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The concept of trained immunity has recently emerged as a mechanism contributing to
several immune mediated inflammatory conditions. Trained immunity is defined by the
immunological memory developed in innate immune cells after a primary non-specific
stimulus that, in turn, promotes a heightened inflammatory response upon a secondary
challenge. The most characteristic changes associated to this process involve the rewiring
of cell metabolism and epigenetic reprogramming. Under physiological conditions, the
role of trained immune cells ensures a prompt response. This action is limited by effective
resolution of inflammation and tissue repair in order to restore homeostasis. However,
unrestrained activation of innate immune cells contributes to the development of chronic
inflammation and tissue destruction through the secretion of inflammatory cytokines,
proteases and growth factors. Therefore, interventions aimed at reversing the changes
induced by trained immunity provide potential therapeutic approaches to treat
inflammatory and autoimmune diseases like rheumatoid arthritis (RA). We review cellular
approaches that target metabolism and the epigenetic reprogramming of dendritic cells,
macrophages, natural killer cells, and other trained cells in the context of autoimmune
inflammatory diseases.
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INTRODUCTION

Vertebrate immunity is coordinated by a complex interplay of physical and chemical barriers
(epithelia and antimicrobial substances), humoral factors and different cell types that reacts to the
continuous exposure to diverse internal and external stimuli. Traditionally, the responses to these
challenges have been classified as two independent systems, innate and adaptive immunity.
Innate immunity has been classically defined as a rapid and nonspecific response that comprises
biochemical and cellular mechanisms that are present before infection and are considered the first
line of defense. It is triggered within minutes after infection but does not generate immune memory
because their effectors are germline-encoded. Its main components are the complement system,
myeloid cells (neutrophils, monocytes, dendritic cells, and macrophages), natural killer (NK) cells or
innate lymphoid cells (ILCs), responsible for molecular recognition and antigen presentation,
phagocytosis and elimination of pathogens. In contrast, adaptive immunity is carried out by Band T
lymphocytes and has been described as slow and specific. It takes days or weeks to generate an
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adequate humoral and cellular response, mediated by genetic
rearrangement and clonal selection. This results in antigen-
specific responses that can induce lasting immune memory.

This dichotomy has changed in recent years and both
immune arms are currently considered highly intertwined
and collaborative. The dogma establishing the innate system as
nonspecific and incapable of adaption or develop immunological
memory has been replaced by a model where phagocytosis,
microorganism removal or lysis of infected cells are considered
as one more specific response. This has been due, at least in part,
to the discovery of Pathogen Associated Molecular Patterns
(PAMPs), essential microbial components, and the endogenous
signs of damage (Damage-Associated Molecular Patterns,
DAMPs), which are recognized through the constitutive
expression of different families of Pattern-Recognition
Receptors (PRRs) (e.g., Toll-like receptors, NOD-like receptors,
C-type lectin receptors, RIG-I-like receptors) thus allowing the
implementation of an adequate response depending on the type
of molecules that are recognized (1-4).

THE CONCEPT OF TRAINED IMMUNITY

Mackaness, G.B (5). described in mice that, in addition to
generating specific B and T cell memory upon exposure to one
pathogen, there is an increase in the innate response that can
generate cross-protection against a second pathogen, regardless
of its phylogenetic origin. This finding was then attributed solely
to CD8 memory lymphocytes. Recently, the issue has sparked
renewed interest and multiple works have focused on the
activation state of innate immunity against a stimulus and the
cross-protection that is generated against a second challenge.
This type of “memory” against past inflammatory events is well
established in plants and is known as Systemic Acquired
Resistance (SAR) (6, 7). In that case, plants that are inoculated
with attenuated microorganisms develop lasting protection
against a wide spectrum of plant pathogens (8). Therefore,
SAR is considered a form of innate memory in plants
equivalent to immunization in vertebrates. It is also been
described in a variety of invertebrates, ideal animal models to
study innate immunity as they do not present adaptive
immunity: insects such as Anopheles, Drosophila, and the
mealworm beetle T. molitor (9, 10), nematodes such as C.
elegans (11); or corals (12). This situation allows us to be
prepared for future challenges and supposes an ancestral form
of “immune memory”.

Similarly, “a heightened response to a secondary infection
that can be exerted both toward the same microorganism and a
different one (cross-protection)” has been termed “innate
immune memory” or “trained innate immunity” in
vertebrates (13).

