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Human cytomegalovirus (HCMV) infection often leads to systemic disease in
immunodeficient patients and congenitally infected children. Despite its clinical
significance, the exact mechanisms contributing to HCMV pathogenesis and clinical
outcomes have yet to be determined. One of such mechanisms involves HCMV-mediated
NK cell immune response, which favors viral immune evasion by hindering NK cell-
mediated cytolysis. This process appears to be dependent on the extent of HCMV genetic
variation as high levels of variability in viral genes involved in immune escape have an
impact on viral pathogenesis. However, the link between viral genome variations and their
functional effects has so far remained elusive. Thus, here we sought to determine whether
inter-host genetic variability of HCMV influences its ability to modulate NK cell responses
to infection. For this purpose, five HCMV clinical isolates from a previously characterized
cohort of pediatric patients with confirmed HCMV congenital infection were evaluated by
next-generation sequencing (NGS) for genetic polymorphisms, phylogenetic
relationships, and multiple-strain infection. We report variable levels of genetic
characteristics among the selected clinical strains, with moderate variations in genome
regions associated with modulation of NK cell functions. Remarkably, we show that
different HCMV clinical strains differentially modulate the expression of several ligands for
the NK cell-activating receptors NKG2D, DNAM-1/CD226, and NKp30. Specifically, the
DNAM-1/CD226 ligand PVR/CD155 appears to be predominantly upregulated by fast-
replicating (“aggressive”) HCMV isolates. On the other hand, the NGK2D ligands ULBP2/
5/6 are downregulated regardless of the strain used, while other NK cell ligands (i.e.,
MICA, MICB, ULBP3, Nectin-2/CD112, and B7-H6) are not significantly modulated.
org April 2021 | Volume 12 | Article 5324841

https://www.frontiersin.org/articles/10.3389/fimmu.2021.532484/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.532484/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.532484/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.532484/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.532484/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:valentina.delloste@unito.it
mailto:cristina.cerboni@uniroma1.it
https://doi.org/10.3389/fimmu.2021.532484
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.532484
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.532484&domain=pdf&date_stamp=2021-04-09


Galitska et al. HCMV Genetic and Biological Variability

Frontiers in Immunology | www.frontiersin.
Furthermore, we show that IFN-g; production by NK cells co-cultured with HCMV-infected
fibroblasts is directly proportional to the aggressiveness of the HCMV clinical isolates
employed. Interestingly, loss of NK cell-modulating genes directed against NK cell ligands
appears to be a common feature among the “aggressive” HCMV strains, which also share
several gene variants across their genomes. Overall, even though further studies based on
a higher number of patients would offer a more definitive scenario, our findings provide
novel mechanistic insights into the impact of HCMV genetic variability on NK cell-mediated
immune responses.
Keywords: human cytomegalovirus (HCMV), innate immunity, congenital infection, next generation sequencing,
genetic variability, multiple-strain infection, NK cells, immunomodulation
INTRODUCTION

Human cytomegalovirus (HCMV) is a widespread pathogen
persisting in over half of the human population (1). The
clinical symptoms of HCMV infection vary greatly from one
individual to another, ranging from mild asymptomatic
infections in healthy adults to severe life-threatening
syndromes in immunodeficient patients, elderly, and
congenitally infected newborns (2). Since neither vaccines nor
effective therapeutics against HCMV are currently available,
there is an urgent unmet clinical need to address HCMV
infection in these particularly vulnerable patients (3–5).

Throughout evolution, HCMV has been subjected to intense
selective pressure from the innate immune system (6–9). Among
lymphocytes, NK cells play a crucial role in controlling HCMV
infection early at the onset of infection, when they rapidly detect
and lyse HCMV-infected cells through natural cytotoxic activity
and/or antibody-dependent cell-mediated cytotoxicity (ADCC)
(10–13). Moreover, NK cells exert their protective functions
through cytokine and chemokine secretion and are capable of
killing target cells via the TNF superfamily of ligands (14–17).
NK cell target recognition, activation, and effector functions are
regulated by a plethora of signals acting on numerous activating
and inhibitory NK receptors, such as NKG2D and DNAM-1/
CD226 (18, 19). Thus, it is conceivable that HCMV might have
learned escape strategies from NK cell-mediated immune
surveillance in order to establish a successful life-long
persistence in the host. As a result, a delicate equilibrium
between HCMV infection and innate immunity ultimately
determines the outcome of infection (20, 21).

In this scenario, some peculiar characteristics of HCMV are
particularly important. First, its large dsDNA genome (~235 kb)
not only boasts 165 canonical ORFs (22–24) but also encodes
multiple alternative transcripts and engages noncanonical
translation initiation sites (25–28). Another peculiarity is
represented by the increased genome encoding capacity of
HCMV—this virus encodes a myriad of genes whose functions
are currently unknown—probably confers a survival advantage
to the virus against the host innate immune response, a
hypothesis supported by the growing number of HCMV genes
directly involved in NK cell modulation (12). A third important
characteristic of HCMV is its high genetic variability,
org 2
contradicting the expectation that, being a large double-
stranded DNA virus, it should retain high-level genome
stability (29). Of note, HCMV genetic variations have been
detected particularly in genes contributing to immune evasion
(30). Furthermore, genetic diversity within a single host could be
partly explained by high-frequency multiple strain co-infection
(mixed infection), de novo mutations, and reactivation of the
latent virus (31).

