GSK3b seems to be implicated in
PTX-related CIPN, these results may indicate that different
antineoplastic agents could activate different mechanisms
leading to neuropathy (82, 83).

The increased level of pro-inflammatory cytokines in the
spinal dorsal horn of OHP-treated rats was also correlated
with the activation of the CaN/NFAT signaling (46). In
addition to these findings, Huang and colleagues reported that
among the different cytokines and chemokines investigated in
the spinal cord [INF-g, TNF-a, IL-1b, IL-6, monocyte
chemoattractant protein-1 (MCP-1) and CX3CL1], NF-kB
p65-mediated epigenetic upregulation of CX3CL1 played a key
role in the central sensitization and the onset of acute pain like
behavior following OHP administration (84).

Besides astrocytes activation (increase in GFAP-positive cells and
protein levels) and the increased expression/release of pro-
inflammatory cytokines, Wang and colleagues observed an
increased expression of chemokines such as MCP-1 and monocyte
inflammatory protein-1 (MIP-1a). This neuroinflammatory
February 2021 | Volume 11 | Article 626687
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response, together with thermal and mechanical hypersensitivity, was
repressed by the administration of melatonin. In the authors’ opinion,
this effect could be mediated by the binding of melatonin to TLR on
the surface of astrocytes. However, the involvement of spinal TLRs in
the onset of OHP-associated neuropathic pain has not been
elucidated yet and it should be considered for future studies (85).

Despite literature data indicate some controversial results,
which may be attributed to the different animal models used,
taken together all these findings suggest that OHP-induced
neuroinflammation retrieved in the dorsal horn of the spinal
cord (DHSC) (e.g. glial cell activation, increased release of pro-
inflammatory cytokines and chemokines, reduced release of anti-
inflammatory cytokines) might play a critical role in the onset of
OHP-related neuropathic pain. In particular, it is undoubted that
glial cells activation plays a pivotal role in the onset and
maintenance of OIPN. However, literature data indicate some
discrepancies since different effects have been observed at
different time points on glial cells activity (increase in GFAP
and/or Iba-1 positive cells density, increased expression and/or
morphological changes) (86). Moreover, it is important to
underline that glial cells are not only implicated in the
pathological mechanism leading to CIPN, but also in the
neuroprotective mechanisms. In fact, Di Cesare Mannelli and
colleagues demonstrated that the modulation of astrocytes
activity due to the nicotinic receptors a7 subtype (a7 nAChR)
agonist effectively reduced OIPN (70). This effect was dependent
on the TGF-b1 increase and glutamine synthetase release (87).

Interestingly, platinum compounds related neuroinflammatory
events have been detected also in the upper CNS organs. Glial
activation has been reported in some brain areas involved in pain
signaling (36, 37, 70). Moreover, the increased levels of the pro-
inflammatory cytokines TNF-a, IL-1, and IL-6 were reported in
the cerebral cortex or whole brain homogenate of CDDP-treated
rats (23, 88, 89). As suggested by the authors, this cytokines
increase might have exacerbated the oxidative damage induced by
CDDP through glutamate excitotoxicity or the upregulation of
NF-kB expression and subsequent overproduction of cytokines. In
fact, the increased transcription and translation of NF-kB gene
was found to be associated with a reduction in the nuclear factor
erythroid 2-related factor 2 (Nrf2) and HO-1 genes transcription
and translation in the brain cortex and hippocampus of CDDP-
treated animals (89, 90). A strong TNF-a and IL-1b increase
associated with IL-10 decrease was also observed in the
hippocampus of CDDP-treated rats with cognitive impairment
(90, 91). Moreover, an increase of pro-inflammatory cytokines
levels was reported in the midbrain periaqueductal gray of OHP-
treated rats (92).

The Figure 1 shows the involvement of different
inflammatory actors in the onset of platinum-induced CIPN
according to the results of the most consistent studies.

Taxanes
Paclitaxel (PTX) and Docetaxel (DCT) are the two main
members of the taxane chemotherapy drug family, a class of
diterpenes affecting the microtubule dynamics. Normally,
microtubules undergo a process of dynamic instability, which
Frontiers in Immunology | www.frontiersin.org 6
is characterized by depolymerization and repolymerization
phenomena. Taxanes exert their toxic activity binding the
heterodimer b-tubulin, stabilizing the microtubules thus
leading to the arrest of the cell cycle (93, 94).

PTX is an effective drug principally used as the first line
choice for the treatment of breast, ovarian and lung cancer.
Despite PTX is slightly less clinically effective than DCT, it is
more frequently associated with CIPN (95).

The administration of PTX results in distal axonal
degeneration with nerve fiber loss which results in a sensory
axonal neuropathy and it is often characterized by neuropathic
pain (6).

Several preclinical studies have been conducted in order to
investigate the emerging concept of neuroinflammation
involvement in the onset of PTX-induced CIPN (PIPN).

Most preclinical studies deal with the role of pro- and anti-
inflammatory cytokines in PTX-induced pain behaviors
which are mainly assessed by mechanical or thermal
thresholds tests.

At present, few evidence was published about the leukocyte
contribution to taxane/PTX-induced pain. As reported
previously for OIPN, PTX induced a temporary increase in
CD4+ and CD8+ lymphocytes only at early treatment stages
(20). The specific contribution of CD8+ T-cells in the resolution
of mechanical allodynia was demonstrated elsewhere together
with their mandatory role in the up-regulation of IL-10 receptors
in the DRG (96).

Pro-inflammatory cytokines and chemokines IL-1a, IL-1b,
IL-6, TNF-a, INF-g, and CCL2 were significantly increased in
plasma of PTX-treated rats. The relevance of some of them
(TNF-a, IL-1a, IL-1b, CCL2) in sustaining hypersensitivity or
pain was demonstrated by blocking their signaling using an
inhibitor or a receptor antagonist (97).

Moreover, in PTX-treated mice, IL-20 serum level was
increased and this phenomenon paired with IL-20 increase in
serum of cancer patients undergoing PTX therapy. IL-20 plays a
pivotal role acting as inflammatory mediator in activation of
monocytes and astrocytes, showing a correlation with a severe
sensory pain in these patients. Targeting IL-20 signaling, using
anti-IL-20 monoclonal antibody, before PTX treatment,
attenuated mechanical allodynia, prevented thermal
hypoesthesia and also peripheral nerve damage in PTX-treated
animals. Moreover, the systemic blockade of IL-20 significantly
decreased systemic inflammation suppressing the pro-
inflammatory cascade activation (TNF-a, IL-1b, and MCP-1)
and macrophage recruitment in DRG, correlating the role of
neuroimmune system to the pain behavior. The importance of
IL-20 was further confirmed by the use of IL-20R1-/- mice,
which were protected from PIPN and peripheral nerve
degeneration (98).