Exposure of innate immune cells to a stimulus through PRRs,
promotes a series of long-term modifications that involve
rewiring of cell metabolism and epigenetic reprogramming.
Since several metabolites function as signalling molecules or
cofactors for the enzymes responsible of epigenetic changes,

these two processes are closely related (14). Depending on
the type and concentration of PAMPs, this immunological
imprint can lead to two opposite outcomes: trained innate
immunity or innate immune tolerance. In the case of
trained immunity, the “training” generates a greater response
to a second challenge, while innate immune tolerance is
aimed at attenuating or reducing this response (14). Thus,
strategies aimed at potentiating the latter can be very useful
in regulating physiological processes to avoid harmful reactions
to allergens, the microbiota or autoimmune inflammation.
However, there must be a balance between the pro- and
anti-inflammatory responses to avoid situations of chronic
inflammation or immunoparalysis and increased sensitivity to
secondary infections.

Most cells use aerobic respiration as their main source of ATP
under homeostatic conditions. In the case of the cells of the
immune system, there are important metabolic differences
depending on the cell type or its activation state (14). Whereas
neutrophils have a high basal glycolytic metabolism, other cell
types, such as pro-inflammatory macrophages or T cells, need a
rapid increase in their glucose consumption and ATP generation
when stimulated. This demands cause a metabolic shift from
oxidative phosphorylation to aerobic glycolysis, allowing cells to
quickly obtain energy and metabolites. Among the processes
necessary for the induction of trained immunity, the following
can be considered: the increase of the metabolic capacity of the
cells, through the Akt/mTOR/HIF1o/pathway; the accumulation
of certain metabolic intermediates of the tricarboxylic acid cycle
(TCA) with immunomodulatory functions such as fumarate or
succinate (15). Some of these metabolites control histone
methylation and acetylation, and others are cofactors for
histone and DNA methyltransferases and demethylases, as well
as histone acetyltransferases and deacetylases (16).

Recent studies suggest that other metabolic pathways also
play an important role in cell reprogramming, such as the fatty
acid synthesis pathway, which produces cellular stress and
activates innate immunity responses. For example, cellular
accumulation of unsaturated fatty acids (oleic acid, linoleic
acid) induces a pro-inflammatory phenotype in macrophages
due to uncoupling of mitochondrial respiration and production
of inflammasome components such as IL1-a (17). Likewise,
accumulation of mevalonate derived from the pathway of
cholesterol synthesis is related to epigenetic changes that
promote trained immunity (18). A role for oxLDL in the
induction of trained immunity through the activation of the
NLPR3 in monocytes has also been shown by studies analysing
the effect of western diet in systemic inflammatory diseases (19).
This triggers an inflammatory response and the reprogramming
of granulocyte monocyte precursor cells (GMPs) (18-20).

MiRNAs provide an additional layer of regulation in the
maintenance of innate immune memory. Due to their stability
and long half-life, once induced by a stimulus they are capable of
maintaining gene expression programs that enhance the
resistance of cells to subsequent insults (21). Some miRNAs,
such as miR-146, decrease the activation of NF-xB by blocking
TRAF6 and IRAK1 thus limiting the immune response (22). In
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contrast, miR-155, when activated via inflammatory cytokines or
TLR ligands, rapidly increases its expression and acts as an
activator of inflammation through the down regulation of
phosphatases of various signalling pathways (23).

One of the main objections to substantiate the existence
of innate immune memory has come from the short half-
live of myeloid cells, between 5-7 days, that make difficult to
explain how trained immunity is maintained for months
or years. However, it has been recently documented that
metabolic changes and epigenetic modifications also induce
long-term phenotypic and functional reprogramming in the
hematopoietic precursors of myeloid cells (HSPC) (24-26).
This allows epigenetic reprogramming carried out in innate
memory to be transferred through the hematopoietic pathway
and its cellular progenitors. Likewise, acquisition of immune

Myeloid progenitors

FIGURE 1 | Modulation of trained immunity at epigenetic, cellular and system levels. Trained immunity can be modified at different levels: blockade of receptor
recognition with biological therapies, drug modulation of metabolic pathways and epigenetic remodeling.

functions by fibroblasts and other resident cells can play a role in
sustaining organ-specific trained immunity (27, 28).