Even though the prevalence of intra-host HCMV diversity
has initially been attributed to the early occurrence of de novo
mutations (32, 33), recent data suggest that it may be the result of
mixed infection with genetically diverse HCMV strains (31, 34)
and extensive recombination (30, 34, 35). Many of these genetic
alterations may ultimately affect cell tropism and evasion from
innate and adaptive defenses. Thus, understanding the
contribution of mixed infection and recombination to viral
diversity appears crucial to shed light on the mechanism of
HCMV evolution, immune adaptation, and pathogenesis.

The present study aimed to determine whether the ability of
HCMV clinical isolates to modulate NK cell responses would
correlate with differences in their genetic composition. For this
purpose, we chose to analyze clinical isolates instead of highly
passaged laboratory strains to rule out the occurrence of adaptive
HCMV mutants, as reported previously (23, 36–41). All five
HCMV clinical isolates were obtained from pediatric patients
with confirmed HCMV congenital infection, previously
characterized as those displaying a high phenotypic
heterogeneity (42). These isolates were then analyzed for
genetic diversity across the entire HCMV genome by next
generation sequencing (NGS) to establish a relationship
between genetic variability and modulation of NK cell
functions. Overall, our work highlights the importance of
combining genome sequencing with immunological assays to
determine the functional consequences of genetic variations of
HCMV clinical isolates.
MATERIALS AND METHODS

Cells and Viruses
Primary human foreskin fibroblasts (HFFs, American Type
Culture Collection, ATCC SCRC-1041™) were cultured in
April 2021 | Volume 12 | Article 532484
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Dulbecco’s Modified Eagle’s Medium (Sigma-Aldrich, Milan,
Italy) supplemented with 10% FCS (Sigma-Aldrich, Milan,
Italy) according to ATCC specifications. HCMV clinical
isolates derived from urine samples were obtained from a
previously characterized cohort of pediatric patients (42). The
urine samples were directly inoculated in HFFs to boost the
infected cell population. The isolates were then propagated until
approximately 60% of cells showed a cytopathic effect. All
isolates were used before passage 3 to avoid cell culture
adaptation (43, 44). The HCMV strain Merlin was kindly
provided by Gerhard Jahn and Klaus Hamprecht (University
Hospital of Tübingen, Germany), then propagated and titrated
on HFFs by standard plaque assay. For RT-qPCR, HFF-NK cell
cocultures, and FACS experiments, at day 0, HFFs infected with
different HCMV clinical isolates were stained intracellularly and
analyzed by flow cytometry to measure the percentage of
immediate early (IE) IE1/IE2 antigen positive cells (MAB810X;
Merck Millipore, Burlington, USA). Subsequently, uninfected
(mock) HFFs were co-cultured with infected HFFs at a ratio of
9:1. At the indicated times post-infection, HFFs were harvested
and analyzed.

The study was approved by the Research Ethics Committee of
the University Hospital of Turin “A.O.U. Città della Salute e della
Scienza di Torino – A.O. Ordine Mauriziano – A.S.L. TO1” (No.
007816). Informed consent was obtained from parents of all
study participants prior to collection of clinical data and
biological samples. The study has been carried out in
accordance with the Declaration of Helsinki.

RNA Extraction, Retrotranscription, and
RT-qPCR Analysis
Total RNA was extracted using TRI Reagent® solution (Life
Technologies, Carlsbad, USA) according to the manufacturer’s
instructions. Total RNA (1 mg) was used for cDNA synthesis in a
reaction volume of 20 µl using the Revert-Aid H-Minus
FirstStrand cDNA Synthesis Kit (Thermo Fisher Scientific,
Waltham, USA). Comparison of mRNA expression between
samples (i.e., infected vs. mock) was performed by SYBR
green-based RT-qPCR on an Mx3000P apparatus (Stratagene,
San Diego, USA). Relative levels of each mRNA species were
calculated using the 2-DDCt method with reference to the
housekeeping gene glyceraldehyde-3-phosphate dehydrogenase
(GAPDH). The following primers were used: MICA (Fw: 5’-
GGGCTGACCATCCAGATGTA-3’; Rev: 5’-ATCTTCCCT
TTTGCACCTCC-3’); MICB (Fw: 5’-AACCCTGACTGC
ACAGATCC-3’; Rev: 5’-GGTCCTGCTGTTTCTGGC); ULBP1
(Fw: 5’-AGGCCTTGAACTTCACACCA-3’; Rev: 5’-GCTTC
TGCACCTGCTGTCT-3’); ULBP2/5/6: (Fw: 5’-CGTGGT
CCAGGTCTGAACTT-3’; Rev: 5’-CAAGATCCTTCTGTG
CCTCC-3’); ULBP3 (Fw: 5’-ATTCTTCTGATCCACCTGGC-
3’; Rev: 5’-TCCGTACCTGCTATTCGACTG-3’); PVR/CD155
(Fw: 5’-TCCAATTATAGCCTGTGGGC-3’; Rev: 5’-GCTGC
TGACTGTGAACCTCA-3’); B7-H6 (Fw: 5’-TCTCTTTCATGC
CCACTTGA-3’; Rev: 5’- GCTGGAGGAAGCAGGAGAGT);
GAPDH: (Fw: 5’-AGTGGGTGTCGCTGTTGAAGT-3’; Rev:
5’-AACGTGTCAGTGGTGGACCTG-3’).
Frontiers in Immunology | www.frontiersin.org 3
Antibodies and Reagents
The following PE-conjugated monoclonal antibodies (mAbs)
were used in flow cytometry: anti-MICA (clone 159227),
MICB (clone 236511), ULBP1 (clone 170818), ULBP2/5/6
(clone 165903), ULBP3 (clone 166510), B7-H6 (clone 875001),
Nectin-2/CD112 (clone 610603) (all from R&D Systems,
Minneapolis, USA), PVR/CD115 (clone SKII.4; BioLegend, San
Diego, USA) and mouse control IgG (from BD). Anti-IFN-g;,
mouse control IgG (both from BD Biosciences, San Jose, USA),
and anti-HLA-I (clone W6/32; Biolegend) were APC-
conjugated. Other antibodies and reagents used were as
follows: Alexa Fluor 488–conjugated anti-IE viral antigens
(MAB810X; Merck Millipore, Burlington, USA); PE-conjugated
anti-CD56, FITC-conjugated anti-CD3, APC-H7-conjugated
Zombie NIR™ viability kit (BioLegend, San Diego, USA);
PMA, ionomycin, brefeldin A and DMSO (all from Sigma-
Aldrich, Milan, Italy).