Additionally, the inhibition of the IL-8 receptors (CXCR1 and
CXCR2) in PTX-treated rats using a non-competitive allosteric
inhibitor (reparixin) administered systemically induced a
consistent antinociceptive effect (99).

Levels of pro-inflammatory elements, such as IL-6, IL-1b,
TNF-a, and chemokines like CCL2, CX3CR1 were found to be
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modulated also in the DRG or sciatic nerves of treated animals
(100–108).

Manjavachi and colleagues demonstrated an increase of the
chemokine CXCL1 in both spinal cord and DRG, whereas the
increase in sciatic nerve was less evident at early time points
(109). In particular, Zhang and colleagues demonstrated that the
blockade of MCP-1/CCR2 signaling in the DRG of PTX-treated
animals attenuated mechanical hypersensitivity as well as the
IENF loss (101). This observation demonstrates that mechanical
hypersensitivity and IENF density reduction were dependent on
the activation of MCP-1/CCR2 pathway in the DRG (101). In
addition, also the treatment with minocycline prevented IENF
loss as well as the development of mechanical hypersensitivity
Frontiers in Immunology | www.frontiersin.org 7
(110, 111) as previously reported for OHP. Moreover, IL-20
expression was increased in footpaw of PTX-treated animals and
its inhibition prevented IENF loss caused by PTX, suggesting the
role of the neuroinflammatory response in CIPN establishment
also at IENF level (98).

PTX also induced the recruitment, activation and
accumulation of macrophages with a pro-inflammatory M1
phenotype in DRG, leading to pro-inflammatory cytokine and
chemokines release that in turn induced DRG and distal nerve
ending damage (98, 112–114).

Therefore, there is a connection between neuroinflammatory
elements and monocyte/macrophage infiltration: it was
established that CCL2 attracts pro-inflammatory monocytes/
FIGURE 1 | Schematic depiction of different inflammatory actors involved in the onset of platinum-induced CIPN.
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macrophages to the DRG, causing a downstream increase of
cytokines (101, 115) and M1 monocytes population triggering a
pro-inflammatory cascade (98). On the other hand, despite
monocyte chemoattractant CCL2 and CCL3 increased in DRG,
Makker and colleagues did not observe any macrophage
infiltration (20).

Distally to DRG, macrophage infiltration was also detected in
sciatic nerves of PTX-treated animals (116), suggesting that
macrophage activation was subsequent to the axonal
degeneration (117).

Finally, it was demonstrated that PTX treatment-induced
mechanical allodynia was correlated with the activation of
NLRP3 inflammasome. An increased NLRP3 expression
was detected in DRG and sciatic nerves of PTX-treated
animals and this expression was colocalized with infiltrated
macrophages (118).

Several contributions show an involvement of the CNS in the
generation of the CIPN with increased levels of pro-
inflammatory cytokines and chemokines in the spinal cord and
the relevant role of astrocytes and microglia.

A vast number of cytokines and chemokines have been
detected in the spinal cord of PTX-treated animals with main
focus on IL-1b and IL-6 increase detection (20, 119, 120). In
particular, the genetic interference with IL-6 signaling suggested
its pivotal role in the development and maintenance of
neuropathic pain (120).

Moreover, a significant increase in the expression of a robust
chemoattractant molecule, CX3CL1, or of its receptor CX3CR1
(107, 121), as well as the upregulation of IL-17 expression were
detected in the spinal cord of PTX-treated rats (122).

To better understand the role of cytokines and chemokines,
their mRNA levels were also measured in the lumbar spinal cord
of PTX-treated mice during the allodynia phase. At this later
stage, an increase in the chemokine CCL2, without any
concomitant change in other pro-inflammatory cytokines
levels, was reported. The authors hypothesized that the
alteration of those cytokines levels might have occurred at an
earlier stage, contributing to the development of the neuropathy
(123). An increase of TNF-a, IL-1b, IL-10, and IL-4 were instead
detected in spinal cord of treated rats and associated with
neuropathic pain in a study of Doyle and coworkers (124).

Among the different pathways which have been investigated
in order to correlate pro-inflammatory elements and PTX-
induced neuropathic pain the PKCϵ-dependent activation of
TRPV1 was suggested. PKCϵ is one of the isoforms of the
protein kinase C (PKC) and its activation is correlated to the
augmented function of TRPV1 which enhances nociception. In
particular, it was reported that mast cells release histamine which
in turn induces the release of the neuropeptide SP, an
inflammatory mediator that causes the sensitization of TRPV1
(125). It was demonstrated that plasma histamine levels in PTX-
treated rats were higher than the control group supporting the
role of histamine in PIPN. Moreover, an increased expression
level of TRPV1/PKCϵ was detected in spinal cord and DRG of
PTX-treated animals, hypothesizing the role of this pathway in
the establishment of the animal pain behavior (126).
Frontiers in Immunology | www.frontiersin.org 8
Besides TRPV1/PKCϵ, other studies demonstrated that the
Notch signaling pathway is associated with several diseases of the
nervous and immune systems. In fact, Notch signaling
participates in the release of pro-inflammatory cytokines
through modulation of microglial activation after nerve injury
(127–130) and neuropathic pain (131). PTX treatment induced
the activation of the Notch1 pathway in sciatic nerves of rats, as
demonstrated by the increased expression of its receptor (106).

Moreover, IL-6 is known to activate JAK/STAT transduction
pathway and MAPK cascade contributing to neuropathic pain
(132). In fact, PTX treatment induced IL-6 increase in sciatic
nerves, causing the increase in protein expression of its
downstream molecule JAK, which in turn activated STAT3
(106, 133).

Also the activated transcription factor NF-kB was involved in
inflammation, as reported in spinal cord or in sciatic nerves of
PTX-treated animals . In fact , PTX caused NF-kB
phosphorylation (NF-kB p65) leading to its activation and
consequently to the release of pro-inflammatory cytokines that
contribute to pain behavior (106, 134). More in detail, Li and
colleagues suggested NF-kB p65 modulated the upregulation of
CX3CL1. Interestingly, intrathecal administration of the NF-kB
p65 inhibitor PDTC reduced CXCL1 expression at spinal level, as
well as mechanical allodynia (121). Moreover, Akt1 (Akt family
member), a downstream substrate of PI3K, once activated by
CX3CR1/CX3CL1 interaction, mediates the phosphorylation of
NF-kB. Akt1 levels were increased in DRG and in spinal cord
after PTX treatment, playing a substantial role in painful
symptoms demonstrated by the use of an intrathecal PI3K
inhibitor (LY294002) which suppressed Akt1 expression and
pain-related behavior (107). In addition, the inhibition of PI3K-
mTOR mediated signaling led to alleviation of PTX-related
neuropathic pain (102).