TARGETING TRAINED IMMUNITY IN
INFLAMMATORY AND AUTOIMMUNE
DISEASES

The origin and development of autoimmune diseases is mainly
attributed to an excessive and sustained response to autoantigens
mediated by B and T cells. On the other hand, they are also
characterized by excessive inflammation and there is strong
evidence that innate immunity reprogramming is one
contributing factor.
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Under physiological conditions, the action of the innate
immune response is curtailed by an effective resolution of
inflammation and the induction of tissue repair but when the
system is dysregulated and the cellular response gets
uncontrolled chronic inflammation and tissue destruction,
mediated by inflammatory mediators (cytokines, proteases,
growth factors), ensue (29). In this context, it is relevant that,
in addition to microbial products, trained immunity can be
induced by endogenous stimuli and environmental agents, like
tobacco smoke, microbiota, and diet, that contribute to the
development of inflammatory and autoimmune diseases (19,
30, 31). Consequently, it has been suggested that strategies aimed
at controlling the hallmarks of trained immunity, i.e., altered
metabolism and epigenetic reprogramming, can provide
potential treatments for the chronic inflammation associated to
autoimmunity (Figure 1) (29).

Manipulation of Metabolic Pathways

The shift from oxidative phosphorylation to aerobic glycolysis is
a critical component of reprogramming trained immunity and
there are several pharmacological modulators that target glucose
metabolism. 2-DG (2-deoxy-D-glucose) and 3-BP (3-
bromopyruvate), that block glycolysis by inhibiting pathway-
limiting enzymes, have shown protection in animal models of
arthritis and Systemic lupus erythematosus (SLE) (32, 33). Their
effects are mainly attributed to the action on T cells and stromal
cells, but they can also regulate the numbers and activity of
myeloid cells in model of inflammatory arthritis (34, 35). In line
with this observation, oxamate, an alternative inhibitor of
glycolysis, reduced the proinflammatory polarization of human
macrophages in vitro (36). Lack of tissue specificity and concerns
about their toxicity limit the application of these
glycolytic inhibitors.

Conversely, the fact that mTOR inhibitors, such as metformin
and rapamycin, are already used in the clinic for the treatment of
transplant rejection and glycemic control make them more
attractive candidates to target trained immunity. Metformin
synergizes with 2-DG in the treatment of lupus mice (33) and
has shown protective effects in some models of arthritis and
Sjoegren syndrome (37-39), but these studies are focussed on
acquired immunity. In humans, clinical trials have shown that
metformin ameliorates SLE activity, at least in part by reducing
neutrophil activation and plasmacytoid dendritic cell function
(40, 41).

As in the case of glycolytic inhibitors, the lack of cell
specificity makes difficult to evaluate an intrinsic effect on
trained immunity. To circumvent this limitation, the
application of HDL-based nanobiologics has been used
successfully to target mTOR inhibitors to macrophages in the
context of transplantation (42).

The lipid metabolism that is involved in trained immunity
can be regulated at different levels: treatment with cytochalasin D
to block the internalization of CD36, receptor for oxLDL (which
induces trained immunity) (20); treatment with methyl-B-
cyclodextrin to prevent the formation of cholesterol crystals;
inhibition of the enzyme HMG-CoA reductase with fluvastatin

to block cholesterol synthesis (18). The inflammasome pathway
and the production of IL-1B can be targeted by suppressing
NLRP3 activation with Z-VAD-FMK (19), the inhibitor
MCC9500, and the ketone metabolite B-hydroxybutyrate (43).
To prevent epigenetic changes orchestrated by mevalonate, the
enzyme 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA)
reductase can be inhibited with statins. Several studies have
proposed the use of eicosanoid precursors such as omega-3
polyunsaturated fatty acids (PUFAs) as candidates for the
treatment of type 1 diabetes, SLE or RA. These molecules have
anti-inflammatory properties (44, 45). Also modulation of
lipoxins, resolvins and protectins with aspirin is used in the
treatment of SLE (46). In vitro and in vivo studies show how the
administration of products of arachidonic acid metabolism
(EET, epoxyeicosatrienoic acids) can serve as a therapeutic
strategy in those diseases where osteoclastogenesis is
deregulated, such as rheumatoid arthritis (RA) (47).