Immunofluorescence and FACS Analysis
Mock-infected or infected cells were harvested at the indicated
day post-infection (dpi) and stained with specific mAbs. The
mean fluorescence intensity (MFI) value of the isotype control
IgG was subtracted from the MFI relative to each molecule. For
intracellular staining of IE1/IE2 antigens, cells were fixed in 1%
formaldehyde, permeabilized with 70% ethanol, and then
incubated with Alexa Fluor 488-conjugated anti-IE mAb
(MAB810X; Merck Millipore, Burlington, USA). Cells were
acquired with a FACSCanto II flow cytometer (BD Biosciences,
San Jose, USA) and analyzed with FlowJo 10 (ver.
10.0.7) software.

NK Cell Cultures and IFN-g Production
Peripheral blood polyclonal NK cells, obtained from healthy
donors, were generated as previously described and used at 80-
95% purity (45). HFFs were plated as described above and, at 2
dpi, NK cells were added to the wells at an NK : HFF ratio of 2:1.
Positive and negative controls were obtained by culturing NK
cells alone in the presence or absence of PMA (50 ng/ml) plus
ionomycin (500 ng/ml), respectively. At the same time, brefeldin
A was added to all wells at a concentration of 5 µg/ml. After an
NK : HFF co-culture of 18 h, NK cells were harvested, and
extracellular staining was performed using a mixture of FITC-
conjugated anti-CD3, PE-conjugated anti-CD56 and APC-H7-
conjugated Zombie NIR™ viability dye. After washing, cells were
fixed, permeabilized, stained with the APC-conjugated anti-
IFN-g; mAb, and analyzed by flow cytometry.

DNA Extraction and Next-Generation
Sequencing
DNA was extracted from infected fibroblasts using Qiagen Blood
Mini Kit (Qiagen, Hilden, Germany) and eluted in 60 µl PBS.
Total DNA (500 ng) was used as input for library preparation.
For Library preparation, an NEB Ultra II FS Kit (New England
Biolabs, Ipswich, USA) was used, which provides a transposase-
based fragmentation. Index sequences were added by 3 cycles of
PCR with NEB NEBnext Index primers (New England Biolabs,
April 2021 | Volume 12 | Article 532484
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Ipswich, USA). The libraries were loaded with a final
concentration of 12 pM on a MiSeq (Illumina, San Diego,
USA), using an Illumina MiSeq Reagent Kit v3 (600-cycles)
with 11% Flow cell coverage for each sample. The resulting reads
were trimmed to remove adaptor sequences and low-quality
bases (q < 20) and mapped to the human genome (hg19) with
bowtie2_2.2.2. Mapped reads were then discarded. The
unmapped reads were used for de novo assembly with
SPAdes_3.10.1 and CLC 10.0.1(Qiagen, Hilden, Germany)
de novo Assembler. The contig sequences from CLC and
SPAdes were combined and used for scaffolding in CLC. All
samples were scaffolded to the Merlin Reference AY446894 from
the GenBank. A draft assembly was constructed by extracting
the consensus sequence from scaffolding. Subsequently, the
sequences underwent several steps of error-correction and
genome polishing. In a first step, GapFiller_1.10 was used to
close gaps in the draft assembly, followed by remapping with
bowtie2 and error correction by Pilon_1.22, using the quality
trimmed and human filtered reads from the initial steps. The
Remapping/Pilon process was performed in three iterations. The
polished sequences were then aligned to the mapping-consensus
from reference mapping using the MAFFT plugin in
Geneious_11.1.5. The remaining gaps in the assembly were
filled after alignment from the mapping consensus. To finish
the assembly, a last error correction step was performed with a
homemade script, which replaces nucleotides with higher
probability. This script follows the “Best Practices” for variant
calling, as recommended by GATK (Broad Institute), and uses
several tools from GATK3. Annotations were transferred in
Geneious with the tool “Annotate from…”. The threshold for
annotation was a similarity of > 75%. The final low frequency
variant calling was performed in CLC after mapping the
deduplicated reads back to the assembled genome. To remove
sequencing errors from the result tables, the variants were filtered
for a minimum mapping quality of 20, no homopolymer
stretches, and a forward/reverse balance of > 0.3.