Moreover, the pharmacological enhancement of SIRT1 (a
histone deacetylase that regulates inflammatory responses)
activation reversed NF-kB p65 phosphorylation at spinal level
abolishing PTX- induced pain behavior (134).

S1P has an important role in the production of pro-
inflammatory mediators such as IL-1b in the inflammation
process by enhancing NLRP3 inflammasome activity (135).

In a PIPN rat model, S1PR1 was found to contribute to the
development and maintenance of neuropathic pain activating
the neuroinflammatory process through the sphingolipid
pathway in the spinal cord. In particular, using a S1PR1

antagonist (W146), the activation of NF-kB was blocked and
the release of cytokines was shifted from pro-inflammatory to
anti-inflammatory phenotype (136).

A3AR is expressed in inflammatory cells, glial cells and
neurons and it is activated by the increased production of
peroxynitrite in the spinal cord (137). The activation of A3AR
prevents the enhancement of NF-kB and MAPK pathways as
well as the production of pro-inflammatory cytokines suggesting
the fundamental role of spinal inflammation in PIPN (138).

As previously discussed for OIPN, the use of an A3AR agonist
(IB-MECA) prevented neuropathic pain in PTX-treated rats by
modulating spinal glial cells neuroinflammatory process (69). In
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fact, adenosine can modulate many biological processes,
including inflammation, by activating adenosine receptors and
the activation of the A3AR inhibits inflammatory responses in
different rodent models (138).

Other studies investigated the cannabinoid receptors in
relationship with CIPN neuroinflammation. Cannabinoid
receptors 1 (CB1) and 2 (CB2) belong to the endocannabinoid
system and are mainly responsible for neuroinflammation
suppressing effects. CB1 is predominantly expressed in the
CNS whereas CB2 is mainly found in lymphoid organs and
immune cells. CB1 has been located in several pain-related CNS
regions, while CB2 mRNA increases after PNS damage (139).

Moreover, CB1 is mainly expressed in astrocytes whereas CB2
is involved in the activation of microglial cells (140, 141). In
other studies, agonists for these receptors were employed
successfully for PIPN treatment, modulating cytokines/
chemokines expression and release. Several studies
demonstrated that the use of CB2 cannabinoid receptor
agonists (AM1710 and MDA7) suppressed allodynia (123, 142,
143), with a decrease of TNF-a and CCL2 mRNA levels in spinal
cord of PTX-treated animals (123). In addition, glial cells
activation markers and pro-inflammatory cytokines secretion
were decreased in other PIPN models (143, 144) as well as a
down-regulation of different pro-inflammatory coding genes was
observed (145).

Moreover, the use of a synthetic cannabinoid agonist (WIN
55,212-2) to prevent PIPN development suggested the possible
involvement of spinal cord glial cells in the onset of the pathology
and pain modulation. Therefore, in order to study glial cell
involvement in PIPN, a microglial cell activation inhibitor
(minocycline) and the cannabinoid agonist were used
simultaneous with the antineoplastic treatment (146). The
markers of microglia cells and astrocyte activation (CD11b and
GFAP, respectively) were investigated in the lumbar spinal cord
of PTX-treated rats. An important astrocyte activation was
detected together with the histological observations of
hypertrophied cell bodies and fibrous processes, which is the
typical phenotype of activated glial cells. The treatments with
minocycline or cannabinoid agonist both resulted in attenuated
microglia and astrocyte activation in lumbar spinal cord and in
the prevention of thermal hyperalgesia and mechanical allodynia
development. Furthermore, in lumbar spinal cord the IL1-b, IL-
6, and TNF-a level increase was observed until the end of PTX
treatment, but not later, indicating the role of these cytokines as
initiators for the cascade phenomena, although at late-phase
neuropathic pain and glial cell activation were maintained
(123, 146).

The activation marker Iba-1 was also detected in the spinal
cord of PTX-treated mice together with an increased level of IL-
1b and CCL-2. In this context, the authors demonstrated the role
of a selective CB2 receptor agonist for the prevention of Iba-1 up-
regulation and for the reduction of IL-1b levels (147). Similarly,
Wu and collaborators demonstrated an increase of Iba-1
expression in the dorsal horn of PTX-treated rats, confirming
the role of CB2 receptor in the modulation of microglia
dysregulation (144).
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The increase of CCL2 level in spinal cord of PTX-treated mice
and its contribution in hyperalgesia was also demonstrated in
another study from Pevida and colleagues, in which they
demonstrated a correlation with the activation of glial cells:
CCL2 stimulates microglial cell activity through its receptor
CCR2 (138).

A temporal correlation between microglia activation (increase
of Iba-1 immunoreactive cells), the increase of chemokine CCL3
and its receptor CCR5, suggests that CCL3 release may be
derived from activated microglia. Moreover, the attenuation of
allodynia obtained in CCL3-neutralizing antibody-treated
animals suggested that this chemokine was implicated in PTX-
induced mechanical allodynia (148).

Therefore, accumulating evidence demonstrates that the
activation of glial cells together with the downstream increase
of pro-inflammatory cytokines and chemokines in the spinal
cord is involved into the central sensitization process (20, 134,
136, 149).

Other studies demonstrated an increase of GFAP or both
GFAP and Iba-1 markers in spinal cord of PTX-treated animals
(124, 150–152), but controversial results have been reported. For
example, other observations suggested the activation only of
spinal astrocytes with no significant involvement of microglia
(20, 73, 153, 154). In particular, it was suggested that the
downregulation of the glial glutamate transporters GLAST and
GLT-1 was responsible for the increase of GFAP-positive
astrocytes (154).

The inhibition of these transporters has also been associated
with neuropathic pain: in this context, the increase of GFAP
expression in the spinal horn not only contributed to the
mechanical and thermal allodynia in PTX-treated animals, but
also to the suppressed expression of GLT-1 (82).

Finally, an increase of GFAP expression, indicating SGC
activation, was demonstrated also in DRG of PTX-treated
animals (57, 113).

As previously reported for OIPN, TLRs are also involved in
PIPN. TLRs are differentially expressed by neurons, microglial
cells and activated astrocytes (155–157).

In a PIPN rat model, TLR2 expression was downregulated
and it could be involved in the antinociceptive action of the CB2
agonist (MDA7) in the attenuation of the pathology (145).