Epigenetic Therapy

Reverting the epigenetic modifications that occurred during the
immunity training to normal values using different inhibitors
can potentially be used for the treatment of inflammatory and
autoimmune diseases (48). Inhibitors of DNMTs (DNA
methyltransferases) such as azacytidine and decitabine have
been used in the field of oncology for 50 years as cytostatics,
and recently, as inhibitors of DNMTs, but little is known about
their effect outside this field. A wide variety of proteins capable of
lysine methylation, a mark associated with transcriptionally
silenced chromatin, are potential pharmacological targets of
small inhibitory molecules (49). There is also a large number
of compounds used as HDACs (histone deacetylase) inhibitors:
from molecules pan-HDAC inhibitors, such as trichostatin A
(TSA) or vorinostat (SAHA), to other family-specific, such as
valproic acid (VPA), givinostat (ITF2357), or etinostat.
Regardless of the mechanism, HDAC inhibitors modify the
immune response by increasing and decreasing gene
expression (48). The effect of multiple HDAC inhibitors in
reducing systemic inflammation and pro-inflammatory
cytokines has been investigated in various animal models such
as arthritis, diabetes, sepsis, asthma. Most of the studies in
humans have focused on the context of the RA. The
production of proinflammatory cytokines derived from the
macrophages of the inflamed synovium can be inhibited by
TSA, vorinostat and “sodium phenylbutyrate” (50). Both TSA
and MI192 inhibit IL-6 production in LPS-stimulated PBMCs
(51). Furthermore, TSA and givinostat (ITF2357) interfere with
the stability of IL-6 mRNA, reducing its production in synovial
fibroblasts and macrophages (52) and inducing RA synovial
fibroblasts to a TRAIL-induced apoptosis (53). Other
molecules such as romidepsin (FK228) or MPT0GO009 inhibit
the proliferation of synovial fibroblasts (54, 55) and FK228
inhibits angiogenesis in synovial tissue (56). Preliminary
studies in human monocytes and macrophages show that the
small inhibitory molecules of BET bormodomain-containig
proteins have great therapeutic potential in the treatment of
immune-mediated diseases (48).
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Biological Therapies

Biologics currently used in the clinic for the treatment of
autoimmune diseases can also have an impact on trained
immunity. For example, Lin and colleagues have described that
TNF inhibitors etanercept and adalimumab suppress the
expression of CC-chemokine ligand 2 (CCL2) in monocytes by
regulating histone acetylation and trimethylation, changes that
correlate with RA activity (57).

IL-1P associated with increased inflammasome activity may
also serve as a target to actively suppress trained immunity. The
observation that monocytes from patients with autoimmune and
autoinflammatory diseases showed increased released of IL-1B
than healthy individuals (58, 59) promoted IL-1P neutralization
as a potential therapy for some chronic diseases. Although the
IL-1Ra anakinra is a marginal treatment in RA (60), both
anakinra and the IL-1 blocking antibody canakinumab are
effective in suppressing symptoms and keeping the disease
under control in systemic autoinflammatory syndromes (61,
62). In the case of the “cryopyrin-associated periodic
syndrome” (CASP) where there is a mutation in an amino acid
that codes for the cryopyrin protein (currently known as
NLRP3), early diagnosis along with treatment with an IL-1
blocker is essential to prevent future disabilities or
complications (59, 63). It is also approved for use in the
treatment of Hyper-IgD syndrome (HIDS). This disease
presents a defect in the enzyme mevalonate kinase that favors
the AKT/mTOR pathway and the consequent change to
glycolytic metabolism. This, together with attacks of sterile
inflammation, is a clear example of uncontrolled trained
immunity (18, 64, 65) and IL-1 blockers can reduce the
frequency and severity of flares (66, 67).

Granulocyte-macrophage colony-stimulating factor (GM-
CSF) is a major cytokine in the development of trained
immunity (26). Several studies in patients with inflammatory
diseases show elevated levels of GM-CSF in blood and synovial
fluid, as well as expression of GM-CSFR in inflamed synovial
tissues (68, 69). GM-CSF has a main effect in promoting
inflammation and therapies aimed at inhibiting its activity are
expected to impact trained immunity. Currently, clinical trials
addressing the effect of monoclonal antibodies against GM-CSF
(namilumab, MOR10) and against GM-CSFR (Mavrilimumab)
are underway in patients with RA (NCT02393378;
NCT01023256) or psoriatic arthritis (NCT02129777).
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