For genotyping, the reads were mapped to the reference
sequences of hypervariable genes from different HCMV strains,
which represent different genotypes. For plotting variant
frequency and binned variant frequency, a homemade R-script
from Elias Haage was used. Also, all final sequences were aligned
to the Merlin reference. To determine all differences with the
Merlin-reference sequence, single alignments of the final
assembled sequences with the Merlin Ref were performed in
Geneious, using the MAFFT plugin. By using the function “Find
Variations/SNPs”, tables of all differences were created and
exported. All mappings were performed in CLC, with a landing
fraction of 50% and a similarity fraction of 80%. Complete genome
sequences of all HCMV isolates were submitted to GenBank under
the following accession numbers: P4: MT070138; P6: MT070139;
P10: MT070140; P14: MT070141; P15: MT070142.

Alignments, Neighbor-Net Split Network,
and Similarity Scores
Whole genome sequence alignments were generated using
MAFFT (46) with the default parameters. A neighbor-net split
Frontiers in Immunology | www.frontiersin.org 4
network of all whole-genome sequences was constructed with
SplitsTree v4.13.1 (47) using uncorrected p-distances and all
polymorphic sites, after removing gap sites. Pairwise identity
scores were calculated as 1-(M/N), where M is the number of
mismatching nucleotides, and N is the total number of positions
along the alignment at which neither sequence has a gap
character, as previously reported (48).

Statistical Analysis
Statistical tests were performed using GraphPad Prism version
5.00 for Windows (GraphPad Software, San Diego California
USA), unless specified differently in the text. The data were
presented as means ± standard deviations (SD). Means between
one or two groups were compared by using a two-way analysis of
variance with Bonferroni’s post-test or paired t-test. Differences
were considered statistically significant for *P < 0.05; **P < 0.01;
***P < 0.001.
RESULTS

HCMV Clinical Strains Differently Modulate
NK Cell Activating Ligands
We previously demonstrated that HCMV clinical strains from
urine samples of congenitally infected patients displayed high
levels of phenotypic variability alongside high genetic variation
in regions responsible for immunomodulation (42). Thus, we
asked whether these differences would influence the ability of
HCMV to modulate the host immune response. For this purpose,
we determined the expression levels of various ligands of the NK
cell-activating receptors NKG2D, DNAM-1/CD226, and NKp30
(6, 16) in HFFs infected with five selected clinical isolates
(hereinafter referred to as P4, P6, P10, P14, and P15). The
selection of these clinical strains was based on their phenotypic
characteristics in different cell culture models (i.e., HFFs,
HUVECs, and ARPE-19 cells) (42). Specifically, the replication
of cell-associated isolates was quantified by focus expansion
assay (FEA), as previously described (42). Based on FEA
results, P14 and P15 were fast-replicating, syncytial-forming
strains (referred to as “aggressive”), while P4 was “moderate”,
and P6 and P10 slow-replicating (“non-aggressive”) (42). Upon
infection, HFFs were co-cultured with an excess of uninfected
HFFs (mock) (ratio of 9:1) for different time points post-
infection and then subjected to RT-qPCR and FACS analysis
to test mRNA and protein expression levels of selected NK cell
ligands. The infection rate was calculated by intracellular staining
of IE1/IE2 antigens (Supplementary Figures 1A, B).

As shown in Figure 1, the phenotypically “aggressive” P15-
and “moderate” P4-infected HFFs showed enhanced levels of the
DNAM-1/CD226 ligand poliovirus receptor (PVR/CD155)
mRNA at 48 but not 24 hours post infection (hpi) in
comparison with Merlin- or mock-infected cells, while
infection with P6, P10, and P14 did not lead to significant
changes in PVR/CD155 expression at either time point
(Figure 1A). Consistent with the RT-qPCR results, P4 and P15
upregulated PVR/CD155 cell surface protein expression
April 2021 | Volume 12 | Article 532484

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Galitska et al. HCMV Genetic and Biological Variability
(Figures 1B) at 3 days post-infection (dpi). Intriguingly, also the
second aggressive isolate P14, which failed to upregulate PVR/
CD155 mRNA at both 24 and 48 hpi, increased PVR/CD155
protein expression, suggesting that additional posttranslational
events were probably needed for this variant to trigger maximum
ligand induction. Furthermore, we have observed a significant
mRNA induction of the NKG2D receptor ligand MICA in P4- or
P15-infected cells at 48 hpi, which have not however been
confirmed at the protein level (Supplementary Figure 2A).
Likewise, ULPBs (i.e., ULBP2/5/6 and 3) were upregulated at
the mRNA level upon infection with some strains— ULBP2/5/6:
Merlin, P4, P14, P15 at 24 hpi, and Merlin and P15 at 48 hpi;
ULBP3: P4, P6, and P10 at 24 hpi, and Merlin and P4 at 48 hpi—,
but their cell surface expression has been mostly downregulated
or unaffected in comparison with mock-infected cells
(Supplementary Figures 2B, C). Finally, the other NKG2D
and DNAM-1/CD226 ligands MICB, and Nectin-2/CD112, as
well as the NKp30 ligand B7-H6 were undetectable in both
mock- or HCMV-infected cells (data not shown).