Moreover, in DRG neurons of PTX-treated rats the
upregulation of TLR4 was demonstrated (158, 159). Its
activation induced the increase of MCP-1 expression that
consequently promoted macrophage infiltration into the DRG
which was coincident to the development of the mechanical
hypersensitivity (115). In addition, macrophages express an
array of TLRs, which can stimulate the release of cytokines
(155) such as TLR9, whose involvement in PIPN was at least
in part sex dysmorphic (160). In fact, in male, but not female
PTX-treated mice, the activation of TLR9 in macrophages results
in the release of pro-inflammatory cytokines and chemokines
that might activate A fibers driving CIPN mechanical allodynia.
Moreover, differences were retrieved in male and female
signaling downstream TLR9. In fact, male Tlr9 mutant
(deficient) animals presented a more attenuated neuropathic
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Fumagalli et al. Neuroinflammation in CIPN
pain (mechanical allodynia) compared to female mice and the
pharmacological inhibition of TLR9 by intraplantar or
intrathecal injection of ODN 2088 reduced the pain behavior
only in male (160).

The Figure 2 shows the involvement of different
inflammatory actors in the onset of PIPN according to the
results of the most consistent studies.

Vinca Alkaloids
Vincristine (VCR) belongs to the vinca alkaloid family and is
principally used in adult and pediatric hematologic cancers such
as Hodgkin’s lymphoma, non-Hodgkin’s lymphoma and
leukemia (161).
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VCR exerts its cytotoxic effect by binding the b-subunit of
tubulin heterodimers, interfering with the microtubule
formation and mitotic spindle dynamics thus leading to the
arrest of dividing cells in metaphase and consequently cell
death (162).

VCR elicits a strong neurotoxicity, which involves both
sensory and motor fibers with also autonomic impairment.
The most common side effects are numbness, paresthesia,
impaired balance and weakened tendon reflexes. Regarding the
autonomic dysfunctions, constipation, paralytic ileus, urinary
retention and orthostatic hypotension might occur (163).

The pathogenesis of VCR-induced peripheral neurotoxicity
(VIPN) is not completely understood although several studies
FIGURE 2 | Schematic depiction of different inflammatory actors involved in the onset of PIPN.
February 2021 | Volume 11 | Article 626687

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Fumagalli et al. Neuroinflammation in CIPN
have suggested the possible contribution of the different
components of the immune system.

In several studies, the alteration of the cytokine levels in blood
or PNS and CNS tissue samples correlated to VCR-related
neurotoxicity. In particular, the increase of TNF-a and IL-2
levels was detected in plasma of VCR-treated rats together with
the increase of TNF-a, IL-1b, IL-6 levels in sciatic nerves, in the
spinal cord and brain (164–171).

Informationabout the anti-inflammatory cytokine IL-4was also
reported: its potential protective role was highlighted in a mice
model of VIPN in which a decrease of IL-4 mRNA levels in sciatic
nerves of animals together with the downregulation of p-STAT6
(the downstream effector of IL-4) were detected. This
downregulation was correlated with the establishment of
mechanical allodynia. The correlation was confirmed using a IL-4
KO model in which an accelerated mechanical allodynia was
evidenced and significantly decreased after IL-4 re-introduction.
The re-introduction of IL-4 attenuated also p-STAT6 down-
regulation suggesting IL-4 protective role towards VIPN via the
stimulation of IL-4/STAT6 signaling pathway.Moreover, the over-
expression of the pro-inflammatory cytokines IL-1b and TNF-a
was reported in IL-4KOanimals compared to the wild type control
mice (172).

The cytokines contribution in VIPN was also reported
together with monocyte/macrophage infiltration in sciatic
nerves and DRG, which was evidenced by a marked increase in
F4/80 or MAC-1 (173–175). Moreover, it was reported that IL-6
co-localized with invading macrophage and the use of IL-6
neutralizing antibody suppressed VCR-induced mechanical
allodynia, suggesting its role in the establishment of VIPN (173).

The role of infiltrating monocytes in VIPN was also
demonstrated considering the effect of VCR on both blood-nerve/
brain barriers. In fact, VCR caused endothelial cells activation and
tight junction disruption leading to an increase of CCR2+

monocytes in the spinal cord. Since microglia do not express
CCR2, they were probably infiltrating monocytes. Moreover, they
expressed the cysteine protease Cathepsin S (CatS) (176). It is
known that monocytes release CatS which in turn solubilizes the
chemokine domain of CX3CL1 and activates CX3CR1 receptor in
microglia, resulting in the release of pro-inflammatory cytokines
(177, 178). This cascade is involved in pain condition: in fact, the
inhibition of spinal CatS reversed neuropathic pain in an animal
model of sciatic nerve partial ligation (179). This last observation
was afterwards confirmed in a VIPN model: a centrally-penetrant
CatS inhibitor reduced VCR-induced nociception confirming that
CatS acted centrally in mediating VCR action (176).

The release of pro-inflammatory cytokines was investigated and
associatedwithdifferent activatedpathways.An increased expression
of Iba-1, CX3CR1 and P-p38 in the dorsal horn and high levels of
TNF-a and IL-1b in the spinal cord were detected after VCR
treatment. The chemokine CX3CL1 activates its microglia-specific
receptor CX3CR1, leading to phosphorylation of p38MAPK kinase
which then promotes the secretion and release of pro-inflammatory
cytokines (130). In this contest, the important function of Notch
signaling pathway was demonstrated in a VIPN rat model: using a
Notch signaling inhibitor, the authors relieved pain behavior and
Frontiers in Immunology | www.frontiersin.org 11
downregulated the microglial pathway (Iba-1, CX3CR1 an P-p38
MAPK proteins) obtaining also a downregulation of the
inflammatory factors TNF-a and IL-1b in the spinal cord (169).

The neuroinflammation role of the prokineticin (PK) family
in a preclinical model of VIPN was also assessed (180). PK family
is a chemokine family composed of two proteins: PK1 and PK2
with their receptors PK-R1 and PK-R2, respectively. PK-Rs are
localized mostly in DRG and spinal cord where the highest
density is found in the dorsal horn, suggesting their role in the
central nociceptive signal transmission. PK-R1 is mostly
expressed on astrocytes and microglia cells (181, 182). PK2 is
an important linker element between inflammation and pain, in
fact, it can modulate the immune system to a pro-inflammatory
phenotype, releasing cytokines, and it can also sensitize the
nociceptors (183). VCR induced an up-regulation of PK2 and
PK-Rs in spinal cord and even DRG together with high levels of
cytokines (IL-1b, TNF-a, and IL-6) and a significant increase of
CD11b. The use of a PK-Rs antagonist (PC1) reduced the
hypersensitivity within modulation of the neuroinflammation:
it was able to downregulate the PK system, restoring a correct
cytokine balance (180).