Altogether, these results strict display no correlation between
isolate aggressiveness and activating ligand expression, and at the
cell surface they appeared to be - in general - down-regulated.
However, an exception to such pattern has been observed for
PVR/CD155 in cells infected with three different isolates.
Frontiers in Immunology | www.frontiersin.org 5
Functional Activity of NK Cells Co-
Cultured With HFFs Infected With Different
HCMV Clinical Isolates
To determine whether the observed modulation of NK cell-
activating ligands by selected HCMV clinical strains resulted in
differences in NK cell functional activity, we analyzed IFN-g;
expression by NK cells co-cultured with HFFs infected with
different HCMV isolates (Figure 2). Indeed, IFN-g secretion in
NK cells upon HCMV infection is known to limit HCMV
replication by triggering a Th1 response and promoting cell
resistance to infection, via the so-called “anti-viral state” (49, 50).
HFFs infected with clinical isolates were co-cultured with an
excess of uninfected HFFs, as described above, and at 2 dpi, NK
cells were added and co-cultured with HFFs at a ratio of 2:1, in
the presence of brefeldin A. After 18 h of NK : HFF co-culture (3
dpi in total), NK cells were harvested and IFN-g; expression was
analyzed by intracellular staining on CD3-CD56+ NK cells
(Figure 2A). As a positive or negative control, NK cells were
cultured alone in the presence or absence of PMA plus
ionomycin, respectively (Figure 2C). We observed a greater
percentage of NK cells capable of producing IFN-g in response
to infection with the “aggressive” strains P14 and P15, and to a
lesser extent with the “moderate” P4 and “non-aggressive” P10
(Figures 2A, B). By gating on CD3-CD56dim or CD3-
A

B

FIGURE 1 | Modulation of the NK cell ligand PVR/CD155 by HCMV clinical isolates. (A) Primary human foreskin fibroblasts (HFFs) infected with the indicated clinical
isolates (P4, 6, 10, 14, and 15), the Merlin strain, or uninfected (mock) were co-cultured with an excess of uninfected HFFs, as described in Materials and Methods,
and subjected to RT-qPCR to measure PVR/CD155mRNA expression levels. Values were normalized to the housekeeping gene glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) mRNA and plotted as fold induction relative to mock-infected cells (set at 1). Data from three experiments performed at 24 and 48 hours
post-infection (hpi) are shown. Error bars show standard deviation (SD) (***P < 0.001; two-way ANOVA followed by Bonferroni’s post-tests, for comparison of
infected vs. mock cells). (B) FACS analysis assessing PVR/CD155 expression at 3 days post-infection. Left panel: a representative experiment of at least four
performed with all HCMV isolates is shown. Dashed and dotted lines indicate isotype control in mock or HCMV-infected cells, respectively. Right panel: data derived
from at least four experiments performed with all HCMV isolates. PVR/CD155 expression levels are presented as mean fluorescence intensity (MFI) ± SE (*P < 0.05;
**P < 0.01, paired Student t test for comparison of infected vs. mock cells).
April 2021 | Volume 12 | Article 532484

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Galitska et al. HCMV Genetic and Biological Variability
CD56bright NK cells, the highest percentage of IFN-g+ NK cells
seemed to be confined to the CD56bright population, as
previously shown for this time interval after stimulation
(>16 h) (51, 52).

Finally, to understand if IFN-g; modulation was a
consequence of HLA-I expression, we tested it together with
IE1/IE2 viral protein expression by double-staining followed by
FACS analysis. As shown in Supplementary Figure 2D, HLA-I
was strongly downregulated in Merlin-, P4-, P14-, P15-infected
cells, where most of the cells were infected (80-90% of IE+ cells,
as indicated). On the other hand, P6 showed HLA-I
downregulation only in IE+ infected cells, but not in
uninfected cells, while P10 had an intermediate phenotype,
indicating that triggering of IFN-g; production was not a
consequence of the sole HLA-I expression.

Altogether, these results demonstrate that clinical isolates
differ in their ability to modulate NK cell-activating ligands
and NK cell effector functions.

NGS Assessment of HCMV Genetic
Variability in HCMV Clinical Isolates
To determine whether the differences observed in phenotypic
features (42) and immunological response could be primarily
ascribed to differences in genetic composition, we employed an
NGS approach to sequence the HCMV clinical isolates.