NF-kB-dependent CXCL1/CXCR2 signaling pathway was
also shown to be relevant in VIPN (184). NF-kB is an
important transcriptional factor, which regulates the release of
pro- and anti- nociceptive factors, among which CXCL1. This
chemokine acts through its receptor CXCR2 and has a role in
central sensitization and pain maintenance (185, 186). VCR
induced NF-kB activation and consequently the CXCL1
upregulation in the spinal cord of treated animals. The use of a
NF-kB inhibi tor led to an at tenuat ion of CXCL1
immunostaining and a reduction of pain behavior, suggesting
that NF-kB regulates CXCL1 upregulation (184). Moreover, p65
phosphorylation, and its increased expression, activated NF-kB
pathway. The expression of p-p65 was increased in VCR-treated
animals at spinal level together with the up-regulation of TNF-a
and the down-regulation of IL-10, confirming NF-kB role in the
neuro-immune modulation (164, 187).

In spinal cord, similarly to other drugs, microglia cells and
astrocytes were involved and activated also after VCR treatment,
with the release of pro-inflammatory elements. In this context,
exogenous induction of HO-1 was suggested as a potential
therapy approach. HO-1 is a rate-limiting enzyme of heme
degradation whose induction protects against cytotoxicity and
has a role in immunomodulatory and anti-inflammatory
processes (188). HO-1 inducer attenuated VCR-induced pain
hypersensitivity as well as it reduced GFAP and Iba-1 expression.
Moreover, the HO-1 induction decreased the activation of
MAPKs, which mediated the production of pro-inflammatory
elements, such as TNF-a and MCP-1 (189).

The glial markers Iba-1 and GFAP colocalized with TNF-a
demonstrating that TNF-a was released by these activated spinal
glial cells and that it was at least in part responsible for VCR-
induced mechanical allodynia, since the use of a neutralizing
antibody against TNF-a reduced VIPN (190). On the contrary,
neither microglia hypertrophy nor increase of Iba-1 levels were
detected in the study of other authors (73).
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As suggested also for the other antineoplastic agents, TLR-4
seemed to be implicated in VIPN. In fact, using a Tlr4 KOmouse
model, mechanical allodynia was decreased as well as in naive
minocycline-treated animals (191).

The Figure 3 shows the involvement of different
inflammatory actors in the onset of VIPN according to the
results of the most consistent studies.

Proteasome Inhibitors
Bortezomib (BTZ) is a functional proteasome inhibitor
commonly used as the frontline anticancer drug in the
treatment of multiple myeloma (MM). Although its clinical
Frontiers in Immunology | www.frontiersin.org 12
effectiveness has been clearly demonstrated, it frequently leads
to dose limiting painful peripheral neuropathy.

Neuropathic pain associated with BTZ is often severely
debilitating, including spontaneous pain as well as allodynia and
hyperalgesia in the distal extremities of limbs. Unfortunately, this
devastating complication often requires BTZ dose modification or
discontinuation (192, 193), compromising the clinical outcome of
MM patients.

The pathophysiological mechanisms by which BTZ leads to
BTZ-induced peripheral neurotoxicity (BIPN) remains largely
unclear and the molecular mediators of the neuropathic pain-
syndrome have not been fully elucidated.
FIGURE 3 | Schematic depiction of different inflammatory actors involved in the onset of VIPN.
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A large body of data indicates that BTZ is involved in the
development of peripheral damage related to immune-
mediated processes in addition to its toxic effects (194, 195).
These data focus on the pivotal role of inflammation and
immune response in the development and maintenance of
BIPN and some of them reported also that BIPN responded
to high dose steroids or intravenous immunoglobulins (IVIg)
(196, 197). All together these findings provide a rationale to
identify neuroinflammation as a critical key player involved in
BIPN, which includes a primary sensitization process at the
level of sensory neurons in DRG up to the involvement of the
spinal cord (198).

In order to study neuropathic pain-syndrome, several
CIPN animal models mimicking clinical features of BIPN
have been reported. As previously done for the other
chemotherapeutic drugs, the inflammatory immune and
immune-like glial cells as well as the actions of the pro-
and anti-inflammatory mediators (i.e. nerve growth factor,
cytokines/chemokines or microRNA) will be considered. In
this section, we will also report some attempts that were
performed in order to reduce the generation of BIPN by
targeting immune and glial cell responses as well as released
cytokines and chemokines.

Considering first the effect of BTZ on circulating white blood
cells, no changes in cell subsets and functions have been
associated with BIPN, whereas the main BTZ action has been
referred to PNS. Moreover, regarding cytokine circulating
molecules, BTZ injection caused increased pro-inflammatory
cytokines TNF-a IL-1b, IL-6 levels in plasma (199). As
previously observed in the PIPN model (115), one of the initial
immune responses is mediated by resident macrophages and by a
large influx of infiltrated macrophages, promoting neuropathy
progression (156). Of interest, M1 pro-inflammatory phenotype
macrophages in the peripheral nerves have been found to play an
important role in the pathogenesis of BIPN (197). These data
suggest a crucial role of macrophage into neuropathic pain
maintenance, which was further supported by the depletion of
macrophage infiltration due to the administration of a high dose
of human IVIg able to block BTZ-induced allodynia and
hyperalgesia (197).

Peripheral glial cells support an active role in immune and
sensory transmission by maintaining metabolic and ionic
homeostasis into the peripheral nervous system (200). They
were also demonstrated to play a relevant role even in BIPN
by undergoing notable phenotypic changes associated with pain
hypersensitivity (201). Indeed, the glial cells activation was
characterized by hypertrophy and the presence of large
cytoplasmic vacuoles due to mitochondrial damage and
endoplasmic reticulum enlargement in both SGCs and
Schwann cells in rats undergoing BTZ treatment (201).

More interestingly, the production of pro-inflammatory
mediators was positively correlated to the nociceptor
sensitization and neuropathic pain-syndrome derived from
changes in DRG, enhancing neuronal excitability and
generating pain hypersensitivity. It is noteworthy that highest
and early increase of IL-6 and TNF-a in DRG of treated mice
Frontiers in Immunology | www.frontiersin.org 13
was followed with a later increase of TGF-b1 and IL-1b, which
are accompanied by elevated TNF-a receptor1 (TNFR1)
induction in BIPN (202). The treatment with TNF-a
neutralizing antibody, significantly prevented the BTZ-induced
electrophysiological alterations and the loss of myelinated and
unmyelinated fibers. Furthermore, it elicited an improvement in
pain behavior which was correlated to decreased expression of
TNFR1, IL-6 and IL-6- corresponding signal transducing
receptor (IL-6Ra) in DRG (202).