Sufficient coverage has been obtained for all isolates
(Supplementary Table 1). Analysis of the frequency and
distribution of heterozygous variants across these genomes
suggested that all isolates derived from single-strain infections,
as most of such variants were either low frequency or unevenly
distributed (Supplementary Figure 3). P14 and P15 showed
clustering of high-frequency variants in specific regions
corresponding to the UL20-UL24 and UL48 genes
(Supplementary Figure 3). For all isolates, a consensus
Frontiers in Immunology | www.frontiersin.org 6
genome has been obtained and aligned with other
available sequences from urine samples and laboratory
strains to generate a neighbor-net split network (Figure 3),
a method that allows inference of evolutionary relationships
in the presence of conflicting phylogenetic signals (e.g.,
recombination). In line with previous reports (35), no evidence
of geographic clustering for HCMV isolates was observed.
However, isolates P4, P14, and P15 are closely related among
themselves and with strain VR1814, originally isolated in Italy in
1996 (53) (Figure 3A). Indeed, the average identity among these
sequences appear higher than 99% (Figure 3B).

Since gene-disrupting mutations are known to be common in
HCMV clinical isolates, irrespective of cell culture adaptation
(35), the five isolates were analyzed for the presence of mutations
disrupting their coding potential (Table 1). Genes that are
commonly disrupted in clinical isolates (RL6, RL13, UL1) (54)
were indeed found to be mutated in all samples, except for the P6
strain. Interestingly, a deletion involving the UL144-UL140
region has been detected in the three closely related isolates
P4, P14, and P15 (Table 1). Furthermore, alignment of the
predicted protein sequences of molecules known to modulate
NK cell affecting it in either inhibitory way (i.e., UL18, RL11,
UL119, UL135, and UL83), activating (i.e., UL16, UL141, UL142,
UL148, US12, US14, US9, US18, US20, UL16, and UL142), or
both (i.e., UL40), showed very few differences among the isolates,
and most changes were contributed by P10 (Supplementary
Figure 4). Clearly, this is only the case of genes not involved in
deletion events (i.e., UL140-UL144).
DISCUSSION

The worldwide spread of HCMV infection concomitant with the
absence of an effective vaccine, reliable diagnostic methods, and
A B

C

FIGURE 2 | IFN-g expression in NK cells co-cultured with HCMV-infected HFFs. NK cells were co-cultured with mock- or HCMV-infected HFFs at day 2 post
infection, as described in Materials and Methods. The day after, NK cells were harvested and stained for intracellular IFN-g. (A) A representative experiment of at least
four performed with all HCMV isolates is shown. Numbers indicate the percentage of IFN-g+ cells in the gate of CD3-CD56+ (total), CD3-CD56dim (dim), or CD3-
CD56bright (bright) NK cells. All cells were first gated among viable (Zombie-) population. (B) Cells were analyzed as in panel (A), and data are expressed as the
mean percentage (%) ± SE of IFN-g+ cells in the gate of total CD3-CD56+ NK cells. Data are from at least four independent experiments (*P < 0.05; **P < 0.01
paired Student t test for comparison of infected vs. mock cells). (C) Negative (ctrl) and positive (PMA/iono) controls for IFN-g production are also shown, and are
referred to NK cells cultured alone or in the presence of PMA plus ionomycin.
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safe therapeutics represents a significant challenge in HCMV
disease management and prevention in various clinical settings,
especially in congenital infections with unpredicted outcomes
(55–60).

In recent years, many efforts have been directed towards
understanding whether different clinical outcomes may be
ascribed to alterations at the viral genome level (61, 62), which
is supported by the observation that the outcome of infection is
also dependent on the host immune status (63, 64).
Frontiers in Immunology | www.frontiersin.org 7
More than half of the HCMV genome encodes proteins with
immunomodulatory functions (24, 65), a large array of which
can inhibit NK cell functions (13, 66). However, despite recent
advances in the characterization of the HCMV genome, the
functional relevance of HCMV genetic variability remains
poorly understood.

Sanger sequencing and, more recently, high-throughput
approaches have been extensively applied to assess HCMV
genome variability (35, 67, 68), though no effort has been so
far made to correlate the genome composition of HCMV clinical
strains with its immunomodulatory activity. Thus, here we
sought to determine whether the genetic variability among
HCMV clinical isolates obtained from congenitally infected
pediatric patients (42) would influence activating ligand
expression and, consequently, NK cell effector functions.

Our in vitro results provide direct evidence that NK cell-
activating ligands are differently modulated by HCMV clinical
isolates. In particular, PVR/CD155 was strongly upregulated by
the moderate-to-aggressive P4, P14, and P15 strains, whereas it
was downregulated by the laboratory strain Merlin, in good
agreement with previous works (69–71). While P4- and P15-
mediated PVR/CD155 upregulation was already evident at the
mRNA level at 48 hpi, the increased PVR/CD155 protein level
could only be observed after 3 days of P14 infection, suggesting
that additional posttranslational events may be involved in the
regulation of this ligand. We think that there should not
necessarily exist an indirect correlation between the expression
of all activating ligands and “aggressiveness” (the more
aggressive isolate, the fewer ligands expressed). At the same
time, mRNA expression may not necessarily correlate with the
expression of the encoded protein. Since HCMV is paradigmatic
in its capability to down modulate all known NKG2D and
A

B

FIGURE 3 | (A) Neighbor-net split network of the five HCMV isolates plus additional genomes sequences. The geographic location where each sample was isolated
is indicated. (B) Color-coded pairwise identity matrix for the five isolates. Each cell represents the percentage identity score between two sequences (indicated
horizontally and vertically). The legend indicates the correspondence between pairwise identities and the color code. Identity scores were computed over all positions
where gaps are not observed in either sequence.
TABLE 1 | Genes containing ORF-disrupting mutations.

Isolate Event Genes

P4 Deletion (1053 bp) RL13-UL1 (partial)
Deletion (3173 bp) UL144 (partial), UL142, UL141, UL140

(partial)
Complex event1 IRS11

P6 ND2 ND2

P10 Deletion (381 bp) RL6
Complex event (duplication/
deletion)

US34 (dup), US34A (dup), US33A (dup);
US3 (del);

P14 Deletion (1053 bp) RL13-UL1 (partial)
Deletion (3173 bp) UL144 (partial), UL142, UL141, UL140

(partial)
Complex event1 IRS11

P15 Deletion (1053 bp) RL13-UL1 (partial)
Deletion (3173 bp) UL144 (partial), UL142, UL141, UL140

(partial)
Complex event1 IRS11
1Due to the repetitive nature of the region, it was impossible to establish mutation events
with certainty; 2None detected.
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DNAM-1 ligands, one would expect a generalized suppression of
their expression, particularly at the protein level. However, the
vast majority of HCMV ORFs influencing NK cell recognition of
infected cells inhibit activating ligand cell surface expression
more than their mRNA, as a widely acknowledged fact in the
field. Thus, for all these reasons, it is not surprising that all the
ligands tested were - in general - downregulated, independently
from their mRNA expression. However, since PVR/CD155
appeared to be an exception, further investigations into the
reason(s) behind its upregulation were carried out (Figure 1),
as compared to previous studies, including those from us (71).

We asked whether this phenotype could be ascribed to
specific genome alterations of these HCMV strains.
Interestingly, NGS analysis revealed that these strains are
phylogenetically related (Figure 3). Surprisingly, P4, P14, and
P15 share a deletion in the UL141 gene, which normally inhibits
the expression of PVR/CD155 expression to keep NK cells in
check (69–71). Remarkably, the increased expression of PVR/
CD155 in P4, P14, and P15-infected cells correlated with
enhanced expression of IFN-g by those NK cells cocultured
with HFF infected with the same strains, suggesting a potential
link between genotype, phenotype, and functional effects.
Although it would be interesting to further investigate IFN-g
production by different NK cells subsets, and thus at different
time-points after stimulation, our results were indeed
unexpected, as one would assume that an “aggressive” strain
would more readily escape NK cell control also via inhibition
(and not stimulation) of this potent cytokine used by NK cells to
limit HCMV replication. However, IFN-g is also a well-known
marker directly induced by the infection. For example, the
QuantiFERON-CMV test relies on the measurement of IFN-g
release in order to identify patients at risk to develop CMV
disease and is currently employed in the clinical practice (72).

Surprisingly, P10, even if classified as a “non-aggressive”
isolate, induces a considerable proportion of IFN-g+ NK cells,
albeit lower while compared to the “aggressive” isolates P14 and
P15. One possible explanation of such effect could be ascribed to
the numerous mutations encountered in the sequences of P10
proteins involved in the evasion from NK cell recognition
(Supplementary Figure 4).

It is well-established that pUL141 acts as a potent immune
modulator that impairs surface expression of PVR/CD155 by
sequestering it into the endoplasmic reticulum (ER) (69, 73, 74).
Two other NK cell-associated host proteins, namely TNF-related
apoptosis inducing ligand receptors 1 and 2 (TRAIL-R1 and R2),
involved in the transmission of apoptotic signals and caspase
activation, are also targeted by pUL141 and subjected to
intracellular retention (75, 76). Moreover, pUL141 co-operates
with another viral modulator (US2) to degrade Nectin-2/CD112,
an additional DNAM-1/CD226 ligand, via the E3 ligase TRC8
and proteasomal degradation (70, 77). Hence, pUL141 prevents
NK cell-mediated cytotoxicity by targeting at least four different
proteins via two independent mechanisms (12). We, therefore,
hypothesize that our moderate-to-aggressive HCMV isolates,
due to a more error-prone and faster replication rate, may
have lost immunoevasion genes, such as UL141, thereby
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becoming more suscept ib le to NK ce l l de tect ion.
Concomitantly, the fast-replication of these particular strains
may result in more stochastic dissemination into the host,
considering their broad in vitro growth patterns previously
reported (42), which would render them more readily
detectable by the immune system (e.g., cytotoxic lymphocytes
and neutralizing antibodies). Conversely, the non-aggressive
strains P6 and P10, with an intact UL141, did not significantly
modulate the expression of PVR/CD155. However, despite the
absence of UL141 mutations in its genome, P10 was able to elicit
IFN-g expression by NK cells. This could be ascribed to the
numerous mutations detected in P10-encoded molecules
associated with NK cell modulation, which may eventually
result in enhanced IFN-g secretion (Supplementary Figures
3, 4).