Likewise, the dose-related effects of anti-TNF-a therapy on
neurotoxicity were also demonstrated in the BIPN rat model, in
which the co-administration of an antibody against TNF-a was
able to revert the neuropathic symptoms, although the
development of the neuropathy was not prevented (203).
Accordingly, a progressive increased serum level of TNF-a in
patients suffering from peripheral neuropathy after several cycles
of BTZ-therapy was reported. In the same study, they also
demonstrated a potential neuroprotective effect of the co-
administration of anti-TNF-a treatment in the BIPN rat
model, showing an improvement of both electrophysiological
parameters and mechanical allodynia (204). Moreover, the
authors hypothesized that increased TNF-a levels caused the
upregulat ion of heparanase (HSPE) expression, an
endoglycosidase involved in the production of inflammatory
cytokines, which was secondary to the development of the
neuropathy (204).

In support of the crucial role of TNF-a modulation in
peripheral sensitization processes involved in BTZ-induced
allodynia, Zhang and colleagues demonstrated that the
increase of TNF-a expression in rat DRG paired with that
of the phosphorylated JNK1/2. Indeed, the suppression of
TNF-a signaling induced by the TNF-synthesis inhibitor,
thalidomide, as well as by TNFR1 and TNFR2 depletion in
KO male mice, blocked JNK1/2 activation in DRG which was
accompanied by a reduction in mechanical allodynia (205).
Overall, the upregulation of TNF-a appeared to play a
relevant role in orchestrating activation of JNK signaling by
TNFR1 and TNFR2, mediating mechanical allodynia
occurrence (205).

An ongoing interaction between transient receptor potential
ankyrin 1 (TRPA1), TNF-a and its receptor TNFR1 were
recently demonstrated in relationship with neuropathic pain
onset. Increased TRPA1 expression in rat DRG was associated
with development of mechanical pain and cold sensitivity
following BTZ treatment (206). Interestingly, suppressing the
expression of TRPA1 by TRPA1 antagonist HC030031 reduced
allodynia and thermal hyperalgesia in BTZ-treated rats.
Moreover, blocking TNF-a pathway by the action of
pentoxifylline resulted in attenuated p38-MAPK and JNK
signal in DRG, as well as a reduction of TRPA1 expression
which was correlated with a block of neuropathic pain
onset (206).

Similarly, inhibition of TNFR1-TRPA1 pathway in the dorsal
horn has recently been reported, including the critical
involvement of the microRNA (miR-155) in painful BIPN
(207). In particular, inhibiting miR-155 signal in BTZ-treated
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rats displayed significantly reduced mechanical and cold
sensitivity associated with the decreased TNFR1 and TRPA1
expression as well as the reduction of signals p38-MAPK and
JNK in DHSC. Interestingly, administration of miR-155 mimic
interfered with TNFR1-TRPA1 signal and contributed to
enhanced cold hypersensitivity and allodynia (207). Therefore,
interfering with this complex pathway may provide an effective
treatment of neuropathic pain in BTZ-treated patients.

Moreover, in a recent study by Liu and collaborators,
increased TRPA1 and IL-6 receptor levels were observed in
the DRG after BTZ administration. Their contribution to BTZ-
induced mechanical and cold hypersensitivity was supported
inhibiting TRPA1 function, as well as blocking IL-6-mediated
signal transduction. This resulted in a downregulation of
intracellular signal mediated by p38-MAPK and JNK in the
sensory neurons, which are correlated with a decreased TRPA1
protein expression and a consequently absence of mechanical
pain and cold sensitivity. Together these results suggested that
IL-6 is a signal activating TRPA1 that could be a relevant key
process engaged in painful BIPN, and that interfering with this
pathway might be a useful tool to reduce neuropathic pain in
multiple myeloma patients (208).

To better investigate their pivotal role and responsibility in
the development and maintenance of painful BIPN the
chemokine family and neuroinflammation pathways were
thoroughly investigated. The upregulation of chemokine CCL2
expression in DRG neurons, but not in SGCs was observed in
BTZ injected rats, and it was associated with a huge infiltration of
macrophage, as well as an enhanced expression of the
transcription factor c-Jun. This effect might be associated with
co-localization of c-Jun and ATF3 transcription factors.
Furthermore, blocking c-Jun signaling prevented mechanical
allodynia, as well as CCL2 upregulation. More interestingly,
the pre-treatment with ATF3 siRNA suppressed the c-Jun
binding to the ccl2 promoter (209).

More recently, the increasing evidence has emphasized that
PKs may contr ibute to pa in hypersens ib i l i ty and
neuroinflammation in a BTZ-treated mice model, as previously
described in VIPN model (180). Of note, overexpression of PK
system (PK2 and PK-R) in all the tissues involved in pain
transmission has been proposed to contribute to the thermal
hyperalgesia, mechanical and cold allodynia by inducing
structural damage to DRG neurons and SGCs. Furthermore,
increased macrophage activation markers and TLR4 mRNA
were detected in both DRG and sciatic nerves. The increased
release of pro-inflammatory cytokines and the decrease of anti-
inflammatory IL-10 expression were also reported in CNS and
PNS (198). In addition, the activation of the spinal cord glial cells
by upregulation of glial markers GFAP led to pain
hypersensibility. Moreover, DRG structural alteration together
with the development of altered behavioral parameters were
totally abrogated by subcutaneous administration of a PK-R
antagonist (PC1) in treated mice. An evident attenuation of
macrophage recruitment and prevented central sensitization into
DHSC were also reported (198). Finally, the authors speculated
that the upregulation of PK2 protein could be regulated by the
Frontiers in Immunology | www.frontiersin.org 14
binding between phosphorylated STAT3 and the PK2
promoter (198).

Recently, increasing attention is being paid to the role of
NLRP3 inflammasome complexes as key mediators of
inflammatory mechanisms involved in neuropathic pain.
Accumulating evidence indicates that NLRP3 is involved in
several CNS diseases, as well as in PIPN and OIPN (81, 118).
In a rat model of BIPN, Liu and coworkers demonstrated an
increased NLRP3 inflammasome mRNA and protein expression
in DRG which could lead to painful neuropathy. This event was
correlated with the upregulation of phosphorylated STAT3
signaling via increasing histone acetylation, as well as with the
enhanced binding of STAT3 to Nlrp3 promoter in DRG. To
further support the importance of NLRP3 in BIPN, the
intrathecal injection of NLRP3 siRNA attenuated mechanical
allodynia caused by BTZ. Meanwhile, specific inhibition of
STAT3 activity resulted in a suppressed upregulation of
NLRP3 in DRG, thus ameliorating mechanical allodynia
induced by BTZ (210).