The analysis of other NK cell-activating ligands revealed that
ULBP2/5/6 was downregulated independently from the strain. In
line with these results, no deletions have been detected in the
HCMV gene UL16, previously shown to be involved in
downregulating this ligand (45).

MICA, MICB, ULBP3, Nectin-2/CD112, and the NKp30
ligand B7-H6 were not significantly modulated by any of the
HCMV isolates. This is quite surprising given that P4, P14, and
P15 displayed a deletion in the UL142 gene, responsible for
ULBP3 and MICA downregulation (78–80). However, the other
HCMV ORFs known to inhibit the expression of these ligands
(e.g., US9, US18, and US20) (81, 82) were not deleted or mutated,
suggesting a potential compensatory role of these ligands.

Along with complete UL141 and UL142 gene loss in the P4,
P14, and P15 strains, NGS analysis also revealed partial loss of
UL144 and UL140. UL144 is a highly variable gene within
clinical isolates (42, 83, 84), but to date no inhibitory function
for UL144 on NK cells has been demonstrated (85). However,
UL144 can activate NF-kB via TRAF-6 recruitment (86) and
induce the expression of the chemotactic factor CCL22, which
hampers migration of CCR4-expressing NK cells (87). Regarding
UL140, we assume that it has been affected together with the
other genes mainly due to its adjacent location in the highly
variable UL/b′ region.

This scenario becomes even more complicated when the
contribution of multiple-strain infection (i.e., mixed infection,
super-infection) is taken into account (34, 88–90). According to
recent data, mixed infection (31, 34) and extensive
recombination (30, 34, 91) of genetically distinct strains
enhance HCMV genetic variability. The occurrence of
multiple-strain infection seems, however, an unlikely event in
our case given that NGS analysis showed all our five HCMV
clinical strains are derived from single-strain infections.

Our data also show clustering of high-frequency variants in
specific regions corresponding to the UL20-UL24, UL48, and
UL84-UL87 genes in the “aggressive” strains P14 and P15 but not
in the “moderate” strain P4 (Supplementary Figure 3), probably
due to an ongoing adaptation of these strains to cell culture
conditions. If this was indeed the case, it would be quite
surprising that, despite sharing similar genetic background,
only the “aggressive” P14 and P15 strains but not the
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“moderate” P4 show signs of cell culture adaptation. The reasons
for this observation are presently unclear. An additional level of
complexity derives from the fact that the association between
variability within the UL20, UL22A, UL24, and UL37 gene
regions and cell culture adaptation is highly controversial.
While a global mutagenesis approach has shown that UL20 is
dispensable for HCMV growth in primary human fibroblasts,
two large-scale mutagenic analyses showed that mutations in
overlapping UL21a/UL21 resulted in a severe defect of virus
growth in fibroblasts (92). Furthermore, an early sequence
inspection of UL20 revealed a distant homology to the TCR-g
chain, implying a possible role in promoting viral infection or
immune evasion (93). UL23, another polymorphic component of
this cluster, has been shown to inhibit STAT1-dependent
transcription of IFN-g stimulated genes by binding to human
N-myc interactor protein (Nmi) and blocking its association
with STAT1 (94). Thus, it is tempting to speculate that the
genetic variability of UL23 may additionally contribute to the
functional features of the “aggressive” strains.

Another important finding of our study is the identification of
different variants of the UL48 gene, critical for viral replication,
in P14 and P15. Indeed, the N-terminal region of pUL48 displays
a deubiquitinase activity, which moderately promotes viral
growth in cultured fibroblasts (95, 96), and a nuclear
localization signal (NLS) is required for viral growth (97).
Moreover, pUL48 directs pUL47 to the viral assembly complex
(vAC) to promote tegumentation and maturation of viral capsids
(98). Given that pUL48 is the largest HCMV protein with
multiple functions, the “aggressive” strains may have evolved
UL48 variants to enhance their replication.

The strength of our study includes the comprehensive
analysis of the entire genome of several HCMV clinical strains
by NGS, an approach that has allowed us to uncover the loss of
multiple immunomodulatory genes and detect single variants in
our clinical isolates. This is particularly important considering
the scarce literature addressing the relationship between HCMV
genetic variability and immune modulation.

The limitations of this study include the passaging of HCMV
clinical isolates, albeit kept to a minimum, to amplify the virus
from initially low-titered samples and the in vitro immunological
assays, which could result in inevitable culture adaptation and
selection of mutants. Nevertheless, the need to study viral
pathogenicity requires the use of clinical strains as a model
closest to that resembling in vivo infection, which may shed light
on viral genome-host interactions and immune selective
pressure. Moreover, we note that the possibility of multiple-
strain infections occurring in a single patient should be
further addressed.

Altogether, our findings show for the first time that newly
obtained clinical HCMV isolates, in addition to their existing
genetic heterogeneity, are able to translate these differences into
antiviral effector functions. Although further studies based on a
higher number of patients should be greatly encouraged to reach
a statistical significance, our study suggests that viral
determinants are genetically and functionally different from
patient to patient. Therefore, the ability of distinct HCMV
Frontiers in Immunology | www.frontiersin.org 9
clinical isolates to trigger different immune responses should
be considered when designing vaccines or developing a more
personalized treatment for HCMV disease.
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