Since there is extensive evidence supporting the role of
neuroinflammation in the CNS, several immune-like glial
cells changes in the spinal cord have been implicated in
CIPN, identifying spinal glial cells as key players that drive
the establishment and maintenance of neuropathic pain (211).
For instance, in animal models of PIPN, OIPN and BIPN,
astrocytes became activated and proliferated (72, 154).
Furthermore, since astrocytes represent the largest CNS cell
population, their morphological activation in CIPN models has
been debated (72). Of note, in OIPN and BIPN models, the
spinal astrocytes activation occurred at multiple time points
after chemotherapy treatment in parallel with the induction of
mechanical sensitivity. Moreover, an immunohistochemical
study which compared the activation of astrocytes and
microglia in the DHSC demonstrated that only the increase
in GFAP positive astrocytes was correlated to the induction of
allodynia in BTZ-treated animals. In particular, changes in
spinal glial morphology (arborization and hypertrophy of
astrocytes) were reported, while no activation of microglia
was observed. The application of minocycline, similarly to the
previously reported CIPN models (63, 79, 111), totally
prevented the painful symptoms and it counteracted the
astrocyte activation which may result from a common
underlying mechanism (72).

A more recent research from Robinson and colleagues
described significant alterations in astrocytic connexins and
glutamate transporters mediated neuropathic pain in the BIPN
model. As previously mentioned in various forms of CIPN (79,
154), increased GFAP-positive astrocytes is believed to be one
of the critical proteins correlated with the upregulation of
Cx43 and the glutamate transporter dysfunction (212). These
activated astrocytes (characterized also by hypertrophy and
increased arborization) displayed an initial upsurge of
intracellular calcium, coinciding with the presence of
synaptic glutamate due to the downregulation of glutamate
transporters (GLAST). In addition, after the follow up
period, an increase of phosphorylated Cx43 correlated with
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mechanical hypersensit ivity . The administration of
minocycline inhibited GFAP, GLAST, and Cx43 increase and
prevented the onset of mechanical allodynia (212).

Interestingly, Guo and collaborators focusedon the activationof
microglia and SGCs (increase of Iba-1 and GFAP immunoreactive
cells) after BTZ injection, indicating the crucial association between
the purinergic ligandgated ion channel 7 receptor (P2X7R) andp38
MAPK pathway as a prerequisite for BIPN (213). P2X7R is richly
expressed inglial cells. The increase ofP2X7Rprotein levels andp38
MAPKphosphorylation were reported inDRG already 2 days after
chemotherapy treatment. In particular, the authors observed that
P2X7R was colocalized with GFAP in DRG and with Iba-1 in
DHSC, while p38 MAPK was mainly expressed in microglia cells.
P2X7R downstream pathway inhibition could be able to revert
neuropathic pain and the inhibitionof p38MAPKphosphorylation
led to a downregulation of P2X7R expression level in BIPN-affected
animals. These results indicated that blocking P2X7R-p38 signal
with pharmacology therapy was beneficial to alleviate neuropathic
pain resulting from BTZ treatment (213).

Moreover, the production of various pro-inflammatory
cytokines as well as chemokines by spinal cord astrocytes,
caused the increase of the activity of spinal cord nociceptive
neurons after BTZ treatment in both mice and rat models (192,
214). Recently, the upregulation of protein expression of TNF-a
as well as its mRNA level were found in rat spinal cord neurons
together with increased IL-1b expression and JNK activation in
astrocytes in BTZ-induced allodynia model (215). Within the
spinal cord, the predominant increased JNK phosphorylation
was not correlated with a similar activation of the ERK and p38-
MAPK pathways. Similarly to the work of Zhang and colleagues
(205), intrathecal injection of thalidomide or the IL-1 receptor
antagonist (IL-1ra) in BIPN model ameliorated mechanical
allodynia by downregulation the phosphorylation of JNK
signal (215).

Finally, compelling researches have indicated that altered
sphingolipid metabolism may be correlated with CIPN
pathology and neuroinflammation in both human and animal
models (199). In particular, a clinical study showed a correlation
between PIPN and plasma levels of neurotoxic sphingolipids
(216), and up-regulated sphingolipid metabolism were reported
in PNS in a docetaxel neurotoxicity mice model (217). In
addition, there was a striking upsurge in sphingosine-1-
phosphate (S1P) signaling, its receptor 1 (S1PR1) and dihydro-
S1P in the DHSC following BTZ treatment. The development of
mechano-hypersensitivity was associated with an increased
TNF-a and IL-1b and an enhancement of presynaptic
glutamate release in the DHSC in mice model (218). Similarly
to PTX studies (69), neuropathic pain behavior induced by BTZ
was attenuated by S1PR1 antagonists (FTY720 or NIBR14
treatments) or siRNA to knockdown the expression of S1PR1.
In addition, the administration of BTZ in mice with astrocyte-
specific deletion of S1PR1 did not engage neuropathic pain
associated with BIPN. These data suggest that astrocyte
activation by S1PR1-dependent neuroinflammatory signaling is
a key cellular site for S1PR1 activity. Therefore, consistent with
this concept, emerging evidence proposed that S1PR1 signaling
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pathway in astrocytes and subsequent mechanical allodynia were
regulated by the activation of NLRP3 inflammasome and IL-1
signaling in DHSC (219). Otherwise, Alè and colleagues
regarding the paper of Stockstill and collaborators (218)
evidenced several points to consider about the model involved
in this article. In particular, the authors suggested a better
understanding and attention toward the cumulative dose and
the animal model employed since this acute model is not
representative of the chronical painful BIPN. Moreover,
blinder conditions should be employed, as well as a full
investigation of the complexity of PNS (220).

The Figure 4 shows the involvement of different
inflammatory actors in the onset of BIPN according to the
results of the most consistent studies.
DISCUSSION

Chemotherapy represents the only available approach for fighting
many different cancer types. However, this regimen is often
associated with CIPN onset that frequently results in premature
interruption of the treatment. Despite the recent development of
some symptoms-related therapies for CIPN, no preventive or
curative interventions are available. The mechanisms underlying
CIPN are complex and not fully elucidated.

Here, we focused our attention on reviewing studies which
pointed out the role of neuroinflammation in the onset and
persistence of CIPN in rodent models. Since the generation of
pain hypersensitivity may represent a common feature in the
patient undergoing chemotherapy, a crosstalk between neuro-
immune balance and pro-inflammatory mediators, as well as
glial activation, was considered.

Despite some discrepancy in activated neuroinflammatory
pathways within the same chemotherapy agent, presumably
due to the different animal models used, CIPN exhibits a
peculiar immune response and phenotypic cells changes in
both CNS and PNS. The reliability of preclinical models is a
very debated topic in CIPN, since they could negatively
impact on the translatability of the results from bench to
the clinical setting. The different reported effects may depend
on several aspects: the species, the strain, the age, the sex, the
dosage, and the treatment schedule. In particular, high doses
of chemotherapy might be useful to obtain evident
histopathological alterations and increased inflammatory
response, but they could be far from a clinically relevant
dose (221). Indeed, several CIPN-inducer agents seem to
affect the same immunological targets despite the
underlying pathways may be different. The identification of
the pecul iar neuroinflammatory pathway for each
chemotherapeutic drug is required in order to be a further
weapon to fight the single drug induced CIPN. Moreover, an
early detection of inflammation targets in patients' blood may
serve as a promising biomarker for predicting CIPN onset
and course.

As we described, the inhibition of neuroinflammation
pathways by immune modulation therapy in CIPN may
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potentially result in clinical benefits in terms of preventing and
improving the painful peripheral neuropathy related to
chemotherapeutic agents.
AUTHOR CONTRIBUTIONS

CM and GF designed the review. GF and LM defined the search
strategies and reviewed the literature. GF drafted the Introduction,
the Taxanes, and the Vinca Alkaloids sections. LM drafted the
Platinum Derivatives and Discussion sections. CM drafted the
Proteasome Inhibitors and Discussion sections. GC coordinated
Frontiers in Immunology | www.frontiersin.org 16
and RR edited the manuscript. All authors contributed to the
article and approved the submitted version.

FUNDING

This work has been supported by Fondazione Cariplo, grants n°
2019-1482, PRIN n° 2017ZFJCS3, and IMMUN-HUB n° 1165235.

ACKNOWLEDGMENTS

We are grateful to Dr. Annalisa Canta for her assistance
in illustrations.
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A3AR A3 adenosine receptor
ADK adenosine kinase
AKT protein-chinasi B
ATF3 activation transcription factor 3
BIPN bortezomib-induced peripheral neurotoxicity
BTZ bortezomib
bvPLA2 bee venom derived phospholipase A2
CaN calcineurin
CB1 cannabinoid receptor 1
CB2 cannabinoid receptor 2
CBP carboplatin
CCL2 C-C motif chemokine ligand 2
CCL3 C-C motif chemokine ligand 3
CCL4 C-C motif chemokine ligand 4
CCR2 C-C motif chemokine receptor 2
CDDP cisplatin
CD4+ T-cell linfociti T helper
CD8+ T-cell cytotoxic T-cell
CD11b cluster of differentiation molecule 11B
CIPN chemotherapy-induced peripheral neurotoxicity
c-Jun Proto-Oncogene C-Jun
CNS central nervous system
COX2 cyclooxygenase-2
CX3CL1 C-X3-C motif chemokine ligand 1
CX3CR1 C-X3-C motif chemokine receptor 1 (fractalkine)
CXCL1 C-X-C motif chemokine ligand 1
CXCL12 C-X-C motif chemokine ligand 12
CXCR1 C-X-C motif chemokine receptor 1
CXCR2 C-X-C motif chemokine receptor 2
CXCR4 C-X-C motif chemokine receptor 4
Cx43 gap junction connexin Cx43
DCT docetaxel
DHSC dorsal horn spinal cord
DRG dorsal root ganglia
ERK extracellular signal-regulated kinase
FAK focal adhesion kinase
GFAP glial activation marker
GLAST glutamate-aspartate transporter
GLT-1 glutamate transporter-1
GSK3b glycogen synthase kinase-3 beta
HMGB-1 high-mobility group box 1
HO-1 heme oxygenase-1
HSPE heparanase
Iba-1 Ionized calcium binding adaptor molecule 1
IENF intra-epidermal nerve fibers
IL-1a interleukin-1a
IL-1b interleukin-1b
IL-1Ra interleukin-1 receptor antagonist
IL-2 interleukin-2
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IL-4 interleukin-4
IL-6 interleukin-6
IL-6R interleukin-6 receptor
IL-8 interleukin-8
IL-10 interleukin-10
Il-17 interleukin-17
IL-20 interleukin-20
IL-20R interleukin-20 receptor
INF-g Interferon gammaMAPK: mitogen-activated protein kinase
IVIg Intravenous Immunoglobulin
JAK Janus kinase
JNK c-Jun N-terminal kinase
MAPK mitogen-activated protein kinase
MCP-1 monocyte chemoattractant protein-1
MIP-1a macrophage inflammatory protein-1 alpha
MM multiple myeloma
MMP-9 matrix metalloproteinase-9
mTOR mammalian target of rapamycin
MyD88 myeloid differentiation primary response 88
NFAT nuclear factor of activated T-cells
NF-kB nuclear factor kappa-light-chain-enhancer of activated B cells
NLRP3 NOD-, LRR- and Pyrin domain-containing protein 3
Nrf2 nuclear factor erythroid 2–related factor 2
OHP oxaliplatin
OIPN oxaliplatin-induced peripheral neurotoxicity
P2ry12 Purinergic Receptor P2Y, G-Protein Coupled, 12
P2X7R Purinergic Receptor P2X, Ligand Gated Ion Channel, 7
PGE2 prostaglandin E2
PI3K phosphoinositide 3 kinase
PIPN paclitaxel-induced peripheral neurotoxicity
PK prokineticin family
PKC protein kinase C
PKCϵ protein kinase C-epsilon
PK-R prokineticin family receptor
PNS peripheral nervous system
PTX paclitaxel
RAGE receptor for advanced glycation end products
S1P sphingosine-1-phosphate
S1PR sphingosine-1-phosphate receptors
S1PR1 sphingosine-1-phosphate receptors 1
S1PR2 sphingosine-1-phosphate receptors 2
SGCs satellite glial cells
SP Substance P
STAT3 activation of transcription-3
STAT6 activation of transcription-6
TGF-b1 transforming growth factor beta-1
TLR toll like receptor
TNFR1 TNF-a receptor1
TNF-a tumor necrosis factor-alpha
T-reg regulatory T cell
TRIF Toll/IL‐1R domain‐containing adaptor‐inducing interferon-b
TRPA1 transient receptor potential ankyrin 1
TRPV1 transient receptor potential vanilloid 1
VCR vincristine
VIPN vincristine-induced peripheral neurotoxicity.
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